Abstract :
[en] For decades, a production paradigm based on centralized, stepwise, large scale processes has dominated the chemical industry horizon. While effective to meet an ever increasing demand for high value-added chemicals, the so-called macroscopic batch reactors are also associated with inherent weaknesses and threats; some of the most obvious ones were tragically illustrated over the past decades with major industrial disasters and impactful disruptions of advanced chemical supplies. The COVID pandemic has further emphasized that a change in paradigm was necessary to sustain chemical production with an increased safety, reliable supply chains and adaptable productivities. More than a decade of research and technology development has led to alternative and effective chemical processes relying on miniaturised flow reactors (a.k.a. micro and mesofluidic reactors). Such miniaturised reactors bear the potential to solve safety concerns and to improve the reliability of chemical supply chains. Will they initiate a new paradigm for a more localized, safe and reliable chemical production?
Funding text :
JL acknowledges the European France(Manche)England cross-border cooperation program INTERREG V A “SmartT”, co-financed by ERDF, for financial support, as well as the University of Rouen Normandy, INSA Rouen Normandy, the Centre National de la Recherche Scientifique (CNRS), Labex SynOrg (ANR-11-LABX-0029), Carnot Institute I2C, the graduate school for research XL-Chem (ANR-18-EURE-0020 XL CHEM) and the Région Normandie. JCMM acknowledges the University of Liège and the F.R.S.-FNRS (Incentive grant for scientific research MIS F453020F).
Scopus citations®
without self-citations
16