Nodal cytotoxic peripheral T-cell lymphoma occurs frequently in the clinical setting of immunodysregulation and is associated with recurrent epigenetic alterations.
[en] Nodal peripheral T-cell lymphoma, not otherwise specified (PTCL, NOS) with cytotoxic phenotype is overall rare, with most reports coming from Asia. Given its elusive pathobiology, we undertook a clinicopathological and molecular study of 54 Western patients diagnosed with PTCL, NOS expressing cytotoxic molecules, within a lymph node. More commonly males (M/F-2,6/1) with median age of 60 years were affected. Besides lymphadenopathy, 87% of patients had ≥1 involved extranodal site. High-stage disease (III-IV), International Prognostic Index >2, B symptoms, LDH level, and cytopenia(s) were observed in 92, 63, 67, 78, and 66% of cases, respectively. Ten patients had a history of B-cell malignancies, one each of myeloid neoplasm, breast or prostate cancer, and 4 others had underlying immune disorders. Most patients (70%) died, mostly of disease, with a median overall survival of 12.7 months. Immunophenotypically, the neoplastic lymphocytes were T-cell receptor (TCR) αβ + (47%), TCR-silent (44%) or TCRγδ+ (10%), commonly CD8 + (45%) or CD4-CD8- (32%). All except one had an activated cytotoxic profile, and 95% were subclassified into PTCL-TBX21 subtype based on CXCR3, TBX21, and GATA3 expression pattern. Seven patients (13%) disclosed EBER + tumor cells. Targeted DNA deep-sequencing (33 cases) and multiplex ligation-dependent reverse transcription-polymerase chain reaction assay (43 cases) identified frequent mutations in epigenetic modifiers (73%), including TET2 (61%) and DNMT3A (39%), recurrent alterations affecting the TCR (36%) and JAK/STAT (24%) signaling pathways and TP53 mutations (18%). Fusion transcripts involving VAV1 were identified in 6/43 patients (14%). Patients with nodal cytotoxic PTCL, NOS have an aggressive behavior and frequently present in a background of impaired immunity, although the association with Epstein-Barr virus is rare. The recurrent alterations in genes involved in DNA methylation together with genes related to cytokine or TCR signaling, suggest that co-operation of epigenetic modulation with cell-signaling pathways plays a critical role in the pathogeny of these lymphomas.
Disciplines :
Hematology
Author, co-author :
Nicolae, Alina; Department of Pathology, Hautepierre, University Hospital Strasbourg, Strasbourg, France ; INSERM, IRFAC / UMR-S1113, ITI InnoVec, FHU ARRIMAGE, FMTS, University of Strasbourg, Strasbourg, France ; INSERM U955, Université Paris-Est, Créteil, France
Bouilly, Justine; Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital (CHUV) and Lausanne University, Lausanne, Switzerland
Lara, Diane; INSERM U955, Université Paris-Est, Créteil, France ; Service d'Hématologie, Centre Hospitalier Robert Boulin, Libourne, France
Fataccioli, Virginie; INSERM U955, Université Paris-Est, Créteil, France ; Département de Pathologie, Groupe Hospitalier Henri Mondor, AP-HP, Créteil, France
Lemonnier, François; INSERM U955, Université Paris-Est, Créteil, France ; Unité Hémopathies lymphoïdes, Groupe Hospitalier Henri Mondor, AP-HP, Créteil, France
Drieux, Fanny; INSERM U1245, Centre Henri Becquerel, Rouen, France ; Service d'Anatomie et Cytologie Pathologiques, Centre Henri Becquerel, Rouen, France
Parrens, Marie; Département de Pathologie, Hôpital Haut -Lévêque, Université de Bordeaux, INSERM, BaRITOn, U1053, F-33000, Bordeaux, France
Robe, Cyrielle; INSERM U955, Université Paris-Est, Créteil, France ; Département de Pathologie, Groupe Hospitalier Henri Mondor, AP-HP, Créteil, France
Poullot, Elsa; INSERM U955, Université Paris-Est, Créteil, France ; Département de Pathologie, Groupe Hospitalier Henri Mondor, AP-HP, Créteil, France
Bisig, Bettina; Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital (CHUV) and Lausanne University, Lausanne, Switzerland
Bossard, Céline; Service d'Anatomie et Cytologie Pathologiques, CHU de Nantes, Nantes, France
Letourneau, Audrey; Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital (CHUV) and Lausanne University, Lausanne, Switzerland
Missiaglia, Edoardo; Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital (CHUV) and Lausanne University, Lausanne, Switzerland ; Swiss Institute of Bioinformatics, Lausanne, Switzerland
Bonnet, Christophe ; Centre Hospitalier Universitaire de Liège - CHU > > Service d'hématologie clinique
Szablewski, Vanessa; Service d'Anatomopathologie, CHU Montpellier, Montpellier, France
Traverse-Glehen, Alexandra; Pathology Department, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France
Delfau-Larue, Marie-Hélène; INSERM U955, Université Paris-Est, Créteil, France ; Département d'Hématologie et Immunologie Biologique, Groupe Hospitalier Henri Mondor, AP-HP, Créteil, France
de Leval, Laurence ; Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital (CHUV) and Lausanne University, Lausanne, Switzerland
Gaulard, Philippe; INSERM U955, Université Paris-Est, Créteil, France. philippe.gaulard@aphp.fr ; Département de Pathologie, Groupe Hospitalier Henri Mondor, AP-HP, Créteil, France. philippe.gaulard@aphp.fr
Nodal cytotoxic peripheral T-cell lymphoma occurs frequently in the clinical setting of immunodysregulation and is associated with recurrent epigenetic alterations.
LLS - Leukemia and Lymphoma Society INSERM - Institut National de la Santé et de la Recherche Médicale CALYM - Institut Carnot CALYM
Funding text :
This work was supported by the Institut National de la Santé et de la Recherche Médicale (INSERM), grants from Leukemia Lymphoma Society (SCOR grant - LLS SCOR 7013-17) and Institut Carnot CALYM.We thank the LYSA-Pathology and the Platform of Biological Resources from Henri Mondor University Hospital. We also thank the participants of TENOMIC consortium (a complete membership list appears in the supplemental Appendix).
WHO classif 2016 TJ. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Revised 4th Edition, Volume 2.
Laurent, C. et al. Impact of Expert Pathologic Review of Lymphoma Diagnosis: Study of Patients From the French Lymphopath Network. J. Clin. Oncol. 35, 2008–2017 (2017). DOI: 10.1200/JCO.2016.71.2083
Weisenburger, D. D. et al. Peripheral T-cell lymphoma, not otherwise specified: a report of 340 cases from the International Peripheral T-cell Lymphoma Project. Blood 117, 3402–3408 (2011). DOI: 10.1182/blood-2010-09-310342
Trapani, J. A. & Smyth, M. J. Functional significance of the perforin/granzyme cell death pathway. Nat. Rev. Immunol. 2, 735–747 (2002). DOI: 10.1038/nri911
Sánchez-Jiménez, C. & Izquierdo, J. M. T-cell intracellular antigens in health and disease. Cell Cycle 14, 2033–2043 (2015). DOI: 10.1080/15384101.2015.1053668
Kanavaros, P., Boulland, M. L., Petit, B., Arnulf, B. & Gaulard, P. Expression of cytotoxic proteins in peripheral T-cell and natural killer-cell (NK) lymphomas: association with extranodal site, NK or Tgammadelta phenotype, anaplastic morphology and CD30 expression. Leuk. Lymphoma. 38, 317–326 (2000). DOI: 10.3109/10428190009087022
Swerdlow, S. H. et al. Cytotoxic T-cell and NK-cell lymphomas: current questions and controversies. Am. J. Surg. Pathol. 38, e60–e71 (2014). DOI: 10.1097/PAS.0000000000000295
Asano, N. et al. Linkage of expression of chemokine receptors (CXCR3 and CCR4) and cytotoxic molecules in peripheral T cell lymphoma, not otherwise specified and ALK-negative anaplastic large cell lymphoma. Int. J. Hematol. 91, 426–435 (2010). DOI: 10.1007/s12185-010-0513-0
Asano, N. et al. Clinicopathologic and prognostic significance of cytotoxic molecule expression in nodal peripheral T-cell lymphoma, unspecified. Am. J. Surg. Pathol. 29, 1284–1293 (2005). DOI: 10.1097/01.pas.0000173238.17331.6b
Heavican, T. B. et al. Genetic drivers of oncogenic pathways in molecular subgroups of peripheral T-cell lymphoma. Blood 133, 1664–1676 (2019). DOI: 10.1182/blood-2018-09-872549
Iqbal, J. et al. Gene expression signatures delineate biological and prognostic subgroups in peripheral T-cell lymphoma. Blood 123, 2915–2923 (2014). DOI: 10.1182/blood-2013-11-536359
Iqbal, J. et al. Molecular signatures to improve diagnosis in peripheral T-cell lymphoma and prognostication in angioimmunoblastic T-cell lymphoma. Blood 115, 1026–1036 (2010). DOI: 10.1182/blood-2009-06-227579
Kato, S. et al. T-cell receptor (TCR) phenotype of nodal Epstein-Barr virus (EBV)-positive cytotoxic T-cell lymphoma (CTL): a clinicopathologic study of 39 cases. Am. J. Surg. Pathol. 39, 462–471 (2015). DOI: 10.1097/PAS.0000000000000323
Kato, S. et al. Nodal cytotoxic molecule (CM)-positive Epstein-Barr virus (EBV)-associated peripheral T cell lymphoma (PTCL): a clinicopathological study of 26 cases. Histopathology 61, 186–199 (2012). DOI: 10.1111/j.1365-2559.2012.04199.x
Ng, S.-B. et al. Epstein-Barr virus-associated primary nodal T/NK-cell lymphoma shows a distinct molecular signature and copy number changes. Haematologica 103, 278–287 (2018). DOI: 10.3324/haematol.2017.180430
Yamashita, D. et al. Reappraisal of nodal Epstein-Barr Virus-negative cytotoxic T-cell lymphoma: Identification of indolent CD5+ diseases. Cancer Sci. 109, 2599–2610 (2018). DOI: 10.1111/cas.13652
Amador, C. et al. Reproducing the molecular subclassification of peripheral T-cell lymphoma-NOS by immunohistochemistry. Blood 134, 2159–2170 (2019). DOI: 10.1182/blood.2019000779
Theodorou, I. et al. VJ rearrangements of the TCR gamma locus in peripheral T-cell lymphomas: analysis by polymerase chain reaction and denaturing gradient gel electrophoresis. J. Pathol. 178, 303–310 (1996). DOI: 10.1002/(SICI)1096-9896(199603)178:3<303::AID-PATH475>3.0.CO;2-I
Trimech, M. et al. Angioimmunoblastic T-Cell Lymphoma and Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma: A Novel Form of Composite Lymphoma Potentially Mimicking Richter Syndrome. Am. J. Surg. Pathol. 45, 773–786 (2021). DOI: 10.1097/PAS.0000000000001646
van Dongen, J. J. M. et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 17, 2257–2317 (2003). DOI: 10.1038/sj.leu.2403202
Kopanos, C. et al. VarSome: the human genomic variant search engine. Bioinformatics 35, 1978–1980 (2019). DOI: 10.1093/bioinformatics/bty897
Drieux, F. et al. Detection of Gene Fusion Transcripts in Peripheral T-Cell Lymphoma Using a Multiplexed Targeted Sequencing Assay. J Mol Diagn S1525-1578, 00124–0 (2021).
Pizzi, M., Margolskee, E. & Inghirami, G. Pathogenesis of Peripheral T Cell Lymphoma. Annu. Rev. Pathol. Mech. Dis. 13, 293–320 (2018). DOI: 10.1146/annurev-pathol-020117-043821
Waldmann, T. A. & Chen, J. Disorders of the JAK/STAT Pathway in T Cell Lymphoma Pathogenesis: Implications for Immunotherapy. Annu. Rev. Immunol. 35, 533–550 (2017). DOI: 10.1146/annurev-immunol-110416-120628
Takeuchi, A. & Saito, T. CD4 C. T. L., a Cytotoxic Subset of CD4+ T Cells, Their Differentiation and Function. Front. Immunol. 8, 194 (2017). DOI: 10.3389/fimmu.2017.00194
Giacoma De Tullio, Pasquale Iacopino, & Attilio Guarini. The αβ-double negative T cells in lymphoma patients: the predictive role and the functional attitude. J. Immunol. 192, 142.9 (2014).
Voelkl, S. et al. Characterization of MHC class-I restricted TCRalphabeta+ CD4- CD8- double negative T cells recognizing the gp100 antigen from a melanoma patient after gp100 vaccination. Cancer Immunol. Immunother. 58, 709–718 (2009). DOI: 10.1007/s00262-008-0593-3
Ishida, T. et al. CXC Chemokine Receptor 3 and CC Chemokine Receptor 4 Expression in T-Cell and NK-Cell Lymphomas with Special Reference to Clinicopathological Significance for Peripheral T-Cell Lymphoma, Unspecified. Clin. Cancer Res. 10, 5494–5500 (2004). DOI: 10.1158/1078-0432.CCR-04-0371
Laginestra, M. A. et al. Correction: Whole exome sequencing reveals mutations in FAT1 tumor suppressor gene clinically impacting on peripheral T-cell lymphoma not otherwise specified. Mod. Pathol. 33, 319–319 (2020). DOI: 10.1038/s41379-019-0376-8
Ji, M.-M. et al. Histone modifier gene mutations in peripheral T-cell lymphoma not otherwise specified. Haematologica 103, 679–687 (2018). DOI: 10.3324/haematol.2017.182444
Watatani, Y. et al. Molecular heterogeneity in peripheral T-cell lymphoma, not otherwise specified revealed by comprehensive genetic profiling. Leukemia 33, 2867–2883 (2019). DOI: 10.1038/s41375-019-0473-1
Couronné, L., Bastard, C. & Bernard, O. A. TET2 and DNMT3A mutations in human T-cell lymphoma. N. Engl. J. Med. 366, 95–96 (2012). DOI: 10.1056/NEJMc1111708
Lemonnier, F. et al. Integrative analysis of a phase 2 trial combining lenalidomide with CHOP in angioimmunoblastic T-cell lymphoma. Blood Adv. 5, 539–548 (2021). DOI: 10.1182/bloodadvances.2020003081
Lemonnier, F., Gaulard, P. & de Leval, L. New insights in the pathogenesis of T-cell lymphomas. Curr. Opin. Oncol. 30, 277–284 (2018). DOI: 10.1097/CCO.0000000000000474
Sakata-Yanagimoto, M. et al. Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat. Genet. 46, 171–175 (2014). DOI: 10.1038/ng.2872
Pastoret, C. et al. Linking the KIR phenotype with STAT3 and TET2 mutations to identify chronic lymphoproliferative disorders of NK cells. Blood 137, 3237–3250 (2021). DOI: 10.1182/blood.2020006721
Lemonnier, F. et al. Recurrent TET2 mutations in peripheral T-cell lymphomas correlate with TFH-like features and adverse clinical parameters. Blood 120, 1466–1469 (2012). DOI: 10.1182/blood-2012-02-408542
McKinney, M. et al. The Genetic Basis of Hepatosplenic T-cell Lymphoma. Cancer Disco. 7, 369–379 (2017). DOI: 10.1158/2159-8290.CD-16-0330
Moffitt, A. B. et al. Enteropathy-associated T cell lymphoma subtypes are characterized by loss of function of SETD2. J. Exp. Med. 214, 1371–1386 (2017). DOI: 10.1084/jem.20160894
Palomero, T. et al. Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas. Nat. Genet. 46, 166–170 (2014). DOI: 10.1038/ng.2873
Pro, B. et al. Romidepsin induces durable responses in patients with relapsed or refractory angioimmunoblastic T-cell lymphoma. Hematological. Oncol. 35, 914–917 (2017). DOI: 10.1002/hon.2320
Falchi, L. et al. Combined oral 5-azacytidine and romidepsin are highly effective in patients with PTCL: a multicenter phase 2 study. Blood 137, 2161–2170 (2021). DOI: 10.1182/blood.2020009004
Coiffier, B. et al. Results from a pivotal, open-label, phase II study of romidepsin in relapsed or refractory peripheral T-cell lymphoma after prior systemic therapy. J. Clin. Oncol. 30, 631–636 (2012). DOI: 10.1200/JCO.2011.37.4223
Lemonnier, F. et al. Treatment with 5-azacytidine induces a sustained response in patients with angioimmunoblastic T-cell lymphoma. Blood 132, 2305–2309 (2018). DOI: 10.1182/blood-2018-04-840538
Abate, F. et al. Activating mutations and translocations in the guanine exchange factor VAV1 in peripheral T-cell lymphomas. Proc. Natl. Acad. Sci. USA 114, 764–769 (2017). DOI: 10.1073/pnas.1608839114
Rohr, J. et al. Recurrent activating mutations of CD28 in peripheral T-cell lymphomas. Leukemia 30, 1062–1070 (2016). DOI: 10.1038/leu.2015.357
Vallois, D. et al. RNA fusions involving CD28 are rare in peripheral T-cell lymphomas and concentrate mainly in those derived from follicular helper T cells. Haematologica 103, e360–e363 (2018). DOI: 10.3324/haematol.2017.186767
Vallois, D. et al. Activating mutations in genes related to TCR signaling in angioimmunoblastic and other follicular helper T-cell-derived lymphomas. Blood 128, 1490–1502 (2016). DOI: 10.1182/blood-2016-02-698977
Crescenzo, R. et al. Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma. Cancer Cell 27, 516–532 (2015). DOI: 10.1016/j.ccell.2015.03.006
Gao, L.-M. et al. Somatic mutations in KMT2D and TET2 associated with worse prognosis in Epstein-Barr virus-associated T or natural killer-cell lymphoproliferative disorders. Cancer Biol. Ther. 20, 1319–1327 (2019). DOI: 10.1080/15384047.2019.1638670
Crescenzo, R. et al. Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma. Cancer Cell 27, 516–532 (2015). DOI: 10.1016/j.ccell.2015.03.006
Lobello, C. et al. STAT3 and TP53 mutations associate with poor prognosis in anaplastic large cell lymphoma. Leukemia 35, 1500–1505 (2021). DOI: 10.1038/s41375-020-01093-1
Nicolae, A. et al. Frequent STAT5B mutations in γδ hepatosplenic T-cell lymphomas. Leukemia 28, 2244–2248 (2014). DOI: 10.1038/leu.2014.200
Nicolae, A. et al. Mutations in the JAK/STAT and RAS signaling pathways are common in intestinal T-cell lymphomas. Leukemia 30, 2245–2247 (2016). DOI: 10.1038/leu.2016.178
Roberti, A. et al. Type II enteropathy-associated T-cell lymphoma features a unique genomic profile with highly recurrent SETD2 alterations. Nat. Commun. 7, 12602 (2016). DOI: 10.1038/ncomms12602
Küçük, C. et al. Activating mutations of STAT5B and STAT3 in lymphomas derived from γδ-T or NK cells. Nat. Commun. 6, 6025 (2015). DOI: 10.1038/ncomms7025
Laurent, C. et al. Gene alterations in epigenetic modifiers and JAK-STAT signaling are frequent in breast implant-associated ALCL. Blood 135, 360–370 (2020).
Nijland, M. L. et al. Clinicopathological characteristics of T-cell non-Hodgkin lymphoma arising in patients with immunodeficiencies: a single-center case series of 25 patients and a review of the literature. Haematologica 103, 486–496 (2018). DOI: 10.3324/haematol.2017.169987
Campidelli, C. et al. Simultaneous occurrence of peripheral T-cell lymphoma unspecified and B-cell small lymphocytic lymphoma. Report of 2 cases. Hum. Pathol. 38, 787–792 (2007). DOI: 10.1016/j.humpath.2006.10.010
Martinez, A. et al. Clonal T-cell populations and increased risk for cytotoxic T-cell lymphomas in B-CLL patients: clinicopathologic observations and molecular analysis. Am. J. Surg. Pathol. 28, 849–858 (2004). DOI: 10.1097/00000478-200407000-00002
Gilardin, L. et al. Peripheral T-cell lymphoma in HIV-infected patients: a study of 17 cases in the combination antiretroviral therapy era. Br. J. Haematol. 161, 843–851 (2013). DOI: 10.1111/bjh.12341
Went, P. et al. Marker expression in peripheral T-cell lymphoma: a proposed clinical-pathologic prognostic score. J. Clin. Oncol. 24, 2472–2479 (2006). DOI: 10.1200/JCO.2005.03.6327
Kato, S., Yamashita, D. & Nakamura, S. Nodal EBV+ cytotoxic T-cell lymphoma: A literature review based on the 2017 WHO classification. J. Clin. Exp. Hematop. 60, 30–36 (2020). DOI: 10.3960/jslrt.20001
Dobay, M. P. et al. Integrative clinicopathological and molecular analyses of angioimmunoblastic T-cell lymphoma and other nodal lymphomas of follicular helper T-cell origin. Haematologica 102, e148–e151 (2017). DOI: 10.3324/haematol.2016.158428
Federico, M. et al. Peripheral T cell lymphoma, not otherwise specified (PTCL-NOS). A new prognostic model developed by the International T cell Project Network. Br. J. Haematol. 181, 760–769 (2018). DOI: 10.1111/bjh.15258