Contribution of Capillary Zone Electrophoresis Hyphenated with Drift Tube Ion Mobility Mass Spectrometry as a Complementary Tool to Microfluidic Reversed Phase Liquid Chromatography for Antigen Discovery.
Gou, Marie-Jia; Köse, Murat Cem; Crommen, Jacqueset al.
2022 • In International Journal of Molecular Sciences, 23 (21), p. 13350
Humans; Chromatography, Reverse-Phase; Tandem Mass Spectrometry/methods; Microfluidics; Cell Line, Tumor; Multiple Myeloma; Electrophoresis, Capillary/methods; capillary zone electrophoresis mass spectrometry; drift tube ion mobility spectrometry; orthogonality; untargeted proteomics
Abstract :
[en] The discovery of new antigens specific to multiple myeloma that could be targeted by novel immunotherapeutic approaches is currently of great interest. To this end, it is important to increase the number of proteins identified in the sample by combining different separation strategies. A capillary zone electrophoresis (CZE) method, coupled with drift tube ion mobility (DTIMS) and quadrupole time-of-flight mass spectrometry (QTOF), was developed for antigen discovery using the human myeloma cell line LP-1. This method was first optimized to obtain a maximum number of identifications. Then, its performance in terms of uniqueness of identifications was compared to data acquired by a microfluidic reverse phase liquid chromatography (RPLC) method. The orthogonality of these two approaches and the physicochemical properties of the entities identified by CZE and RPLC were evaluated. In addition, the contribution of DTIMS to CZE was investigated in terms of orthogonality as well as the ability to provide unique information. In conclusion, we believe that the combination of CZE-DTIMS-QTOF and microfluidic RPLC provides unique information in the context of antigen discovery.
Disciplines :
Hematology
Author, co-author :
Gou, Marie-Jia ; Université de Liège - ULiège > Département de pharmacie > Analyse des médicaments ; Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM,
Crommen, Jacques ; Université de Liège - ULiège > Département de pharmacie ; Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM,
Nix, Cindy ; Université de Liège - ULiège > Département de pharmacie > Analyse des médicaments ; Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM,
Cobraiville, Gaël ; Centre Hospitalier Universitaire de Liège - CHU > > Service de rhumatologie ; Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM,
Caers, Jo ; Centre Hospitalier Universitaire de Liège - CHU > > Service d'hématologie clinique
Fillet, Marianne ; Université de Liège - ULiège > Département de pharmacie > Analyse des médicaments ; Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM
Language :
English
Title :
Contribution of Capillary Zone Electrophoresis Hyphenated with Drift Tube Ion Mobility Mass Spectrometry as a Complementary Tool to Microfluidic Reversed Phase Liquid Chromatography for Antigen Discovery.
Publication date :
01 November 2022
Journal title :
International Journal of Molecular Sciences
ISSN :
1661-6596
eISSN :
1422-0067
Publisher :
Multidisciplinary Digital Publishing Institute (MDPI), Ch
Dupree E.J. Jayathirtha M. Yorkey H. Mihasan M. Petre B.A. Darie C.C. A Critical Review of Bottom-up Proteomics: The Good, the Bad, and the Future of This Field Proteomes 2020 8 14 10.3390/proteomes8030014 32640657
Moseley F.L. Bicknell K.A. Marber M.S. Brooks G. The Use of Proteomics to Identify Novel Therapeutic Targets for the Treatment of Disease J. Pharm. Pharmacol. 2010 59 609 628 10.1211/jpp.59.5.0001 17524226
Gillet L.C. Leitner A. Aebersold R. Mass Spectrometry Applied to Bottom-Up Proteomics: Entering the High-Throughput Era for Hypothesis Testing Annu. Rev. Anal. Chem. 2016 9 449 472 10.1146/annurev-anchem-071015-041535 27049628
Camerini S. Mauri P. The Role of Protein and Peptide Separation before Mass Spectrometry Analysis in Clinical Proteomics J. Chromatogr. A 2015 1381 1 12 10.1016/j.chroma.2014.12.035 25618357
Bian Y. Zheng R. Bayer F.P. Wong C. Chang Y.-C. Meng C. Zolg D.P. Reinecke M. Zecha J. Wiechmann S. et al. Robust, Reproducible and Quantitative Analysis of Thousands of Proteomes by Micro-Flow LC–MS/MS Nat. Commun. 2020 11 157 10.1038/s41467-019-13973-x 31919466
Nys G. Cobraiville G. Fillet M. Multidimensional Performance Assessment of Micro Pillar Array Column Chromatography Combined to Ion Mobility-Mass Spectrometry for Proteome Research Anal. Chim. Acta 2019 1086 1 13 10.1016/j.aca.2019.08.068
Yang Z. Shen X. Chen D. Sun L. Improved Nanoflow RPLC-CZE-MS/MS System with High Peak Capacity and Sensitivity for Nanogram Bottom-up Proteomics J. Proteome Res. 2019 18 4046 4054 10.1021/acs.jproteome.9b00545
Chen D. Shen X. Sun L. Strong Cation Exchange-Reversed Phase Liquid Chromatography-Capillary Zone Electrophoresis-Tandem Mass Spectrometry Platform with High Peak Capacity for Deep Bottom-up Proteomics Anal. Chim. Acta 2018 1012 1 9 10.1016/j.aca.2018.01.037
Li Y. Champion M.M. Sun L. Champion P.A.D. Wojcik R. Dovichi N.J. Capillary Zone Electrophoresis-Electrospray Ionization-Tandem Mass Spectrometry as an Alternative Proteomics Platform to Ultraperformance Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry for Samples of Intermediate Complexity Anal. Chem. 2012 84 1617 1622 10.1021/ac202899p
Morrison K.A. Clowers B.H. Fundamentals and Applications of Incorporating Chromatographic Separations with Ion Mobility-Mass Spectrometry Trends Anal. Chem. 2019 119 115625 10.1016/j.trac.2019.115625
Dodds J.N. Baker E.S. Ion Mobility Spectrometry: Fundamental Concepts, Instrumentation, Applications, and the Road Ahead J. Am. Soc. Mass Spectrom. 2019 30 2185 2195 10.1007/s13361-019-02288-2 31493234
D’Atri V. Causon T. Hernandez-Alba O. Mutabazi A. Veuthey J.L. Cianferani S. Guillarme D. Adding a New Separation Dimension to MS and LC–MS: What Is the Utility of Ion Mobility Spectrometry? J. Sep. Sci. 2018 41 20 67 10.1002/jssc.201700919 29024509
Zheng X. Wojcik R. Zhang X. Ibrahim Y.M. Burnum-Johnson K.E. Orton D.J. Monroe M.E. Moore R.J. Smith R.D. Baker E.S. Coupling Front-End Separations, Ion Mobility Spectrometry, and Mass Spectrometry for Enhanced Multidimensional Biological and Environmental Analyses Annu. Rev. Anal. Chem. 2017 10 71 92 10.1146/annurev-anchem-061516-045212 28301728
Jooß K. Meckelmann S.W. Klein J. Schmitz O.J. Neusüß C. Capillary Zone Electrophoresis Coupled to Drift Tube Ion Mobility-Mass Spectrometry for the Analysis of Native and APTS-Labeled N-Glycans Anal. Bioanal. Chem. 2019 411 6255 6264 10.1007/s00216-018-1515-7 30535529
Drouin N. Mielcarek A. Wenz C. Rudaz S. Evaluation of Ion Mobility in Capillary Electrophoresis Coupled to Mass Spectrometry for the Identification in Metabolomics Electrophoresis 2021 42 342 349 10.1002/elps.202000120
Gou M.-J. Nys G. Cobraiville G. Demelenne A. Servais A.-C. Fillet M. Hyphenation of Capillary Zone Electrophoresis with Mass Spectrometry for Proteomic Analysis: Optimization and Comparison of Two Coupling Interfaces J. Chromatogr. A 2020 1618 460873 10.1016/j.chroma.2020.460873
Mast D.H. Liao H.W. Romanova E.V. Sweedler J.V. Analysis of Peptide Stereochemistry in Single Cells by Capillary Electrophoresis-Trapped Ion Mobility Spectrometry Mass Spectrometry Anal. Chem. 2021 93 6205 6213 10.1021/acs.analchem.1c00445
Chen D. Shen X. Sun L. Capillary Zone Electrophoresis-Mass Spectrometry with Microliter-Scale Loading Capacity, 140 Min Separation Window and High Peak Capacity for Bottom-up Proteomics Analyst 2017 142 2118 2127 10.1039/C7AN00509A
Sun L. Zhu G. Zhang Z. Mou S. Dovichi N.J. Third-Generation Electrokinetically Pumped Sheath-Flow Nanospray Interface with Improved Stability and Sensitivity for Automated Capillary Zone Electrophoresis-Mass Spectrometry Analysis of Complex Proteome Digests J. Proteome Res. 2015 14 2312 2321 10.1021/acs.jproteome.5b00100
Nys G. Nix C. Cobraiville G. Servais A.C. Fillet M. Enhancing Protein Discoverability by Data Independent Acquisition Assisted by Ion Mobility Mass Spectrometry Talanta 2020 213 120812 10.1016/j.talanta.2020.120812 32200919
Yeung D. Mizero B. Gussakovsky D. Klaassen N. Lao Y. Spicer V. Krokhin O.V. Separation Orthogonality in Liquid Chromatography-Mass Spectrometry for Proteomic Applications: Comparison of 16 Different Two-Dimensional Combinations Anal. Chem. 2020 92 3904 3912 10.1021/acs.analchem.9b05407 32030975
Zhu K. Pursch M. Eeltink S. Desmet G. Maximizing Two-Dimensional Liquid Chromatography Peak Capacity for the Separation of Complex Industrial Samples J. Chromatogr. A 2020 1609 460457 10.1016/j.chroma.2019.460457 31455514
Gilar M. Fridrich J. Schure M.R. Jaworski A. Comparison of Orthogonality Estimation Methods for the Two-Dimensional Separations of Peptides Anal. Chem. 2012 84 8722 8732 10.1021/ac3020214
Gilar M. Olivova P. Daly A.E. Gebler J.C. Orthogonality of Separation in Two-Dimensional Liquid Chromatography Anal. Chem. 2005 77 6426 6434 10.1021/ac050923i
Schure M.R. Davis J.M. Orthogonal Separations: Comparison of Orthogonality Metrics by Statistical Analysis J. Chromatogr. A 2015 1414 60 76 10.1016/j.chroma.2015.08.029
Ruotolo B.T. Gillig K.J. Stone E.G. Russell D.H. Peak Capacity of Ion Mobility Mass Spectrometry: Separation of Peptides in Helium Buffer Gas J. Chromatogr. B 2002 782 385 392 10.1016/S1570-0232(02)00566-4
Kumar R. Shah R.L. Rathore A.S. Harnessing the Power of Electrophoresis and Chromatography: Offline Coupling of Reverse Phase Liquid Chromatography-Capillary Zone Electrophoresis-Tandem Mass Spectrometry for Peptide Mapping for Monoclonal Antibodies J. Chromatogr. A 2020 1620 460954 10.1016/j.chroma.2020.460954
Villalobos Solis M.I. Giannone R.J. Hettich R.L. Abraham P.E. Exploiting the Dynamic Relationship between Peptide Separation Quality and Peptide Coisolation in a Multiple-Peptide Matches-per-Spectrum Approach Offers a Strategy to Optimize Bottom-Up Proteomics Throughput and Depth Anal. Chem. 2019 91 7273 7279 10.1021/acs.analchem.9b00819