[en] Aphids (Hemiptera: Aphididae) maintain intimate relationships with a variety of symbiotic bacteria that can be important drivers of their evolutionary ecology. In addition to the obligate endosymbiont Buchnera aphidicola, aphids may harbor a series of facultative symbionts that can affect their physiology, as they may be involved in heat resistance, nutrition, reproduction and defense against parasitoids. Since the presence of facultative symbionts in aphids can be disadvantageous for parasitoids, it is hypothesized that these insects have developed strategies to adjust their responses to the presence of these bacteria. In this study, experiments were conducted to determine whether the presence of the facultative symbiont Serratia symbiotica in the pea aphid Acyrtosiphum pisum affects the development and the life-history traits of the generalist parasitoid Aphidius ervi (Hymenoptera: Braconidae). Behavioral assays were also performed to determine whether the infection status of host aphids influences the foraging behavior of the parasitoids. It was showed that the presence of S. symbiotica had negative effects on the development and the life-history traits of emerging parasitoids. It was found that parasitoids preferentially orient themselves to uninfected aphid hosts, probably through chemical clues, and that they adjust their foraging behavior by investing more time in patches composed of uninfected aphid hosts. In light of these results, it is assumed that the presence of S. symbiotica alters host aphid quality, which in turn influences the choice of the female parasitoids for oviposition as well as the quality of the emerging parasitoids. This study highlights the ability of parasitoid wasps to modify their perception and behavior towards aphids infected with facultative symbionts and how these microorganisms interfere with host-parasite relationships.
Disciplines :
Entomology & pest control
Author, co-author :
Attia, Sabrine; Earth and Life Institute, Biodiversity Research Centre, UCLouvain, Louvain-la-Neuve, Belgium ; Laboratory of Bio aggressors and Integrated Pest Management in Agriculture, National Agronomic Institute of Tunisia (INAT) – University of Carthage, Tunis, Tunisia
Renoz, François; Earth and Life Institute, Biodiversity Research Centre, UCLouvain, Louvain-la-Neuve, Belgium
Pons, Inès; Earth and Life Institute, Biodiversity Research Centre, UCLouvain, Louvain-la-Neuve, Belgium
Louâpre, Philippe; CNRS, Biogéosciences UMR 6282, Université Bourgogne Franche-Comté, Dijon, France
Foray, Vincent; CNRS, Institut de Recherche sur la Biologie de l’Insecte UMR 7261, Université de Tours, Tours, France
Piedra, José-Mateo; Earth and Life Institute, Biodiversity Research Centre, UCLouvain, Louvain-la-Neuve, Belgium
Sanané, Inoussa; Earth and Life Institute, Biodiversity Research Centre, UCLouvain, Louvain-la-Neuve, Belgium
Le Goff, Guillaume; Earth and Life Institute, Biodiversity Research Centre, UCLouvain, Louvain-la-Neuve, Belgium
Lognay, Georges ; Université de Liège - ULiège > Département des sciences et gestion de l'environnement (Arlon Campus Environnement) > Surveillance de l'environnement
Hance, Thierry; Earth and Life Institute, Biodiversity Research Centre, UCLouvain, Louvain-la-Neuve, Belgium
Language :
English
Title :
The aphid facultative symbiont Serratia symbiotica influences the foraging behaviors and the life-history traits of the parasitoid Aphidius ervi
Publication date :
2022
Journal title :
Entomologia Generalis
ISSN :
0171-8177
eISSN :
2363-7102
Publisher :
Schweizerbart Science Publishers
Volume :
42
Issue :
1
Pages :
21 - 33
Peer reviewed :
Peer Reviewed verified by ORBi
Funding text :
We are very grateful to Prof. Nancy Moran for providing aphid clones and to Prof. Stephen Foster for his comments on the research. This work was supported by a WallonieBruxelles International (WBI) grant. This is publication BRC 270 of the Biodiversity Research Centre at UCLouvain.Acknowledgments: We are very grateful to Prof. Nancy Moran for providing aphid clones and to Prof. Stephen Foster for his comments on the research. This work was supported by a Wallonie-Bruxelles International (WBI) grant. This is publication BRC 270 of the Biodiversity Research Centre at UCLouvain.
Battaglia, D., Pennacchio, F., Marincola, G., & Tranfaglia, A. (2013). Cornicle secretion of Acyrthosiphon pisum (Homoptera: Aphididae) as a contact kairomone for the parasitoid Aphidius ervi (Hymenoptera: Braconidae). European Journal of Entomology, 90, 423–428.
Bilodeau, E., Simon, J.-C., Guay, J.-F., Turgeon, J., & Cloutier, C. (2013). Does variation in host plant association and symbiont infection of pea aphid populations induce genetic and behaviour differentiation of its main parasitoid, Aphidius ervi? Evolutionary Ecology, 27(1), 165–184. https://doi.org/10.1007/s10682-012-9577-z
Boivin, G., Fauvergue, X., & Wajnberg, E. (2004). Optimal patch residence time in egg parasitoids: Innate versus learned estimate of patch quality. Oecologia, 138(4), 640–647. https://doi. org/10.1007/s00442-003-1469-z
Brandt, J. W., Chevignon, G., Oliver, K. M., & Strand, M. R. (2017). Culture of an aphid heritable symbiont demonstrates its direct role in defence against parasitoids. Proceedings. Biological Sciences, 284(1866), 20171925. https://doi.org/10.1098/rspb.2017.1925
Burke, G., Fiehn, O., & Moran, N. (2010). Effects of facultative symbionts and heat stress on the metabolome of pea aphids. The ISME Journal, 4(2), 242–252. https://doi.org/10.1038/ismej. 2009.114
Charnov, E. L. (1982). The Theory of Sex Allocation. Princeton University Press.
Chevignon, G., Boyd, B. M., Brandt, J. W., Oliver, K. M., & Strand, M. R. (2018). Culture-Facilitated Comparative Genomics of the Facultative Symbiont Hamiltonella defensa. Genome Biology and Evolution, 10(3), 786–802. https://doi.org/10.1093/gbe/evy036
Cochard, P., Galstian, T., & Cloutier, C. (2019). The influence of light environment on host colour preference in a parasitoid wasp. Ecological Entomology, 44(1), 105–117. https://doi. org/10.1111/een.12678
Costopoulos, K., Kovacs, J. L., Kamins, A., & Gerardo, N. M. (2014). Aphid facultative symbionts reduce survival of the predatory lady beetle Hippodamia convergens. BMC Ecology, 14(1), 5. https://doi.org/10.1186/1472-6785-14-5
Cox, D. R. (1972). Regression Models and Life-Tables. Journal of the Royal Statistical Society: Series B (Methodological), 34(2), 187–202. https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
Douglas, A. E. (1998). Nutritional Interactions in Insect-Microbial Symbioses: Aphids and Their Symbiotic Bacteria Buchnera. Annual Review of Entomology, 43(1), 17–37. https://doi.org/10.1146/annurev.ento.43.1.17
Elston, K. M., Perreau, J., Maeda, G. P., Moran, N. A., & Barrick, J. E. (2020). Engineering a Culturable Serratia symbiotica Strain for Aphid Paratransgenesis. Applied and Environmental Microbiology, 87(4), e02245-20. https://doi.org/10.1128/AEM. 02245-20
Feldhaar, H. (2011). Bacterial symbionts as mediators of ecologically important traits of insect hosts. Ecological Entomology, 36(5), 533–543. https://doi.org/10.1111/j.1365-2311.2011. 01318.x
Fischer, C. Y., & Lognay, G. C. (2012). Simple and Automatic Closed Grinding and Extraction System. Journal of Chemical Education, 89(12), 1611–1612. https://doi.org/10.1021/ed2007907
Fisher, R. M., Henry, L. M., Cornwallis, C. K., Kiers, E. T., & West, S. A. (2017). The evolution of host-symbiont dependence. Nature Communications, 8(1), 15973. https://doi.org/10.1038/ncomms15973
Francis, F., Vandermoten, S., Verheggen, F., Lognay, G., & Haubruge, E. (2005). Is the (E)-β-farnesene only volatile terpenoid in aphids? Journal of Applied Entomology, 129(1), 6–11. https://doi.org/10.1111/j.1439-0418.2005.00925.x
Gerardo, N., & Hurst, G. (2017). Q&A: Friends (but sometimes foes) within: the complex evolutionary ecology of symbioses between host and microbes. BMC Biology, 15(1), 126. https://doi.org/10.1186/s12915-017-0455-6
Gerardo, N.M., & Parker, B.J. (2014). Mechanisms of symbiontconferred protection against natural enemies: an ecological and evolutionary framework. Current Opinion in Insect Science, 4, 8–14. https://doi.org/10.1016/j.cois.2014.08.002
Godfray, H., Charles, J., & Godfray, H. C. J. (1994). Parasitoids: Behavioral and Evolutionary Ecology. Princeton University Press. https://doi.org/10.1515/9780691207025
Hafer-Hahmann, N., & Vorburger, C. (2020). Parasitoids as drivers of symbiont diversity in an insect host. Ecology Letters, 23(8), 1232–1241. https://doi.org/10.1111/ele.13526
Hardy, I. C. W. (1994). Sex Ratio and Mating Structure in the Parasitoid Hymenoptera. Oikos, 69(1), 3–20. https://doi.org/10.2307/3545278
Hartig, F. (2019). DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R Package Version 02 4.
Harvey, J. A. (2005). Factors affecting the evolution of development strategies in parasitoid wasps: The importance of functional constraints and incorporating complexity. Entomologia Experimentalis et Applicata, 117(1), 1–13. https://doi.org/10.1111/j.1570-7458.2005.00348.x
Hatano, E., Kunert, G., Michaud, J. P., & Weisser, W. W. (2008). Chemical cues mediating aphid location by natural enemies. European Journal of Entomology, 105(5), 797–806. https://doi. org/10.14411/eje.2008.106
Henry, L. M., Ma, B. O., & Roitberg, B. D. (2009). Size-mediated adaptive foraging: A host-selection strategy for insect parasitoids. Oecologia, 161(2), 433–445. https://doi.org/10.1007/s00442-009-1381-2
Henry, L. M., Roitberg, B. D., & Gillespie, D. R. (2008). Host-Range Evolution in Aphidius Parasitoids: Fidelity, Virulence and Fitness Trade-Offs on an Ancestral Host. Evolution, 62(3), 689–699. https://doi.org/10.1111/j.1558-5646.2007.00316.x
Hosokawa, T., Koga, R., Kikuchi, Y., Meng, X.-Y., & Fukatsu, T. (2010). Wolbachia as a bacteriocyte-associated nutritional mutualist. Proceedings of the National Academy of Sciences of the United States of America, 107(2), 769–774. https://doi. org/10.1073/pnas.0911476107
Hubbard, S. F., & Cook, R. M. (1978). Optimal Foraging by Parasitoid Wasps. Journal of Animal Ecology, 47(2), 593–604. https://doi.org/10.2307/3803
Kalbfleisch, J. D., & Prentice, R. L. (2002). The Statistical Analysis of Failure Time Data (2nd ed.). Hoboken, N.J.: John Wiley & Sons. https://doi.org/10.1002/9781118032985
Leclair, M., Pons, I., Mahéo, F., Morlière, S., Simon, J.-C., & Outreman, Y. (2016). Diversity in symbiont consortia in the pea aphid complex is associated with large phenotypic variation in the insect host. Evolutionary Ecology, 30(5), 925–941. https://doi.org/10.1007/s10682-016-9856-1
Leroy, P. D., Sabri, A., Heuskin, S., Thonart, P., Lognay, G., Verheggen, F. J., … Haubruge, E. (2011). Microorganisms from aphid honeydew attract and enhance the efficacy of natural enemies. Nature Communications, 2(1), 348. https://doi.org/10.1038/ncomms1347
Leybourne, D. J., Valentine, T. A., Bos, J. I. B., & Karley, A. J. (2020). A fitness cost resulting from Hamiltonella defensa infection is associated with altered probing and feeding behaviour in Rhopalosiphum padi. The Journal of Experimental Biology, 223(1), jeb207936. https://doi.org/10.1242/jeb.207936
Libbrecht, R., Gwynn, D. M., & Fellowes, M. D. E. (2007). Aphidius ervi Preferentially Attacks the Green Morph of the Pea Aphid, Acyrthosiphon pisum. Journal of Insect Behavior, 20(1), 25–32. https://doi.org/10.1007/s10905-006-9055-y
Losey, J. E., Harmon, J., Ballantyne, F., & Brown, C. (1997). A polymorphism maintained by opposite patterns of parasitism and predation. Nature, 388(6639), 269–272. https://doi.org/10.1038/40849
Louâpre, P., van Alphen, J. J. M., & Pierre, J.-S. (2010). Humans and Insects Decide in Similar Ways. PLoS One, 5(12), e14251. https://doi.org/10.1371/journal.pone.0014251
Łukasik, P., Dawid, M. A., Ferrari, J., & Godfray, H. C. J. (2013a). The diversity and fitness effects of infection with facultative endosymbionts in the grain aphid, Sitobion avenae. Oecologia, 173(3), 985–996. https://doi.org/10.1007/s00442-013-2660-5
Łukasik, P., van Asch, M., Guo, H., Ferrari, J., Charles, J., & Godfray, H. (2013b). Unrelated facultative endosymbionts protect aphids against a fungal pathogen. Ecology Letters, 16, 214– 218. https://doi.org/10.1111/ele.12031
Luo, C., Monticelli, L., Meng, L., Li, D., Fan, J., Zhao, H., & Hu, Z. (2017). Effect of the endosymbiont Regiella insecticola on an aphid parasitoid. Entomologia Generalis, 36(4), 300–307. https://doi.org/10.1127/entomologia/2017/0443
Mackauer, M., Michaud, J. P., & Völkl, W. (1996). Invitation paper: C.P. Alexander Fund: host choice by aphidiid parasitoids (hymenoptera: aphidiidae): host recognition, host quality, and host value. Canadian Entomologist, 128(6), 959–980. https://doi. org/10.4039/Ent128959-6
McFall-Ngai, M., Hadfield, M. G., Bosch, T. C. G., Carey, H. V., Domazet-Lošo, T., Douglas, A. E., … Wernegreen, J. J. (2013). Animals in a bacterial world, a new imperative for the life sciences. Proceedings of the National Academy of Sciences of the United States of America, 110(9), 3229–3236. https://doi. org/10.1073/pnas.1218525110
McLean, A. H. C., Parker, B. J., Hrček, J., Henry, L. M., & Godfray, H. C. J. (2016). Insect symbionts in food webs. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 371(1702), 20150325. https://doi.org/10.1098/rstb. 2015.0325
McLean, A. H. C., Ferrari, J., & Godfray, H. C. J. (2018). Do facultative symbionts affect fitness of pea aphids in the sexual generation? Entomologia Experimentalis et Applicata, 166(1), 32–40. https://doi.org/10.1111/eea.12641
Monticelli, L. S., Outreman, Y., Frago, E., & Desneux, N. (2019). Impact of host endosymbionts on parasitoid host range – from mechanisms to communities. Current Opinion in Insect Science, 32, 77–82. https://doi.org/10.1016/j.cois.2018.11.005
Montllor, C. B., Maxmen, A., & Purcell, A. H. (2002). Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecological Entomology, 27(2), 189– 195. https://doi.org/10.1046/j.1365-2311.2002.00393.x
Muratori, F., Boivin, G., & Hance, T. (2008). The impact of patch encounter rate on patch residence time of female parasitoids increases with patch quality. Ecological Entomology, 33(3), 422–427. https://doi.org/10.1111/j.1365-2311.2007.00984.x
Muratori, F., Le Ralec, A., Lognay, G., & Hance, T. (2006). Epicuticular Factors Involved in Host Recognition for the Aphid Parasitoid Aphidius rhopalosiphi. Journal of Chemical Ecology, 32(3), 579–593. https://doi.org/10.1007/s10886-005-9023-6
Nyabuga, F. N., Outreman, Y., Simon, J.-C., Heckel, D. G., & Weisser, W. W. (2010). Effects of pea aphid secondary endosymbionts on aphid resistance and development of the aphid parasitoid Aphidius ervi: A correlative study. Entomologia Experimentalis et Applicata, 136, 243–253. https://doi. org/10.1111/j.1570-7458.2010.01021.x
Ode, P. J., & Heinz, K. M. (2002). Host-size-dependent sex ratio theory and improving mass-reared parasitoid sex ratios. Biological Control, 24(1), 31–41. https://doi.org/10.1016/S1049-9644(02)00003-8
Oliver, K. M., Moran, N. A., & Hunter, M. S. (2006). Costs and benefits of a superinfection of facultative symbionts in aphids. Proceedings. Biological Sciences, 273(1591), 1273–1280. https://doi.org/10.1098/rspb.2005.3436
Oliver, K. M., Campos, J., Moran, N. A., & Hunter, M. S. (2008). Population dynamics of defensive symbionts in aphids. Proceedings of the Royal Society of London. Series B, Biological Sciences, 275(1632), 293–299. https://doi.org/10.1098/rspb. 2007.1192
Oliver, K. M., Degnan, P. H., Burke, G. R., & Moran, N. A. (2010). Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annual Review of Entomology, 55(1), 247–266. https://doi.org/10.1146/annurev-ento-112408-085305
Oliver, K. M., Degnan, P. H., Hunter, M. S., & Moran, N. A. (2009). Bacteriophages Encode Factors Required for Protection in a Symbiotic Mutualism. Science, 325(5943), 992–994. https://doi.org/10.1126/science.1174463
Oliver, K. M., & Higashi, C. H. (2019). Variations on a protective theme: Hamiltonella defensa infections in aphids variably impact parasitoid success. Curr. Opin. Insect Sci., Ecology * Parasites/Parasitoids. Biological Control, 32, 1–7. https://doi. org/10.1016/j.cois.2018.08.009
Oliver, K. M., & Martinez, A. J. (2014). How resident microbes modulate ecologically-important traits of insects. Current Opinion in Insect Science, 4, 1–7. https://doi.org/10.1016/j. cois.2014.08.001
Oliver, K. M., Moran, N. A., & Hunter, M. S. (2005). Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proceedings of the National Academy of Sciences of the United States of America, 102(36), 12795–12800. https://doi.org/10.1073/pnas.0506131102
Oliver, K. M., Noge, K., Huang, E. M., Campos, J. M., Becerra, J. X., & Hunter, M. S. (2012). Parasitic wasp responses to symbiont-based defense in aphids. BMC Biology, 10(1), 11. https://doi.org/10.1186/1741-7007-10-11
Oliver, K. M., Russell, J. A., Moran, N. A., & Hunter, M. S. (2003). Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proceedings of the National Academy of Sciences of the United States of America, 100(4), 1803–1807. https://doi.org/10.1073/pnas.0335320100
Oliver, K. M., Smith, A. H., & Russell, J. A. (2014). Defensive symbiosis in the real world – advancing ecological studies of heritable, protective bacteria in aphids and beyond. Functional Ecology, 28(2), 341–355. https://doi.org/10.1111/1365-2435. 12133
Outreman, Y., Le Ralec, A., Plantegenest, M., Chaubet, B., & Pierre, J. S. (2001). Superparasitism limitation in an aphid parasitoid: Cornicle secretion avoidance and host discrimination ability. Journal of Insect Physiology, 47(4-5), 339–348. https://doi.org/10.1016/S0022-1910(00)00142-6
Perreau, J., Patel, D.J., Anderson, H., Maeda, G.P., Elston, K.M., Barrick, J.E., Moran, N.A. (2020). Vertical transmission at the pathogen-symbiont interface: Serratia symbiotica and aphids. bioRxiv. https://doi.org/10.1101/2020.09.01.279018
Polin, S., Le Gallic, J.-F., Simon, J.-C., Tsuchida, T., & Outreman, Y. (2015). Conditional Reduction of Predation Risk Associated with a Facultative Symbiont in an Insect. PLoS One, 10(11), e0143728. https://doi.org/10.1371/journal.pone.0143728
Polin, S., Simon, J.-C., & Outreman, Y. (2014). An ecological cost associated with protective symbionts of aphids. Ecology and Evolution, 4(6), 836–840. https://doi.org/10.1002/ece3.991
Pons, I., Renoz, F., Noël, C., & Hance, T. (2019). New Insights into the Nature of Symbiotic Associations in Aphids: Infection Process, Biological Effects and Transmission Mode of Cultivable Serratia symbiotica Bacteria. Applied and Environmental Microbiology, 85, e02445-18. https://doi.org/10.1128/AEM. 02445-18
Renoz, F., Noël, C., Errachid, A., Foray, V., & Hance, T. (2015). Infection Dynamic of Symbiotic Bacteria in the Pea Aphid Acyrthosiphon pisum Gut and Host Immune Response at the Early Steps in the Infection Process. PLoS One, 10(3), e0122099. https://doi.org/10.1371/journal.pone.0122099
Russell, J. A., Oliver, K. M., & Hansen, A. K. (2017). Band-aids for Buchnera and B vitamins for all. Molecular Ecology, 26(8), 2199–2203. https://doi.org/10.1111/mec.14047
Sanders, D., Kehoe, R., van Veen, F. F., McLean, A., Godfray, H. C. J., Dicke, M., … Frago, E. (2016). Defensive insect symbiont leads to cascading extinctions and community collapse. Ecology Letters, 19(7), 789–799. https://doi.org/10.1111/ele. 12616
Schmid, M., Sieber, R., Zimmermann, Y.-S., & Vorburger, C. (2012). Development, specificity and sublethal effects of symbiont-conferred resistance to parasitoids in aphids. Functional Ecology, 26(1), 207–215. https://doi.org/10.1111/j.1365-2435. 2011.01904.x
Simon, J.-C., Boutin, S., Tsuchida, T., Koga, R., Le Gallic, J.-F., Frantz, A., … Fukatsu, T. (2011). Facultative Symbiont Infections Affect Aphid Reproduction. PLoS One, 6(7), e21831. https://doi.org/10.1371/journal.pone.0021831
Skaljac, M., Kirfel, P., Grotmann, J., & Vilcinskas, A. (2018). Fitness costs of infection with Serratia symbiotica are associated with greater susceptibility to insecticides in the pea aphid Acyrthosiphon pisum. Pest Management Science, 74(8), 1829– 1836. https://doi.org/10.1002/ps.4881
Sochard, C., Bellec, L., Simon, J.-C., & Outreman, Y. (2020). Influence of “protective” symbionts throughout the different steps of an aphid–parasitoid interaction. Current Zoology, zoaa053. https://doi.org/10.1093/cz/zoaa053
Tsuchida, T., Koga, R., Horikawa, M., Tsunoda, T., Maoka, T., Matsumoto, S., … Fukatsu, T. (2010). Symbiotic bacterium modifies aphid body color. Science, 330(6007), 1102–1104. https://doi.org/10.1126/science.1195463
van Alphen, J. J. M., Bernstein, C., & Driessen, G. (2003). Information acquisition and time allocation in insect parasitoids. Trends in Ecology & Evolution, 18(2), 81–87. https://doi. org/10.1016/S0169-5347(02)00035-6
Vandermoten, S., Mescher, M. C., Francis, F., Haubruge, E., & Verheggen, F. J. (2012). Aphid alarm pheromone: An overview of current knowledge on biosynthesis and functions. Insect Biochemistry and Molecular Biology, 42(3), 155–163. https://doi.org/10.1016/j.ibmb.2011.11.008
Vorburger, C., Gehrer, L., & Rodriguez, P. (2010). A strain of the bacterial symbiont Regiella insecticola protects aphids against parasitoids. Biology Letters, 6(1), 109–111. https://doi.org/10.1098/rsbl.2009.0642
Vorburger, C., & Gouskov, A. (2011). Only helpful when required: A longevity cost of harbouring defensive symbionts. Journal of Evolutionary Biology, 24(7), 1611–1617. https://doi.org/10.1111/j.1420-9101.2011.02292.x
Wagner, S. M., Martinez, A. J., Ruan, Y.-M., Kim, K. L., Lenhart, P. A., Dehnel, A. C., … White, J. A. (2015). Facultative endosymbionts mediate dietary breadth in a polyphagous herbivore. Functional Ecology, 29(11), 1402–1410. https://doi.org/10.1111/1365-2435.12459
Wajnberg, E., Rosi, M. C., & Colazza, S. (1999). Genetic variation in patch time allocation in a parasitic wasp. Journal of Animal Ecology, 68(1), 121–133. https://doi.org/10.1046/j.1365-2656. 1999.00270.x
Weldon, S. R., Strand, M. R., & Oliver, K. M. (2013). Phage loss and the breakdown of a defensive symbiosis in aphids. Proceedings. Biological Sciences, 280(1751), 20122103. https://doi.org/10.1098/rspb.2012.2103
Zientz, E., Dandekar, T., & Gross, R. (2004). Metabolic Interdependence of Obligate Intracellular Bacteria and Their Insect Hosts. Microbiology and Molecular Biology Reviews, 68(4), 745–770. https://doi.org/10.1128/MMBR.68.4.745-770. 2004
Zytynska, S., Tighiouart, K., & Frago, E. (2021). The benefits and costs of hosting facultative symbionts in plant-sucking insects: A meta-analysis. Molecular Ecology, mec.15897. https://doi. org/10.1111/mec.15897
Zytynska, S. E., & Weisser, W. W. (2016). The natural occurrence of secondary bacterial symbionts in aphids. Ecological Entomology, 41(1), 13–26. https://doi.org/10.1111/een.12281