extremely large telescope; mid-infrared instrumentation; high-contrast imaging; vortex coronagraph; end-to- end simulations; ELT/METIS
Abstract :
[en] The Mid-infrared ELT Imager and Spectrograph (METIS) is among the first three scientific instruments commissioned at the ELT. It will implement vortex coronagraphy to achieve high-contrast imaging (HCI) at small angular separations from bright, nearby stars. An important unresolved problem with vortex coronagraphy is the vortex center glow (VCG) effect, where the thermal emission from the warm environment around the entrance pupil is partially diffracted into the image of the pupil by the vortex phase mask (VPM), which shows up as a diffuse bright spot in the center of the image. This effect has proven to be a significant nuisance in previous mid-infrared observations. Here, we use physical optics propagation to model the VCG for the first time and evaluate its strength with respect to the background flux in standard noncoronagraphic imaging in the context of ELT/METIS. Through our end-to-end simulations we find that the VCG peaks at about 70% of the standard background flux at an angular separation of 1 λ/D from the star and reduces to about 20% at 5 λ/D from the star. We apply the same method to model the VCG for the VLT/VISIR configuration, and show our model to be in agreement with the actual VCG measured in VISIR data, where the peak of the VCG is about twice as bright as the thermal background. In case the VCG turns out to be larger than anticipated in METIS, we propose two methods to mitigate it: (i) adding pupil stops in the pupil plane upstream to the VPM to block all of the thermal emission, and (ii) adding undersized Lyot stops in the image plane to block part of the diffracted light.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Shinde, Muskan; Indian Institute of Science Education and Research, Bhopal
Delacroix, Christian ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Planetary & Stellar systems Imaging Laboratory
Orban De Xivry, Gilles ; Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR)
Absil, Olivier ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO)
van Boekel, Roy; Max-Planck-Institute for Astronomy, Heidelberg
Language :
English
Title :
Modeling the vortex center glow in the ELT/METIS vortex coronagraph
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Beuzit, J.-L., Feldt, M., Dohlen, K., Mouillet, D., Puget, P., Wildi, F., Abe, L., Antichi, J., Baruffolo, A. and Baudoz, P., “SPHERE: a planet finder instrument for the VLT,” Ground-based and airborne instrumentation for astronomy II 7014, 476–487, SPIE (2008).
Macintosh, B., Graham, J., Palmer, D., Doyon, R., Gavel, D., Larkin, J., Oppenheimer, B., Saddlemyer, L., Wallace, J. K. and Bauman, B., “The Gemini planet imager,” Advances in Adaptive Optics II 6272, 177–188, SPIE (2006).
Lozi, J., Guyon, O., Jovanovic, N., Goebel, S., Pathak, P., Skaf, N., Sahoo, A., Norris, B., Martinache, F. and N’Diaye, M., “SCExAO, an instrument with a dual purpose: perform cutting-edge science and develop new technologies,” Adaptive Optics Systems VI 10703, 1266–1277, SPIE (2018).
Ruane, G., Riggs, A., Mazoyer, J., Por, E. H., N’Diaye, M., Huby, E., Baudoz, P., Galicher, R., Douglas, E. and Knight, J., “Review of high-contrast imaging systems for current and future ground-and space-based telescopes I: coronagraph design methods and optical performance metrics,” Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave 10698, 851–869, SPIE (2018).
Goździewski, K., Niedzielski, A., Schneider, J. and Serabyn, E., “High-contrast Coronagraphic Techniques,” European Astronomical Society Publications Series 42, 79–90 (2010).
Mawet, D., Riaud, P., Absil, O. and Surdej, J., “Annular groove phase mask coronagraph,” The Astrophysical Journal 633(2), 1191 (2005).
Foo, G., Palacios, D. M. and Swartzlander, G. A., “Optical vortex coronagraph,” Optics letters 30(24), 3308–3310 (2005).
Mawet, D., Serabyn, E., Liewer, K., Hanot, C., McEldowney, S., Shemo, D. and O’Brien, N., “Optical vectorial vortex coronagraphs using liquid crystal polymers: theory, manufacturing and laboratory demonstration,” Optics Express 17(3), 1902–1918 (2009).
Rozas, D., Law, C. T. and Swartzlander, G. A., “Propagation dynamics of optical vortices,” JOSA B 14(11), 3054–3065 (1997).
Swartzlander, G. A., Ford, E. L., Abdul-Malik, R. S., Close, L. M., Peters, M. A., Palacios, D. M. and Wilson, D. W., “Astronomical demonstration of an optical vortex coronagraph,” Optics express 16(14), 10200–10207 (2008).
Berry, M. V., “The adiabatic phase and Pancharatnam’s phase for polarized light,” Journal of Modern Optics 34(11), 1401–1407 (1987).
Niv, A., Biener, G., Kleiner, V. and Hasman, E., “Manipulation of the Pancharatnam phase in vectorial vortices,” Optics express 14(10), 4208–4220 (2006).
Delacroix, C., Absil, O., Forsberg, P., Mawet, D., Christiaens, V., Karlsson, M., Boccaletti, A., Baudoz, P., Kuittinen, M. and Vartiainen, I., “Laboratory demonstration of a mid-infrared AGPM vector vortex coronagraph,” Astronomy & Astrophysics 553, A98 (2013).
Mawet, D., Absil, O., Delacroix, C., Girard, J. H., Milli, J., O’neal, J., Baudoz, P., Boccaletti, A., Bourget, P. and Christiaens, V., “L’-band AGPM vector vortex coronagraph’s first light on VLT/NACO-Discovery of a late-type companion at two beamwidths from an F0V star,” Astronomy & Astrophysics 552, L13 (2013).
Delacroix, C., Absil, O., Mawet, D., Hanot, C., Karlsson, M., Forsberg, P., Pantin, E., Surdej, J. and Habraken, S., “A diamond AGPM coronagraph for VISIR,” Ground-based and Airborne Instrumentation for Astronomy IV 8446, 1169–1177, SPIE (2012).
Defrere, D., Absil, O., Hinz, P., Kuhn, J., Mawet, D., Mennesson, B., Skemer, A., Wallace, K., Bailey, V. and Downey, E., “L’-band AGPM vector vortex coronagraph’s first light on LBTI/LMIRCam,” Adaptive Optics Systems IV 9148, 1330–1338, SPIE (2014).
Castellá, B. F., Serabyn, E., Mawet, D., Absil, O., Wizinowich, P., Matthews, K., Huby, E., Bottom, M., Campbell, R. and Chan, D., “Commissioning and first light results of an L’-band vortex coronagraph with the Keck II adaptive optics NIRC2 science instrument,” Adaptive Optics Systems V 9909, 697–710, SPIE (2016).
Absil, O., Mawet, D., Karlsson, M., Carlomagno, B., Christiaens, V., Defrère, D., Delacroix, C., Castella, B. F., Forsberg, P. and Girard, J., “Three years of harvest with the vector vortex coronagraph in the thermal infrared,” Ground-based and Airborne Instrumentation for Astronomy VI 9908, 99080Q, International Society for Optics and Photonics (2016).
Catalán, E. V., Huby, E., Forsberg, P., Jolivet, A., Baudoz, P., Carlomagno, B., Delacroix, C., Habraken, S., Mawet, D. and Surdej, J., “Optimizing the subwavelength grating of L-band annular groove phase masks for high coronagraphic performance,” Astronomy & Astrophysics 595, A127 (2016).
Maire, A.-L. K., Huby, E., Absil, O., Zins, G., Kasper, M., Delacroix, C., Leveratto, S., Karlsson, M., Ruane, G. J. and Käufl, H.-U., “Design, pointing control, and on-sky performance of the mid-infrared vortex coronagraph for the VLT/NEAR experiment,” Journal of Astronomical Telescopes, Instruments, and Systems 6(3), 035003 (2020).
Brandl, B., Bettonvil, F., van Boekel, R., Glauser, A., Quanz, S., Absil, O., Amorim, A., Feldt, M., Glasse, A., Güdel, M., Ho, P., Labadie, L., Meyer, M., Pantin, E., van Winckel, H., and METIS Consortium., “METIS: The Mid-infrared ELT Imager and Spectrograph,” The Messenger 182, 22–26 (2021).
Brandl, B. R., Absil, O., Agócs, T., Baccichet, N., Bertram, T., Bettonvil, F., van Boekel, R., Burtscher, L., van Dishoeck, E. and Feldt, M., “Status of the mid-IR ELT imager and spectrograph (METIS),” Ground-based and Airborne Instrumentation for Astronomy VII 10702, 107021U, International Society for Optics and Photonics (2018).
Agócs, T., Zuccon, S., Jellema, W., van den Born, J., ter Horst, R., Bizenberger, P., Vazquez, M. C. C., Todd, S., Baccichet, N. and Straubmeier, C., “End to end optical design and wavefront error simulation of METIS,” Ground-based and Airborne Instrumentation for Astronomy VII 10702, 107029O, International Society for Optics and Photonics (2018).
Carlomagno, B., Delacroix, C., Absil, O., Cantalloube, F., de Xivry, G. O., Pathak, P., Agocs, T., Bertram, T., Brandl, B. R. and Burtscher, L., “METIS high-contrast imaging: design and expected performance,” Journal of Astronomical Telescopes, Instruments, and Systems 6(3), 035005 (2020).
Kenworthy, M. A., Absil, O., Carlomagno, B., Agócs, T., Por, E. H., Bos, S., Brandl, B. and Snik, F., “A review of high contrast imaging modes for METIS,” Ground-based and Airborne Instrumentation for Astronomy VII 10702, 10702A3, International Society for Optics and Photonics (2018).
van Boekel, R., “In- and out-of-pupil thermal background estimates,” METIS internal document E-REP-MPIA-MET-1100, version 1.3 (2021).
Delacroix, C., Absil, O., Orban de Xivry, G., Shinde, M., Pathak, P., Cantalloube, F., Carlomagno, B., Christiaens, V., Boné, A., Dolkens, D., Kenworthy, M. A. and Doelman, D., “The High-contrast End-to-End Performance Simulator (HEEPS): influence of ELT/METIS instrumental effects,” Modeling, Systems Engineering, and Project Management for Astronomy X, SPIE (2022).
Käufl, H.-U., Kasper, M., Arsenault, R., Jakob, G., Leveratto, S., Zins, G., Fuenteseca, E., Riquelme, M., Siebenmorgen, R. and Sterzik, M., “NEAR: new earths in the Alpha Cen Region (bringing VISIR as a" visiting instrument" to ESO-VLT-UT4),” Ground-based and Airborne Instrumentation for Astronomy VII 10702, 107020D, International Society for Optics and Photonics (2018).
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.