[en] Radioimmunotherapy (RIT) is a cancer treatment that combines radiation therapy with tumor-directed monoclonal antibodies (Abs). Although RIT had been introduced for the treatment of CD20 positive non-Hodgkin lymphoma decades ago, it never found a broad clinical application. In recent years, researchers have developed theranostic agents based on Ab fragments or small Ab mimetics such as peptides, affibodies or single-chain Abs with improved tumor-targeting capacities. Theranostics combine diagnostic and therapeutic capabilities into a single pharmaceutical agent; this dual application can be easily achieved after conjugation to radionuclides. The past decade has seen a trend to increased specificity, fastened pharmacokinetics, and personalized medicine. In this review, we discuss the different strategies introduced for the noninvasive detection and treatment of hematological malignancies by radiopharmaceuticals. We also discuss the future applications of these radiotheranostic agents.
Disciplines :
Radiology, nuclear medicine & imaging
Author, co-author :
Caers, Jo ; Centre Hospitalier Universitaire de Liège - CHU > > Service d'hématologie clinique
Taylor J Xiao W Abdel-Wahab O. Diagnosis and Classification of Hematologic Malignancies on the Basis of Genetics. Blood (2017) 130:410–23. doi: 10.1182/blood-2017-02-734541
Ferdinandus J Fendler WP Morigi JJ Fanti S. Theranostics in Oncology: What Radiologists Want to Know. Eur J Radiol (2021) 142:109875. doi: 10.1016/j.ejrad.2021.109875
Herrmann K Schwaiger M Lewis JS Solomon SB McNeil BJ Baumann M et al. Radiotheranostics: A Roadmap for Future Development. Lancet Oncol (2020) 21:e146–56. doi: 10.1016/S1470-2045(19)30821-6
Massa S Xavier C Muyldermans S Devoogdt N. Emerging Site-Specific Bioconjugation Strategies for Radioimmunotracer Development. Expert Opin Drug Deliv (2016) 13:1149–63. doi: 10.1080/17425247.2016.1178235
Adumeau P Sharma SK Brent C Zeglis BM. Site-Specifically Labeled Immunoconjugates for Molecular Imaging–Part 1: Cysteine Residues and Glycans. Mol Imaging Biol (2016) 18:1–17. doi: 10.1007/s11307-015-0919-4
Pishesha N Ingram JR Ploegh HL. Sortase A: A Model for Transpeptidation and Its Biological Applications. Annu Rev Cell Dev Biol (2018) 34:163–88. doi: 10.1146/annurev-cellbio-100617-062527
Sugiura G Kühn H Sauter M Haberkorn U Mier W. Radiolabeling Strategies for Tumor-Targeting Proteinaceous Drugs. Molecules (2014) 19:2135–65. doi: 10.3390/molecules19022135
Krasniqi A Xavier C Devoogdt N. Chapter 28 - Newer Bioconjugation Methods. In: Ross BD Gambhir SS, editors, 2nd ed. Academic Press (2021). p. 517–29. B. T.-M. I
Krasniqi A Xavier C Devoogdt N. Newer Bioconjugation Methods. In: Ross BD Gambhir SS, editors. Molecular Imaging, 2nd ed. Academic Press (2021). 517–29. B. T.-M. I. doi: 10.1016/b978-0-12-816386-3.00030-2
Yoon J-K Park B-N Ryu E-K An Y-S Lee S-J. Current Perspectives on (89)Zr-PET Imaging. Int J Mol Sci (2020) 21. doi: 10.3390/ijms21124309
Vandenberghe S Moskal P Karp JS. State of the Art in Total Body PET. EJNMMI Phys (2020) 7:35. doi: 10.1186/s40658-020-00290-2
Parker C Lewington V Shore N Kratochwil C Levy M Linden O et al. Targeted Alpha Therapy, an Emerging Class of Cancer Agents: A Review. JAMA Oncol (2018) 4:1765–72. doi: 10.1001/jamaoncol.2018.4044
Dekempeneer Y Keyaerts M Krasniqi A Puttemans J Muyldermans S Lahoutte T et al. Targeted Alpha Therapy Using Short-Lived Alpha-Particles and the Promise of Nanobodies as Targeting Vehicle. Expert Opin Biol Ther (2016) 16:1035–47. doi: 10.1080/14712598.2016.1185412
Jurcic JG. Clinical Studies With Bismuth-213 and Actinium-225 for Hematologic Malignancies. Curr Radiopharm (2018) 11:192–9. doi: 10.2174/1874471011666180525102814
Witzig TE. Yttrium-90-Ibritumomab Tiuxetan Radioimmunotherapy: A New Treatment Approach for B-Cell non-Hodgkin’s Lymphoma. Drugs Today (Barc) (2004) 40:111–9. doi: 10.1358/dot.2004.40.2.799423
Witzig TE Gordon LI Cabanillas F Czuczman MS Emmanouilides C Joyce R et al. Randomized Controlled Trial of Yttrium-90-Labeled Ibritumomab Tiuxetan Radioimmunotherapy Versus Rituximab Immunotherapy for Patients With Relapsed or Refractory Low-Grade, Follicular, or Transformed B-Cell non-Hodgkin’s Lymphoma. J Clin Oncol (2002) 20:2453–63. doi: 10.1200/JCO.2002.11.076
Morschhauser F Radford J Van Hoof A Botto B Rohatiner AZS Salles G et al. 90Yttrium-Ibritumomab Tiuxetan Consolidation of First Remission in Advanced-Stage Follicular non-Hodgkin Lymphoma: Updated Results After a Median Follow-Up of 7.3 Years From the International, Randomized, Phase III First-LineIndolent Trial. J Clin Oncol (2013) 31:1977–83. doi: 10.1200/JCO.2012.45.6400
Kaminski MS Zelenetz AD Press OW Saleh M Leonard J Fehrenbacher L et al. Pivotal Study of Iodine I 131 Tositumomab for Chemotherapy-Refractory Low-Grade or Transformed Low-Grade B-Cell non-Hodgkin’s Lymphomas. J Clin Oncol (2001) 19:3918–28. doi: 10.1200/JCO.2001.19.19.3918
Kaminski MS Tuck M Estes J Kolstad A Ross CW Zasadny K et al. 131I-Tositumomab Therapy as Initial Treatment for Follicular Lymphoma. N Engl J Med (2005) 352:441–9. doi: 10.1056/NEJMoa041511
Green DJ Press OW. Whither Radioimmunotherapy: To Be or Not To be? Cancer Res (2017) 77:2191–6. doi: 10.1158/0008-5472.CAN-16-2523
Bunjes D Buchmann I Duncker C Seitz U Kotzerke J Wiesneth M et al. Rhenium 188-Labeled Anti-CD66 (a, B, C, E) Monoclonal Antibody to Intensify the Conditioning Regimen Prior to Stem Cell Transplantation for Patients With High-Risk Acute Myeloid Leukemia or Myelodysplastic Syndrome: Results of a Phase I-II Study. Blood (2001) 98:565–72. doi: 10.1182/blood.V98.3.565
Matesan M Fisher DR Wong R Gopal AK Green DJ Sandmaier BM et al. Biokinetics of Radiolabeled Monoclonal Antibody BC8: Differences in Biodistribution and Dosimetry Among Hematologic Malignancies. J Nucl Med (2020) 61:1300–6. doi: 10.2967/jnumed.119.234443
Tuazon SA Sandmaier BM Gooley TA Fisher DR Holmberg LA Becker PS et al. (90)Y-Labeled Anti-CD45 Antibody Allogeneic Hematopoietic Cell Transplantation for High-Risk Multiple Myeloma. Bone Marrow Transplant (2021) 56:202–9. doi: 10.1038/s41409-020-01000-3
Tuazon SA Cassaday RD Gooley TA Sandmaier BM Holmberg LA Smith SD et al. Yttrium-90 Anti-CD45 Immunotherapy Followed by Autologous Hematopoietic Cell Transplantation for Relapsed or Refractory Lymphoma. Transplant Cell Ther (2021) 27:57.e1–8. doi: 10.1016/j.bbmt.2020.09.021
Buchegger F Pèlegrin A Delaloye B Bischof-Delaloye A Mach JP. Iodine-131-Labeled MAb F(Ab’)2 Fragments are More Efficient and Less Toxic Than Intact Anti-CEA Antibodies in Radioimmunotherapy of Large Human Colon Carcinoma Grafted in Nude Mice. J Nucl Med (1990) 31:1035–44.
Debie P Lafont C Defrise M Hansen I van Willigen DM van Leeuwen FWB et al. Size and Affinity Kinetics of Nanobodies Influence Targeting and Penetration of Solid Tumours. J Control Release (2020) 317:34–42. doi: 10.1016/j.jconrel.2019.11.014
Strosberg J El-Haddad G Wolin E Hendifar A Yao J Chasen B et al. Phase 3 Trial of (177)Lu-Dotatate for Midgut Neuroendocrine Tumors. N Engl J Med (2017) 376:125–35. doi: 10.1056/NEJMoa1607427
Sartor O de Bono J Chi KN Fizazi K Herrmann K Rahbar K et al. Lutetium-177-PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. N Engl J Med (2021) 385:1091–103. doi: 10.1056/NEJMoa2107322
Mehrpouri M. The Contributory Roles of the CXCL12/CXCR4/CXCR7 Axis in Normal and Malignant Hematopoiesis: A Possible Therapeutic Target in Hematologic Malignancies. Eur J Pharmacol (2022) 920:174831. doi: 10.1016/j.ejphar.2022.174831
Kircher M Herhaus P Schottelius M Buck AK Werner RA Wester HJ et al. CXCR4-Directed Theranostics in Oncology and Inflammation. Ann Nucl Med (2018). doi: 10.1007/s12149-018-1290-8
Jacobson O Weiss ID Szajek L Farber JM Kiesewetter DO. 64Cu-AMD3100–a Novel Imaging Agent for Targeting Chemokine Receptor CXCR4. Bioorg Med Chem (2009) 17:1486–93. doi: 10.1016/j.bmc.2009.01.014
Wang Z Zhang M Wang L Wang S Kang F Li G et al. Prospective Study of (68)Ga-NOTA-NFB: Radiation Dosimetry in Healthy Volunteers and First Application in Glioma Patients. Theranostics (2015) 5:882–9. doi: 10.7150/thno.12303
Gourni E Demmer O Schottelius M D’Alessandria C Schulz S Dijkgraaf I et al. PET of CXCR4 Expression by a (68)Ga-Labeled Highly Specific Targeted Contrast Agent. J Nucl Med (2011) 52:1803–10. doi: 10.2967/jnumed.111.098798
Schottelius M Osl T Poschenrieder A Hoffmann F Beykan S Hänscheid H et al. [(177)Lu]pentixather: Comprehensive Preclinical Characterization of a First CXCR4-Directed Endoradiotherapeutic Agent. Theranostics (2017) 7:2350–62. doi: 10.7150/thno.19119
Akbari V Chou CP Abedi D. New Insights Into Affinity Proteins for HER2-Targeted Therapy: Beyond Trastuzumab. Biochim Biophys Acta Rev Cancer (2020) 1874:188448. doi: 10.1016/j.bbcan.2020.188448
Gong H Kovar J Little G Chen H Olive DM. In Vivo Imaging of Xenograft Tumors Using an Epidermal Growth Factor Receptor-Specific Affibody Molecule Labeled With a Near-Infrared Fluorophore. Neoplasia (2010) 12:139–49. doi: 10.1593/neo.91446
Wikman M Steffen AC Gunneriusson E Tolmachev V Adams GP Carlsson J et al. Selection and Characterization of HER2/neu-Binding Affibody Ligands. Protein Eng Des Sel (2004) 17:455–62. doi: 10.1093/protein/gzh053
Honarvar H Westerlund K Altai M Sandstrom M Orlova A Tolmachev V et al. Feasibility of Affibody Molecule-Based PNA-Mediated Radionuclide Pretargeting of Malignant Tumors. Theranostics (2016) 6:93–103. doi: 10.7150/thno.12766
Orlova A Hofstrom C Strand J Varasteh Z Sandstrom M Andersson K et al. [99mtc(CO)3]+-(HE)3-ZIGF1R:4551, a New Affibody Conjugate for Visualization of Insulin-Like Growth Factor-1 Receptor Expression in Malignant Tumours. Eur J Nucl Med Mol Imaging (2013) 40:439–49. doi: 10.1007/s00259-012-2284-8
Honarvar H Garousi J Gunneriusson E Hoiden-Guthenberg I Altai M Widstrom C et al. Imaging of CAIX-Expressing Xenografts In Vivo Using 99mtc-HEHEHE-ZCAIX:1 Affibody Molecule. Int J Oncol (2015) 46:513–20. doi: 10.3892/ijo.2014.2782
Hamers-Casterman C Atarhouch T Muyldermans S Robinson G Hamers C Songa EB et al. Naturally Occurring Antibodies Devoid of Light Chains. Nature (1993) 363:446–8. doi: 10.1038/363446a0
D’Huyvetter M Xavier C Caveliers V Lahoutte T Muyldermans S Devoogdt N. et al. Radiolabeled Nanobodies as Theranostic Tools in Targeted Radionuclide Therapy of Cancer. Expert Opin Drug Deliv (2014) 11:1939–54. doi: 10.1517/17425247.2014.941803
Pain C Dumont J Dumoulin M. Camelid Single-Domain Antibody Fragments: Uses and Prospects to Investigate Protein Misfolding and Aggregation, and to Treat Diseases Associated With These Phenomena. Biochimie (2015) 111:82–106. doi: 10.1016/j.biochi.2015.01.012
Muyldermans S. Single Domain Camel Antibodies: Current Status. J Biotechnol (2001) 74:277–302. doi: 10.1016/S1389-0352(01)00021-6
Ackaert C Smiejkowska N Xavier C Sterckx YGJ Denies S Stijlemans B et al. Immunogenicity Risk Profile of Nanobodies. Front Immunol (2021) 12. doi: 10.3389/fimmu.2021.632687
Vincke C Govaert J Vincke C Caveliers V Lahoutte T De Baetselier P et al. General Strategy to Humanize a Camelid Single-Domain Antibody and Identification of a Universal Humanized Nanobody Scaffold. J Biol Chem (2009) 284:3273–84. doi: 10.1074/jbc.M806889200
Saerens D Conrath K Govaert J Muyldermans S. Disulfide Bond Introduction for General Stabilization of Immunoglobulin Heavy-Chain Variable Domains. J Mol Biol (2008) 377:478–88. doi: 10.1016/j.jmb.2008.01.022
Vaneycken I Govaert J Vincke C Caveliers V Lahoutte T De Baetselier P et al. In Vitro Analysis and In Vivo Tumor Targeting of a Humanized, Grafted Nanobody in Mice Using Pinhole SPECT/micro-Ct. J Nucl Med (2010) 51:1099–106. doi: 10.2967/jnumed.109.069823
Massa S Xavier C De Vos J Caveliers V Lahoutte T Muyldermans S et al. Site-Specific Labeling of Cysteine-Tagged Camelid Single-Domain Antibody-Fragments for Use in Molecular Imaging. Bioconjug Chem (2014) 25:979–88. doi: 10.1021/bc500111t
Massa S Vikani N Betti C Ballet S Vanderhaegen S Steyaert J et al. Sortase A-Mediated Site-Specific Labeling of Camelid Single-Domain Antibody-Fragments: A Versatile Strategy for Multiple Molecular Imaging Modalities. Contrast Media Mol Imaging (2016) 11:328–39. doi: 10.1002/cmmi.1696
Gainkam LOT Huang L Caveliers V Keyaerts M Hernot S Vaneycken I et al. Comparison of the Biodistribution and Tumor Targeting of Two 99mtc-Labeled Anti-EGFR Nanobodies in Mice, Using Pinhole SPECT/Micro-Ct. J Nucl Med (2008) 49:788–95. doi: 10.2967/jnumed.107.048538
Evazalipour M D’Huyvetter M Tehrani BS Abolhassani M Omidfar K Abdoli S et al. Generation and Characterization of Nanobodies Targeting PSMA for Molecular Imaging of Prostate Cancer. Contrast Media Mol Imaging (2014) 9:211–20. doi: 10.1002/cmmi.1558
Krasniqi A D’Huyvetter M Xavier C Van derJeught K Muyldermans S Van DerHeyden J et al. Theranostic Radiolabeled Anti-CD20 sdAb for Targeted Radionuclide Therapy of Non-Hodgkin Lymphoma. Mol Cancer Ther (2017) 16:2828–39. doi: 10.1158/1535-7163.MCT-17-0554
Krasniqi A Bialkowska M Xavier C Van derJeught K Muyldermans S Devoogdt N et al. Pharmacokinetics of Radiolabeled Dimeric Sdabs Constructs Targeting Human CD20. N Biotechnol (2018) 45:69–79. doi: 10.1016/j.nbt.2018.03.004
Keyaerts M Xavier C Heemskerk J Devoogdt N Everaert H Ackaert C et al. Phase I Study of 68Ga-HER2-Nanobody for PET/CT Assessment of HER2 Expression in Breast Carcinoma. J Nucl Med (2016) 57:27–33. doi: 10.2967/jnumed.115.162024
D’Huyvetter M Vos De Caveliers J V Vaneycken I Heemskerk J Duhoux FP et al. Phase I Trial of (131)I-GMIB-Anti-HER2-VHH1, a New Promising Candidate for HER2-Targeted Radionuclide Therapy in Breast Cancer Patients. J Nucl Med (2021) 62:1097–105. doi: 10.2967/jnumed.120.255679
D’Huyvetter M Vincke C Xavier C Aerts A Impens N Baatout S et al. Targeted Radionuclide Therapy With A 177Lu-Labeled Anti-HER2 Nanobody. Theranostics (2014) 4:708–20. doi: 10.7150/thno.8156
D’Huyvetter M De Vos J Xavier C Pruszynski M Sterckx YGJ Massa S et al. (131)I-Labeled Anti-HER2 Camelid sdAb as a Theranostic Tool in Cancer Treatment. Clin Cancer Res (2017) 23:6616–28. doi: 10.1158/1078-0432.CCR-17-0310
Dekempeneer Y Back T Aneheim E Jensen H Puttemans J Xavier C et al. Labeling of Anti-HER2 Nanobodies With Astatine-211: Optimization and the Effect of Different Coupling Reagents on Their in Vivo Behavior. Mol Pharm (2019) 16:3524–33. doi: 10.1021/acs.molpharmaceut.9b00354
Dekempeneer Y Caveliers V Ooms M Maertens D Gysemans M Lahoutte T et al. Therapeutic Efficacy of (213)Bi-Labeled Sdabs in a Preclinical Model of Ovarian Cancer. Mol Pharm (2020) 17:3553–66. doi: 10.1021/acs.molpharmaceut.0c00580
Pruszynski M D’Huyvetter M Bruchertseifer F Morgenstern A Lahoutte T. Evaluation of an Anti-HER2 Nanobody Labeled With (225)Ac for Targeted Alpha-Particle Therapy of Cancer. Mol Pharm (2018) 15:1457–66. doi: 10.1021/acs.molpharmaceut.7b00985
Roy I Krishnan S Kabashin AV Zavestovskaya IN Prasad PN. Transforming Nuclear Medicine With Nanoradiopharmaceuticals. ACS Nano (2022). doi: 10.1021/acsnano.1c10550
Smith BR Gambhir SS. Nanomaterials for In Vivo Imaging. Chem Rev (2017) 117:901–86. doi: 10.1021/acs.chemrev.6b00073
Peltek OO Muslimov AR Zyuzin MV Timin AS. Current Outlook on Radionuclide Delivery Systems: From Design Consideration to Translation Into Clinics. J Nanobiotechnol (2019) 17:90. doi: 10.1186/s12951-019-0524-9
Yugui F Wang H Sun D Zhang X. Nasopharyngeal Cancer Combination Chemoradiation Therapy Based on Folic Acid Modified, Gefitinib and Yttrium 90 Co-Loaded, Core-Shell Structured Lipid-Polymer Hybrid Nanoparticles. Biomed Pharmacother (2019) 114:108820. doi: 10.1016/j.biopha.2019.108820
Zhong X Yang K Dong Z Yi X Wang Y Ge C et al. Polydopamine as a Biocompatible Multifunctional Nanocarrier for Combined Radioisotope Therapy and Chemotherapy of Cancer. Adv Funct Mater (2015) 25:7327–36. doi: 10.1002/adfm.201503587
Wu P Zhu H Zhuang Y Sun X Gu N. Combined Therapeutic Effects of (131)I-Labeled and 5Fu-Loaded Multifunctional Nanoparticles in Colorectal Cancer. Int J Nanomed (2020) 15:2777–87. doi: 10.2147/IJN.S215137
Zhang J Lin Y Lin Z Wei Q Qian J Ruan R et al. Stimuli-Responsive Nanoparticles for Controlled Drug Delivery in Synergistic Cancer Immunotherapy. Adv Sci (Weinheim Baden-Wurttemberg Ger (2022) 9:e2103444. doi: 10.1002/advs.202103444
Bailly C Bodet-Milin C Rousseau C Faivre-Chauvet A Kraeber-Bodere F Barbet J. Pretargeting for Imaging and Therapy in Oncological Nuclear Medicine. EJNMMI Radiopharm Chem (2017) 2:6. doi: 10.1186/s41181-017-0026-8
Jallinoja VIJ Houghton JL. Current Landscape in Clinical Pretargeted Radioimmunoimaging and Therapy. J Nucl Med (2021) 62:1200–6. doi: 10.2967/jnumed.120.260687
Hnatowich DJ Virzi F Rusckowski M. Investigations of Avidin and Biotin for Imaging Applications. J Nucl Med (1987) 28:1294–302.
Green DJ O’Steen S Lin Y Comstock ML Kenoyer AL Hamlin DK et al. CD38-Bispecific Antibody Pretargeted Radioimmunotherapy for Multiple Myeloma and Other B-Cell Malignancies. Blood (2018) 131:611–20. doi: 10.1182/blood-2017-09-807610
Zeglis BM Sevak KK Reiner T Mohindra P Carlin SD Zanzonico P et al. A Pretargeted PET Imaging Strategy Based on Bioorthogonal Diels-Alder Click Chemistry. J Nucl Med (2013) 54:1389–96. doi: 10.2967/jnumed.112.115840
Devaraj NK Thurber GM Keliher EJ Marinelli B Weissleder R. Reactive Polymer Enables Efficient In Vivo Bioorthogonal Chemistry. Proc Natl Acad Sci USA (2012) 109:4762–7. doi: 10.1073/pnas.1113466109
Rossin R van den Bosch SM Ten Hoeve W Carvelli M Versteegen RM Lub J et al. Highly Reactive Trans-Cyclooctene Tags With Improved Stability for Diels-Alder Chemistry in Living Systems. Bioconjug Chem (2013) 24:1210–7. doi: 10.1021/bc400153y
Leonidova A Foerster C Zarschler K Schubert M Pietzsch HJ Steinbach J et al. In Vivo Demonstration of an Active Tumor Pretargeting Approach With Peptide Nucleic Acid Bioconjugates as Complementary System. Chem Sci (2015) 6:5601–16. doi: 10.1039/C5SC00951K
Westerlund K Vorobyeva A Mitran B Orlova A Tolmachev V Karlstrom AE et al. Site-Specific Conjugation of Recognition Tags to Trastuzumab for Peptide Nucleic Acid-Mediated Radionuclide HER2 Pretargeting. Biomaterials (2019) 203:73–85. doi: 10.1016/j.biomaterials.2019.02.012
Lapa C Hanscheid H Kircher M Schirbel A Wunderlich G Werner RA et al. Feasibility of CXCR4-Directed Radioligand Therapy in Advanced Diffuse Large B-Cell Lymphoma. J Nucl Med (2019) 60:60–4. doi: 10.2967/jnumed.118.210997
Altai M Westerlund K Velletta J Mitran B Honarvar H Karlstrom AE. Evaluation of Affibody Molecule-Based PNA-Mediated Radionuclide Pretargeting: Development of an Optimized Conjugation Protocol and (177)Lu Labeling. Nucl Med Biol (2017) 54:1–9. doi: 10.1016/j.nucmedbio.2017.07.003
Westerlund K Altai M Mitran B Konijnenberg M Oroujeni M Atterby C et al. Radionuclide Therapy of HER2-Expressing Human Xenografts Using Affibody-Based Peptide Nucleic Acid-Mediated Pretargeting: In Vivo Proof of Principle. J Nucl Med (2018) 59:1092–8. doi: 10.2967/jnumed.118.208348
Kaminski MS Estes J Zasadny KR Francis IR Ross CW Tuck M et al. Radioimmunotherapy With Iodine (131)I Tositumomab for Relapsed or Refractory B-Cell non-Hodgkin Lymphoma: Updated Results and Long-Term Follow-Up of the University of Michigan Experience. Blood (2000) 96:1259–66. doi: 10.1182/blood.V96.4.1259
Witzig TE Tomblyn MB Misleh JG Kio EA Sharkey RM Wegener WA et al. Anti-CD22 90Y-Epratuzumab Tetraxetan Combined With Anti-CD20 Veltuzumab: A Phase I Study in Patients With Relapsed/Refractory, Aggressive non-Hodgkin Lymphoma. Haematologica (2014) 99:1738–45. doi: 10.3324/haematol.2014.112110
Jurcic JG Larson SM Sgouros G McDevitt MR Finn RD Divgi CR et al. Targeted Alpha Particle Immunotherapy for Myeloid Leukemia. Blood (2002) 100:1233–9. doi: 10.1182/blood.V100.4.1233.h81602001233_1233_1239
Jurcic JG Caron PC Nikula TK Papadopoulos EB Finn RD Gansow OA et al. Radiolabeled Anti-CD33 Monoclonal Antibody M195 for Myeloid Leukemias. Cancer Res (1995) 55:5908s–10s.
Hagemann UB Wickstroem K Wang E Shea AO Sponheim K Karlsson J et al. In Vitro and In Vivo Efficacy of a Novel CD33-Targeted Thorium-227 Conjugate for the Treatment of Acute Myeloid Leukemia. Mol Cancer Ther (2016). doi: 10.1158/1535-7163.MCT-16-0251
Chen P Wang J Hope K Jin L Dick J Cameron R et al. Nuclear Localizing Sequences Promote Nuclear Translocation and Enhance the Radiotoxicity of the Anti-CD33 Monoclonal Antibody HuM195 Labeled With 111In in Human Myeloid Leukemia Cells. J Nucl Med (2006) 47:827–36.
Quelven I Monteil J Sage M Saidi A Mounier J Bayout A et al. (212)Pb α-Radioimmunotherapy Targeting CD38 in Multiple Myeloma: A Preclinical Study. J Nucl Med (2020) 61:1058–65. doi: 10.2967/jnumed.119.239491
Dawicki W Allen KJH Jiao R Malo ME Helal M Berger MS et al. Daratumumab-(225)Actinium Conjugate Demonstrates Greatly Enhanced Antitumor Activity Against Experimental Multiple Myeloma Tumors. Oncoimmunology (2019) 8:1607673. doi: 10.1080/2162402X.2019.1607673
Caserta E Chea J Minnix M Poku EK Viola D Vonderfecht S et al. Copper 64-Labeled Daratumumab as a PET/CT Imaging Tracer for Multiple Myeloma. Blood (2018) 131:741–5. doi: 10.1182/blood-2017-09-807263
Ghai A Maji D Cho N Chanswangphuwana C Rettig M Shen D et al. Preclinical Development of CD38-Targeted [89Zr]Zr-DFO-Daratumumab for Imaging Multiple Myeloma. J Nucl Med (2017). doi: 10.2967/jnumed.117.196063
Bernstein ID Eary JF Badger CC Press OW Appelbaum FR Martin PJ et al. High Dose Radiolabeled Antibody Therapy of Lymphoma. Cancer Res (1990) 50:1017s–21s.
Fichou N Gouard S Maurel C Barbet J Ferrer L Morgenstern A et al. Single-Dose Anti-CD138 Radioimmunotherapy: Bismuth-213 is More Efficient Than Lutetium-177 for Treatment of Multiple Myeloma in a Preclinical Model. Front Med (2015) 2:76. doi: 10.3389/fmed.2015.00076
Rousseau C Ferrer L Supiot S Bardies M Davodeau F Faivre-Chauvet A et al. Dosimetry Results Suggest Feasibility of Radioimmunotherapy Using Anti-CD138 (B-B4) Antibody in Multiple Myeloma Patients. Tumour Biol (2012) 33:679–88. doi: 10.1007/s13277-012-0362-y
Cassaday RD Press OW Pagel JM Rajendran JG Gooley TA Fisher DR et al. A Phase I Study Of Myeloablative Radioimmunotherapy Using Iodine-131 Anti-CD45 Antibody Followed By Autologous Stem Cell Transplantation For High-Risk B-Cell and T-Cell Non-Hodgkin Lymphoma and Hodgkin Lymphoma. Blood (2013) 122:3333. doi: 10.1182/blood.V122.21.3333.3333
Bergstrom D Leyton J V Zereshkian A Chan C Cai Z Reilly RM et al. Paradoxical Effects of Auger Electron-Emitting (111)In-DTPA-NLS-CSL360 Radioimmunoconjugates on Hcd45(+) Cells in the Bone Marrow and Spleen of Leukemia-Engrafted NOD/SCID or NRG Mice. Nucl Med Biol (2016) 43:635–41. doi: 10.1016/j.nucmedbio.2016.07.006
Ringhoffer M Blumstein N Neumaier B Glatting G von Harsdorf S Buchmann I et al. 188Re or 90Y-Labelled Anti-CD66 Antibody as Part of a Dose-Reduced Conditioning Regimen for Patients With Acute Leukaemia or Myelodysplastic Syndrome Over the Age of 55: Results of a Phase I–II Study. Br J Haematol (2005) 130:604–13. doi: 10.1111/j.1365-2141.2005.05663.x
Repetto-Llamazares AHV Larsen RH Patzke S Fleten KG Didierlaurent D Pichard A et al. Targeted Cancer Therapy With a Novel Anti-CD37 Beta-Particle Emitting Radioimmunoconjugate for Treatment of Non-Hodgkin Lymphoma. PLos One (2015) 10:e0128816. doi: 10.1371/journal.pone.0128816
Charmsaz S Al-Ejeh F Yeadon TM Miller KJ Smith FM Stringer BW et al. EphA3 as a Target for Antibody Immunotherapy in Acute Lymphoblastic Leukemia. Leukemia (2017) 31:1779–87. doi: 10.1038/leu.2016.371
Waldmann TA White JD Carrasquillo JA Reynolds JC Paik CH Gansow OA et al. Radioimmunotherapy of Interleukin-2R Alpha-Expressing Adult T-Cell Leukemia With Yttrium-90-Labeled Anti-Tac. Blood (1995) 86:4063–75. doi: 10.1182/blood.V86.11.4063.bloodjournal86114063
Rylova SN Del Pozzo L Klingeberg C Tonnesmann R Illert AL Meyer PT et al. Immuno-PET Imaging of CD30-Positive Lymphoma Using 89zr-Desferrioxamine-Labeled CD30-Specific AC-10 Antibody. J Nucl Med (2016) 57:96–102. doi: 10.2967/jnumed.115.162735
De Veirman K Puttemans J Krasniqi A Ertveldt T Hanssens H Romao E et al. CS1-Specific Single-Domain Antibodies Labeled With Actinium-225 Prolong Survival and Increase CD8+ T Cells and PD-L1 Expression in Multiple Myeloma. Oncoimmunology (2021) 10:2000699. doi: 10.1080/2162402X.2021.2000699
Wei W Zhang Y Zhang D Liu Q An S Chen Y et al. Annotating BCMA Expression in Multiple Myelomas. Mol Pharm (2021). doi: 10.1021/acs.molpharmaceut.1c00628
Duray E Lejeune M Baron F Beguin Y Devoogdt N Krasniqi A et al. A non-Internalised CD38-Binding Radiolabelled Single-Domain Antibody Fragment to Monitor and Treat Multiple Myeloma. J Hematol Oncol (2021) 14:183. doi: 10.1186/s13045-021-01171-6
Romão E Krasniqi A Maes L Vandenbrande C Sterckx YGJ Stijlemans B et al. Identification of Nanobodies Against the Acute Myeloid Leukemia Marker Cd33. Int J Mol Sci (2020) 21. doi: 10.3390/ijms21010310
Lemaire M D’Huyvetter M Lahoutte T Van Valckenborgh E Menu E De Bruyne E et al. Imaging and Radioimmunotherapy of Multiple Myeloma With Anti-Idiotypic Nanobodies. Leukemia (2014) 28:444–7. doi: 10.1038/leu.2013.292
Puttemans J Stijlemans B Keyaerts M Vander Meeren S Renmans W Fostier K et al. The Road to Personalized Myeloma Medicine: Patient-Specific Single-Domain Antibodies for Anti-Idiotypic Radionuclide Therapy. Mol Cancer Ther (2022) 21:159–69. doi: 10.1158/1535-7163.MCT-21-0220
Li T Qi S Unger M Hou YN Deng QW Liu J et al. Immuno-Targeting the Multifunctional CD38 Using Nanobody. Sci Rep (2016) 6:27055. doi: 10.1038/srep27055
Fumey W Koenigsdorf J Kunick V Menzel S Schütze K Unger M et al. Nanobodies Effectively Modulate the Enzymatic Activity of CD38 and Allow Specific Imaging of CD38(+) Tumors in Mouse Models In Vivo. Sci Rep (2017) 7:14289. doi: 10.1038/s41598-017-14112-6
Soodgupta D Hurchla MA Jiang M Zheleznyak A Weilbaecher KN Anderson CJ et al. Very Late Antigen-4 (Alpha(4)Beta(1) Integrin) Targeted PET Imaging of Multiple Myeloma. PLos One (2013) 8:e55841. doi: 10.1371/journal.pone.0055841
Zwingenberger AL Kent MS Liu R Kukis DL Wisner ER De Nardo SJ et al. In-Vivo Biodistribution and Safety of 99mtc-LLP2A-HYNIC in Canine non-Hodgkin Lymphoma. PLos One (2012) 7:e34404. doi: 10.1371/journal.pone.0034404
Lapa C Herrmann K Schirbel A Hanscheid H Luckerath K Schottelius M et al. CXCR4-Directed Endoradiotherapy Induces High Response Rates in Extramedullary Relapsed Multiple Myeloma. Theranostics (2017) 7:1589–97. doi: 10.7150/thno.19050
Habringer S Lapa C Herhaus P Schottelius M Istvanffy R Steiger K et al. Dual Targeting of Acute Leukemia and Supporting Niche by CXCR4-Directed Theranostics. Theranostics (2018) 8:369–83. doi: 10.7150/thno.21397
Herrmann K Schottelius M Lapa C Osl T Poschenrieder A Hanscheid H et al. First-In-Human Experience of CXCR4-Directed Endoradiotherapy With 177Lu- and 90Y-Labeled Pentixather in Advanced-Stage Multiple Myeloma With Extensive Intra- and Extramedullary Disease. J Nucl Med (2016) 57:248–51. doi: 10.2967/jnumed.115.167361
Green DJ Frayo SL Lin Y Hamlin DK Fisher DR Frost SHL et al. Comparative Analysis of Bispecific Antibody and Streptavidin-Targeted Radioimmunotherapy for B-Cell Cancers. Cancer Res (2016) 76:6669–79. doi: 10.1158/0008-5472.CAN-16-0571
Au KM Tripathy A Lin CPI Wagner K Hong S Wang AZ et al. Bespoke Pretargeted Nanoradioimmunotherapy for the Treatment of Non-Hodgkin Lymphoma. ACS Nano (2018) 12:1544–63. doi: 10.1021/acsnano.7b08122
Bertoni F Stathis A. Staining the Target: CD37 Expression in Lymphomas. Blood (2016) 128:3022–3. doi: 10.1182/blood-2016-11-748137
Sullivan-Chang L O’Donnell RT Tuscano JM. Targeting CD22 in B-Cell Malignancies: Current Status and Clinical Outlook. BioDrugs (2013) 27:293–304. doi: 10.1007/s40259-013-0016-7
Sharkey RM Brenner A Burton J Hajjar G Toder SP Alavi A et al. Radioimmunotherapy of non-Hodgkin’s Lymphoma With 90Y-DOTA Humanized Anti-CD22 IgG (90y-Epratuzumab): Do Tumor Targeting and Dosimetry Predict Therapeutic Response? J Nucl Med (2003) 44:2000–18.
Morschhauser F Kraeber-Bodere F Wegener WA Harousseau JL Petillon MO Huglo D et al. High Rates of Durable Responses With Anti-CD22 Fractionated Radioimmunotherapy: Results of a Multicenter, Phase I/II Study in non-Hodgkin’s Lymphoma. J Clin Oncol (2010) 28:3709–16. doi: 10.1200/JCO.2009.27.7863
Chevallier P Eugene T Robillard N Isnard F Nicolini F Escoffre-Barbe M et al. (90)Y-Labelled Anti-CD22 Epratuzumab Tetraxetan in Adults With Refractory or Relapsed CD22-Positive B-Cell Acute Lymphoblastic Leukaemia: A Phase 1 Dose-Escalation Study. Lancet Haematol (2015) 2:e108–17. doi: 10.1016/S2352-3026(15)00020-4
Kraeber-Bodere F Pallardy A Maisonneuve H Campion L Moreau A Soubeyran I et al. Consolidation Anti-CD22 Fractionated Radioimmunotherapy With (90)Y-Epratuzumab Tetraxetan Following R-CHOP in Elderly Patients With Diffuse Large B-Cell Lymphoma: A Prospective, Single Group, Phase 2 Trial. Lancet Haematol (2017) 4:e35–45. doi: 10.1016/S2352-3026(16)30168-5
Dahle J Repetto-Llamazares AH V Mollatt CS Melhus KB Bruland OS Kolstad A et al. Evaluating Antigen Targeting and Anti-Tumor Activity of a New Anti-CD37 Radioimmunoconjugate Against non-Hodgkin’s Lymphoma. Anticancer Res (2013) 33:85–95.
Kolstad A Madsbu U Beasley M Bayne M Illidge T O’Rourke N et al. 177lu-Satetraxetan-Lilotomab in the Treatment of Patients With Indolent Non-Hodgkin B-Cell Lymphoma (NHL), Phase 1/2 Safety and Efficacy Data From Four Different Pre-Dosing Regimens. Blood (2016) 128:1780. doi: 10.1182/blood.V128.22.1780.1780
Maaland AF Heyerdahl H O’Shea A Eiriksdottir B Pascal V Andersen JT et al. Targeting B-Cell Malignancies With the Beta-Emitting Anti-CD37 Radioimmunoconjugate (177)Lu-Nnv003. Eur J Nucl Med Mol Imaging (2019) 46:2311–21. doi: 10.1007/s00259-019-04417-1
Morandi F Horenstein AL Costa F Giuliani N Pistoia V Malavasi et al. CD38: A Target for Immunotherapeutic Approaches in Multiple Myeloma. Front Immunol (2018) 9:2722. doi: 10.3389/fimmu.2018.02722
Ulaner GA Sobol NB O’Donoghue JA Kirov AS Riedl CC Min R et al. CD38-Targeted Immuno-PET of Multiple Myeloma: From Xenograft Models to First-In-Human Imaging. Radiology (2020) 295:606–15. doi: 10.1148/radiol.2020192621
Krishnan A Adhikarla V Poku EK Palmer J Chaudhry A Biglang-Awa VE et al. Identifying CD38+ Cells in Patients With Multiple Myeloma: First-in-Human Imaging Using Copper-64-Labeled Daratumumab. Blood Adv (2020) 4:5194–202. doi: 10.1182/bloodadvances.2020002603
Green DJ Orgun NN Jones JC Hylarides MD Pagel JM Hamlin DK et al. A Preclinical Model of CD38-Pretargeted Radioimmunotherapy for Plasma Cell Malignancies. Cancer Res (2014) 74:1179–89. doi: 10.1158/0008-5472.CAN-13-1589
O’Steen S Comstock ML Orozco JJ Hamlin DK Wilbur DS Jones JC et al. The α-Emitter Astatine-211 Targeted to CD38 can Eradicate Multiple Myeloma in a Disseminated Disease Model. Blood (2019) 134:1247–56. doi: 10.1182/blood.2019001250
Teiluf K Seidl C Blechert B Gaertner FC Gilbertz KP Fernandez V et al. α-Radioimmunotherapy With 213Bi-Anti-CD38 Immunoconjugates is Effective in a Mouse Model of Human Multiple Myeloma. Oncotarget (2015) 6:4692–703. doi: 10.18632/oncotarget.2986
Minnix M Adhikarla V Caserta E Poku E Rockne R Shively JE et al. Comparison of CD38-Targeted α- Versus β-Radionuclide Therapy of Disseminated Multiple Myeloma in an Animal Model. J Nucl Med (2021) 62:795–801. doi: 10.2967/jnumed.120.251983
Wang C Chen Y Hou YN Liu Q Zhang D Zhao H et al. ImmunoPET Imaging of Multiple Myeloma With [68Ga]Ga-NOTA-Nb1053. Eur J Nucl Med Mol Imaging (2021) 48:2749–60. doi: 10.1007/s00259-021-05218-1
Gouard S Pallardy A Gaschet J Faivre-Chauvet A Bruchertseifer F Morgenstern A et al. Comparative Analysis of Multiple Myeloma Treatment by CD138 Antigen Targeting With Bismuth-213 and Melphalan Chemotherapy. Nucl Med Biol (2014) 41 Suppl:e30–5. doi: 10.1016/j.nucmedbio.2014.02.008
Perrin J Capitao M Allard M Chouin N Gouard S Marionneau-Lambot S et al. Targeted Alpha Particle Therapy Remodels the Tumor Microenvironment and Improves Efficacy of Immunotherapy. Int J Radiat Oncol Biol Phys (2022) 112:790–801. doi: 10.1016/j.ijrobp.2021.10.013
Houot R Levy R. Vaccines for Lymphomas: Idiotype Vaccines and Beyond. Blood Rev (2009) 23:137–42. doi: 10.1016/j.blre.2008.09.001
Ocqueteau M San Miguel JF González M Almeida J Orfao A. Do Myelomatous Plasma Cells Really Express Surface Immunoglobulins? Haematologica (1996) 81:460–3.
Cho S-F Xing L Anderson KC Tai Y-T. Promising Antigens for the New Frontier of Targeted Immunotherapy in Multiple Myeloma. Cancers (Basel) (2021) 13. doi: 10.3390/cancers13236136
Yu B Liu D. Antibody-Drug Conjugates in Clinical Trials for Lymphoid Malignancies and Multiple Myeloma. J Hematol Oncol (2019) 12:94. doi: 10.1186/s13045-019-0786-6
Kang L Jiang D Ehlerding EB Barnhart TE Ni D Engle JW et al. Noninvasive Trafficking of Brentuximab Vedotin and PET Imaging of CD30 in Lung Cancer Murine Models. Mol Pharm (2018) 15:1627–34. doi: 10.1021/acs.molpharmaceut.7b01168
Wang R Li L Zhang S Li Y Wang X Miao Q et al. A Novel Enediyne-Integrated Antibody-Drug Conjugate Shows Promising Antitumor Efficacy Against CD30(+) Lymphomas. Mol Oncol (2018) 12:339–55. doi: 10.1002/1878-0261.12166
Gong J Guo F Cheng W Fan H Miao Q Yang J et al. Preliminary Biological Evaluation of 123I-Labelled Anti-CD30-LDM in CD30-Positive Lymphomas Murine Models. Artif Cells Nanomed Biotechnol (2020) 48:408–14. doi: 10.1080/21691401.2019.1709857
Clift RA Buckner CD Appelbaum FR Bearman SI Petersen FB Fisher LD et al. Allogeneic Marrow Transplantation in Patients With Acute Myeloid Leukemia in First Remission: A Randomized Trial of Two Irradiation Regimens. Blood (1990) 76:1867–71. doi: 10.1182/blood.V76.9.1867.1867
Hauswirth AW Florian S Printz D Sotlar K Krauth MT Fritsch G et al. Expression of the Target Receptor CD33 in CD34+/CD38-/CD123+ AML Stem Cells. Eur J Clin Invest (2007) 37:73–82. doi: 10.1111/j.1365-2362.2007.01746.x
Rosenblat TL McDevitt MR Mulford DA Pandit-Taskar N Divgi CR Panageas KS et al. Sequential Cytarabine and Alpha-Particle Immunotherapy With Bismuth-213-Lintuzumab (HuM195) for Acute Myeloid Leukemia. Clin Cancer Res (2010) 16:5303–11. doi: 10.1158/1078-0432.CCR-10-0382
Oriuchi N Aoki M Ukon N Washiyama K Tan C Shimoyama S et al. Possibility of Cancer-Stem-Cell-Targeted Radioimmunotherapy for Acute Myelogenous Leukemia Using (211)At-CXCR4 Monoclonal Antibody. Sci Rep (2020) 10:6810. doi: 10.1038/s41598-020-63557-9
Lejeune M Köse MC Duray E Einsele H Beguin Y Caers J et al. Bispecific, T-Cell-Recruiting Antibodies in B-Cell Malignancies. Front Immunol (2020) 11:762. doi: 10.3389/fimmu.2020.00762
Vallera DA Elson M Brechbiel MW Dusenbery KE Burns LJ Jaszcz WB et al. Radiotherapy of CD19 Expressing Daudi Tumors in Nude Mice With Yttrium-90-Labeled Anti-CD19 Antibody. Cancer Biother Radiopharm (2004) 19:11–23. doi: 10.1089/108497804773391630
Ma D McDevitt MR Barendswaard E Lai L Curcio MJ Pellegrini V et al. Radioimmunotherapy for Model B Cell Malignancies Using 90Y-Labeled Anti-CD19 and Anti-CD20 Monoclonal Antibodies. Leukemia (2002) 16:60–6. doi: 10.1038/sj.leu.2402320
Mitchell P Lee FT Hall C Rigopoulos A Smyth FE Hekman AM et al. Targeting Primary Human Ph(+) B-Cell Precursor Leukemia-Engrafted SCID Mice Using Radiolabeled Anti-CD19 Monoclonal Antibodies. J Nucl Med (2003) 44:1105–12.
Hernandez R Walker KL Grudzinski JJ Aluicio-Sarduy E Patel R Zahm CD et al. (90)Y-NM600 Targeted Radionuclide Therapy Induces Immunologic Memory in Syngeneic Models of T-Cell Non-Hodgkin’s Lymphoma. Commun Biol (2019) 2:79. doi: 10.1038/s42003-019-0327-4
Weichert JP Clark PA Kandela IK Vaccaro AM Clarke W Longino MA et al. Alkylphosphocholine Analogs for Broad-Spectrum Cancer Imaging and Therapy. Sci Transl Med (2014) 6:240ra75. doi: 10.1126/scitranslmed.3007646
Zhang Z Lu M Qin Y Gao W Tao L Su W et al. Neoantigen: A New Breakthrough in Tumor Immunotherapy. Front Immunol (2021) 12:672356. doi: 10.3389/fimmu.2021.672356
Topp MS Kufer P Gokbuget N Goebeler M Klinger M Neumann S et al. Targeted Therapy With the T-Cell-Engaging Antibody Blinatumomab of Chemotherapy-Refractory Minimal Residual Disease in B-Lineage Acute Lymphoblastic Leukemia Patients Results in High Response Rate and Prolonged Leukemia-Free Survival. J Clin Oncol (2011) 29:2493–8. doi: 10.1200/JCO.2010.32.7270