Bayesian identification of pyrolysis model parameters for thermal protection materials using an adaptive gradient-informed sampling algorithm with application to a Mars atmospheric entry
Modeling and Simulation; Statistics and Probability; Bayesian Inference; Ito Stochastic Differential Equation; Markov Chain Monte Carlo; Thermal Protection System; Carbon/Phenolic Composite
Disciplines :
Aerospace & aeronautics engineering
Author, co-author :
Coheur, Joffrey ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational and stochastic modeling
Magin, Thierry; von Karman Institute for Fluid Dynamics > Aeronautics and Aerospace
Chatelain, Philippe; UCL - Catholic University of Louvain [BE] > Institute of Mechanics, Materials and Civil Engineering > Thermodynamics and fluid mechanics
Arnst, Maarten ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational and stochastic modeling
Language :
English
Title :
Bayesian identification of pyrolysis model parameters for thermal protection materials using an adaptive gradient-informed sampling algorithm with application to a Mars atmospheric entry
Publication date :
2023
Journal title :
International Journal for Uncertainty Quantification
Williams, S.D. and Curry, D.M., Thermal Protection Materials: Thermophysical Property Data, NASA Reference Publication RP-1289, 1992.
Stackpoole, M., Sepka, S., Cozmuta, I., and Kontinos, D., Post-Flight Evaluation of Stardus Sample Return Capsule Forebody Heatshield Material, J. Thermophys. Heat Transf., 24(4):694–707, 2010.
Wright, M., Cozmuta, I., Laub, B., Chen, Y.K., and Wilcoxson, W.H., Defining Ablative Thermal Protection System Margins for Planetary Entry Vehicles, 42nd AIAA Thermophysics Conf., American Institute of Aeronautics and Astronautics, 2011.
Seedhouse, E., Dragon Design, Development, and Test, in SpaceX’s Dragon: America’s Next Generation Spacecraft, Chichester, UK: Springer, pp. 23–44, 2016.
Natali, M., Puri, I., Rallini, M., Kenny, J., and Torre, L., Ablation Modeling of State of the Art EPDM Based Elastomeric Heat Shielding Materials for Solid Rocket Motors, Computat. Mater. Sci., 111:460–480, 2016.
Reimer, T., Zuber, C., Rieser, J., and Rothermel, T., Determination of the Mechanical Properties of the Lightweight Ablative Material Zuram, in Ceramic Transactions Series, Hoboken, NJ: Wiley, pp. 311–326, 2018.
Wong, H.W., Peck, J., Assif, J., Panerai, F., Lachaud, J., and Mansour, N.N., Detailed Analysis of Species Production from the Pyrolysis of the Phenolic Impregnated Carbon Ablator, J. Anal. Appl. Pyrolys., 122:258–267, 2016.
Torres-Herrador, F., Eschenbacher, A., Coheur, J., Blondeau, J., Magin, T.E., and Geem, K.M.V., Decomposition of Carbon/Phenolic Composites for Aerospace Heatshields: Detailed Speciation of Phenolic Resin Pyrolysis Products, Aerospace Sci. Technol., 119:107079–107089, 2021.
Bessire, B.K. and Minton, T.K., Decomposition of Phenolic Impregnated Carbon Ablator (PICA) as a Function of Temperature and Heating Rate, ACS Appl. Mater. Int., 9(25):21422–21437, 2017.
Vyazovkin, S., Burnham, A.K., Criado, J.M., Pérez-Maqueda, L.A., Popescu, C., and Sbirrazzuoli, N., ICTAC Kinetics Committee Recommendations for Performing Kinetic Computations on Thermal Analysis Data, Thermochim. Acta, 520(1-2):1–19, 2011.
Coheur, J., Torres-Herrador, F., Chatelain, P., Mansour, N.N., Magin, T.E., and Arnst, M., Analytical Solution for Multi-Component Pyrolysis Simulations of Thermal Protection Materials, J. Mater. Sci., 56:6845–6860, 2021.
Torres-Herrador, F., Meurisse, J.B., Panerai, F., Blondeau, J., Lachaud, J., Bessire, B.K., Magin, T.E., and Mansour, N.N., A High Heating Rate Pyrolysis Model for the Phenolic Impregnated Carbon Ablator (PICA) Based on Mass Spectroscopy Experiments, J. Anal. Appl. Pyrol., 141:104625–104635, 2019.
Najm, H., Berry, R., Safta, C., Sargsyan, K., and Debusschere, B., Data-Free Inference of Uncertain Parameters in Chemical Models, Int. J. Uncertainty Quantif., 4(2):111–132, 2014.
Cheung, S.H., Miki, K., Prudencio, E., and Simmons, C., Uncertainty Quantification and Robust Predictive System Analysis for High Temperature Kinetics of HCN/O2 /Ar Mixture, Chem. Phys., 475:136–152, 2016.
Khalil, M. and Najm, H.N., Probabilistic Inference of Reaction Rate Parameters from Summary Statistics, Combust. Theory Model., 22(4):635–665, 2018.
Urzay, J., Kseib, N., Constantine, P.G., Davidson, D.F., and Iaccarino, G., Uncertainty-Quantifying Models for Chemical-Kinetic Rates, Center for Turbulence Research Annual Briefs, 2012.
Bruns, M.C., Inferring and Propagating Kinetic Parameter Uncertainty for Condensed Phase Burning Models, Fire Technol., 52(1):93–120, 2015.
Torres-Herrador, F., Coheur, J., Panerai, F., Magin, T.E., Arnst, M., Mansour, N.N., and Blondeau, J., Competitive Kinetic Model for the Pyrolysis of the Phenolic Impregnated Carbon Ablator, Aerospace Sci. Technol., 100:105784, 2019.
Beck, J.L. and Katafygiotis, L.S., Updating Models and Their Uncertainties. I: Bayesian Statistical Framework, J. Eng. Mech., 124(4):455–461, 1998.
Kennedy, M.C. and O’Hagan, A., Bayesian Calibration of Computer Models, J. R. Stat. Soc., 63(3):425–464, 2001.
Koga, N., A Review of the Mutual Dependence of Arrhenius Parameters Evaluated by the Thermoanalytical Study of Solid-State Reactions: The Kinetic Compensation Effect, Thermochim. Acta, 244:1–20, 1994.
Galwey, A.K. and Brown, M.E., Thermal Decomposition of Ionic Solids, Amsterdam, The Netherlands: Elsevier, 1999.
Rodionova, O.E. and Pomerantsev, A.L., Estimating the Parameters of the Arrhenius Equation, Kinet. Catal., 46(3):305–308, 2005.
Pomerantsev, A.L., Kutsenova, A.V., and Rodionova, O.Y., Kinetic Analysis of Non-Isothermal Solid-State Reactions: Multi-Stage Modeling without Assumptions in the Reaction Mechanism, Phys. Chem. Chem. Phys., 19(5):3606–3615, 2017.
Soize, C., Construction of Probability Distributions in High Dimension Using the Maximum Entropy Principle: Applications to Stochastic Processes, Random Fields and Random Matrices, Int. J. Numer. Methods Eng., 76(10):1583–1611, 2008.
Soize, C., Polynomial Chaos Expansion of a Multimodal Random Vector, SIAM/ASA J. Uncertainty Quantif., 3(1):34–60, 2015.
Soize, C., Uncertainty Quantification, Cham, Switzerland: Springer International Publishing, 2017.
Kolda, T.G. and Bader, B.W., Tensor Decompositions and Applications, SIAM Rev., 51(3):455–500, 2009.
Wright, M.J., Beck, R.A.S., Edquist, K.T., Driver, D., Sepka, S.A., Slimko, E.M., and Willcockson, W.H., Sizing and Margins Assessment of Mars Science Laboratory Aeroshell Thermal Protection System, J. Spacecraft Rockets, 51(4):1125–1138, 2014.
Kendall, R.M., Barlett, E.P., Rindal, R.A., and Moyer, C.B., An Analysis of the Coupled Chemically Reacting Boundary Layer and Charring Ablator: Part I., Tech. Rep., NASA CR-1060, 1968.
Chen, Y.K. and Milos, F.S., Ablation and Thermal Response Program for Spacecraft Heatshield Analysis, J. Spacecraft Rockets, 36(3):475–483, 1999.
Sykes, G.F., Decomposition Characteristics of a Char-Forming Phenolic Polymer Used for Ablative Composites, Tech. Rep., NASA TN D-3810, National Aeronautics and Space Administration, 1967.
Goldstein, H.E., Pyrolysis Kinetics of Nylon 6-6, Phenolic Resin, and Their Composites, J. Macromolec. Sci., 3(4):649–673, 1969.
Trick, K.A. and Saliba, T.E., Mechanisms of the Pyrolysis of Phenolic Resin in a Carbon/Phenolic Composite, Carbon, 33(11):1509–1515, 1995.
Trick, K.A., Saliba, T.E., and Sandhu, S.S., A Kinetic Model of the Pyrolysis of Phenolic Resin in a Carbon/Phenolic Composite, Carbon, 35(3):393–401, 1997.
Wong, H.W., Peck, J., Bonomi, R.E., Assif, J., Panerai, F., Reinisch, G., Lachaud, J., and Mansour, N.N., Quantitative Determination of Species Production from Phenol-Formaldehyde Resin Pyrolysis, Polymer Degradat. Stab., 112:122–131, 2015.
Bessire, B.K., Lahankar, S.A., and Minton, T.K., Pyrolysis of Phenolic Impregnated Carbon Ablator (PICA), ACS Appl. Mater. Inter., 7(3):1383–1395, 2015.
Lachaud, J., Magin, T.E., Cozmuta, I., and Mansour, N.N., A Short Review of Ablative-Material Response Models and Simulation Tools, 7th European Symposium on Aerothermodynamics, L. Ouwehand, Ed., Brugge, Belgium, ESTEC-ESA, SP-692, pp. 91–98, 2011.
Arnst, M., Álvarez, B.A., Ponthot, J.P., and Boman, R., Itô-SDE MCMC Method for Bayesian Characterization of Errors Associated with Data Limitations in Stochastic Expansion Methods for Uncertainty Quantification, J. Comput. Phys., 349:59– 79, 2017.
Arnst, M. and Soize, C., Identification and Sampling of Bayesian Posteriors of High-Dimensional Symmetric Positive-Definite Matrices for Data-Driven Updating of Computational Models, Comput. Methods Appl. Mech. Eng., 352:300–323, 2019.
Girolami, M. and Calderhead, B., Riemann Manifold Langevin and Hamiltonian Monte Carlo Methods, J. R. Stat. Soc., 73(2):123–214, 2011.
Law, K., Proposals Which Speed Up Function-Space MCMC, J. Comput. Appl. Math., 262:127–138, 2014.
Hoffman, M.D. and Gelman, A., The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo, J. Mach. Learn. Res., 15:1593–1623, 2014.
Marshall, T. and Roberts, G., An Adaptive Approach to Langevin MCMC, Stat. Comput., 22(5):1041–1057, 2011.
Atchadé, Y.F., An Adaptive Version for the Metropolis Adjusted Langevin Algorithm with a Truncated Drift, Methodol. Comput. Appl. Probab., 8(2):235–254, 2006.
Haario, H., Saksman, E., and Tamminen, J., An Adaptive Metropolis Algorithm, Bernoulli, 7(2):223–242, 2001.
Atchadé, Y.F. and Rosenthal, J.S., On Adaptive Markov Chain Monte Carlo Algorithms, Bernoulli, 11(5):815–828, 2005.
Andrieu, C. and Thoms, J., A Tutorial on Adaptive MCMC, Stat. Comput., 18:343–374, 2008.
Roberts, G.O. and Rosenthal, J.S., Examples of Adaptive MCMC, J. Comput. Graph. Stat., 18(2):349–367, 2009.
Rosenthal, J.S., Optimal Proposal Distributions and Adaptive MCMC, Boca Raton, FL: Chapman and Hall, 2010.
Gelman, A.G., Roberts, G.O., and Gilks, W.R., Efficient Metropolis Jumping Rules, Oxford, UK: Oxford University Press, pp. 599–608, 1996.
Andrieu, C. and Moulines, É., On the Ergodicity Properties of Some Adaptive MCMC Algorithms, Annals Appl. Probab., 16(3):1462–1505, 2006.
Coheur, Uncertainty Quantification of Aerothermal Flow-Material Simulations of Low-Density Ablative Thermal Protection Systems, PhD, University of Liege, University of Louvain, 2021.
Hairer, E., Lubich, C., and Wanner, G., Geometric Numerical Integration, Berlin, Germany: Springer-Verlag, 2006.
Guilleminot, J. and Soize, C., Itô SDE–Based Generator for a Class of Non-Gaussian Vector-Valued Random Fields in Uncertainty Quantification, SIAM J. Sci. Comput., 36(6):A2763–A2786, 2014.
Lachaud, J. and Mansour, N.N., Porous-Material Analysis Toolbox Based on OpenFOAM and Applications, J. Thermophys. Heat Transf., 28(2):191–202, 2014.
Scoggins, J.B., Leroy, V., Bellas-Chatzigeorgis, G., Dias, B., and Magin, T.E., Mutation++: MUlticomponent Thermodynamic and Transport Properties for IONized Gases in C++, SoftwareX, 12:100575–100583, 2020.
Meurisse, J., Lachaud, J., Panerai, F., Tang, C., and Mansour, N.N., Multidimensional Material Response Simulations of a Full-Scale Tiled Ablative Heatshield, Aerospace Sci. Technol., 76:497–511, 2018.
Lachaud, J., Martin, A., Van Eekelen, T., and Cozmuta, I., Ablationtest-Caseseries#2, 5th Ablation Workshop, Lexington, Kentucky, KY, pp. 10–18, 2012.
Edquist, K., Dyakonov, A., Wright, M., and Tang, C., Aerothermodynamic Design of the Mars Science Laboratory Heatshield, 41st AIAA Thermophysics Conf., AIAA, 2009.
White, T.R., Mahzari, M., Bose, D., and Santos, J.A., Post-Flight Analysis of Mars Science Laboratory’s Entry Aerothermal Environment and Thermal Protection System Response, 44th AIAA Thermophysics Conf., AIAA, 2013.
Lachaud, J., Scoggins, J., Magin, T., Meyer, M., and Mansour, N., A Generic Local Thermal Equilibrium Model for Porous Reactive Materials Submitted to High Temperatures, Int. J. Heat Mass Transf., 108:1406–1417, 2017.
Griewank, A. and Walther, A., Evaluating Derivatives, Philadelphia, PA: SIAM, 2008.
Cao, Y., Li, S., Petzold, L., and Serban, R., Adjoint Sensitivity Analysis for Differential-Algebraic Equations: The Adjoint DAE System and Its Numerical Solution, SIAM J. Sci. Comput., 24(3):21, 2003.
Bosco, A., Bayesian Inference for the Identification of Model Parameters in Atmospheric Entry Problems, Master’s, University of Liège, 2019.
Dodwell, T.J., Ketelsen, C., Scheichl, R., and Teckentrup, A.L., A Hierarchical Multilevel Markov Chain Monte Carlo Algorithm with Applications to Uncertainty Quantification in Subsurface Flow, SIAM/ASA J. Uncertainty Quantif., 3(1):1075– 1108, 2015.
Beskos, A., Jasra, A., Law, K., Tempone, R., and Zhou, Y., Multilevel Sequential Monte Carlo Samplers, Stochastic Proc. Their Appl., 127(5):1417–1440, 2017.
Heng, J., Jasra, A., Law, K.J.H., and Tarakanov, A., On Unbiased Estimation for Discretized Models, Stat. Comput., arXiv:2102.12230, 2021.
Jasra, A., Law, K.J.H., and Lu, D., Unbiased Estimation of the Gradient of the Log-Likelihood in Inverse Problems, Stat. Comput., 31(3):21, 2021.
Burnham, K.P. and Anderson, D.R., Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd ed., New York: Springer, 2002.
MacKay, D., Information Theory, Inference, and Learning Algorithms, Cambridge, UK: Cambridge University Press, 2003.
Link, W.A. and Barker, R.J., Model Weights and the Foundations of Multimodel Inference, Ecology, 87(10):2626–2635, 2006.
Strong, M. and Oakley, J.E., When Is a Model Good Enough? Deriving the Expected Value of Model Improvement via Specifying Internal Model Discrepancies, SIAM/ASA J. Uncertainty Quantif., 2(1):106–125, 2014.
Galagali, N. and Marzouk, Y.M., Bayesian Inference of Chemical Kinetic Models from Proposed Reactions, Chem. Eng. Sci., 123:170–190, 2015.
Málek, J. and Criado, J., Empirical Kinetic Models in Thermal Analysis, Thermochim. Acta, 203:25–30, 1992.