Article (Scientific journals)
Bayesian identification of pyrolysis model parameters for thermal protection materials using an adaptive gradient-informed sampling algorithm with application to a Mars atmospheric entry
Coheur, Joffrey; Magin, Thierry; Chatelain, Philippe et al.
2023In International Journal for Uncertainty Quantification, 13 (2), p. 53-80
 

Files


Full Text
paper_main_IJ4UQ_preprint_auteur.pdf
Author preprint (2.08 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Modeling and Simulation; Statistics and Probability; Bayesian Inference; Ito Stochastic Differential Equation; Markov Chain Monte Carlo; Thermal Protection System; Carbon/Phenolic Composite
Disciplines :
Aerospace & aeronautics engineering
Author, co-author :
Coheur, Joffrey  ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational and stochastic modeling
Magin, Thierry;  von Karman Institute for Fluid Dynamics > Aeronautics and Aerospace
Chatelain, Philippe;  UCL - Catholic University of Louvain [BE] > Institute of Mechanics, Materials and Civil Engineering > Thermodynamics and fluid mechanics
Arnst, Maarten ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational and stochastic modeling
Language :
English
Title :
Bayesian identification of pyrolysis model parameters for thermal protection materials using an adaptive gradient-informed sampling algorithm with application to a Mars atmospheric entry
Publication date :
2023
Journal title :
International Journal for Uncertainty Quantification
ISSN :
2152-5080
eISSN :
2152-5099
Publisher :
Begell House
Volume :
13
Issue :
2
Pages :
53-80
Available on ORBi :
since 08 February 2023

Statistics


Number of views
86 (7 by ULiège)
Number of downloads
151 (5 by ULiège)

Scopus citations®
 
1
Scopus citations®
without self-citations
1
OpenCitations
 
0
OpenAlex citations
 
3

publications
0
supporting
0
mentioning
0
contrasting
0
Smart Citations
0
0
0
0
Citing PublicationsSupportingMentioningContrasting
View Citations

See how this article has been cited at scite.ai

scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

Bibliography


Similar publications



Sorry the service is unavailable at the moment. Please try again later.
Contact ORBi