abandonment of rangelands; aggregate stability; carbon sequestration; land use change; particulate organic carbon; Abandonment of rangeland; Aggregate stability; Carbon sequestration; Central iran; Landuse change; Particulate organic carbon; Rainfed; Soil depth; Soil organic carbon; Soil sample; Environmental Chemistry; Development; Environmental Science (all); Soil Science; General Environmental Science
Abstract :
[en] This study investigated the change in soil organic carbon (SOC), soil labile carbon (C), soil total nitrogen (N), particulate organic carbon (POC), mineralizable soil C (Min-C) in soil aggregate fractions, and soil particles size at 0–30 cm soil depth of the semi-steppe rangelands in Central Iran (Sheida and Khargosh regions). The study used a fully randomized design with four land uses in the rangelands including covered with rainfed wheat (CR0), abandoned rangelands (ARs) for 5–15 years (AR15), abandoned rangeland for 16–40 years (AR40), and permanently uncultivated rangelands (UR) as the reference sites that were replicated three times (n = 3) with at most 2 km distance from each other in an area of 25 ha. For each treatment, the soil samples were randomly obtained at 0–30 cm soil depth in three replicated plots of 2 × 2 m using a core size of 7 cm in diameter. The samples were mixed to take a composite soil sample (12 soil samples in each region) in June 2018. The results indicated that soil POC is the most sensitive fraction for the identification of shifts in the total SOC after the cultivation cessation because by increasing the abandoned land and the cessation of cropland activities, the POC has also increased. In conclusion, after the cessation of rainfed cropping and the recovery of natural vegetation, the increases in soil microorganism activity can result in a higher nutrient cycling in the degraded rangeland ecosystems.
Azadi, Hossein ; Université de Liège - ULiège ; Department of Geography, Ghent University, Ghent, Belgium ; Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
Sklenička, Petr; Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
Witlox, Frank; Department of Geography, Ghent University, Ghent, Belgium ; Department of Geography, University of Tartu, Tartu, Estonia ; Nanjing University of Aeronautics and Astronautics, College of Civil Aviation, Nanjing, China
Language :
English
Title :
Impact of agricultural abandonment on soil organic carbon: The case of semi-steppe rangeland in Central Iran
Abdelrahman, H., Cocozza, C., Olk, D. C., Domenico, V., Francesco, M., & Teodoro, M. (2020). Changes in labile fractions of soil organic matter during the conversion to organic farming. Journal of Soil Science and Plant Nutrition, 20, 1019–1028. https://doi.org/10.1007/s42729-020-00189-y
Annabi, M., Raclot, D., Bahri, H., Bailly, J. S., Gomez, C., & Bissonnais, Y. L. (2017). Spatial variability of soil aggregate stability at the scale of an agricultural region in Tunisia. Catena, 153, 157–167. https://doi.org/10.1016/j.catena.2017.02.010
Ashagrie, Y., Zech, W., Guggenberger, G., & Mamo, T. (2007). Soil aggregation and total and particulate organic matter following conversion of native forests to continuous cultivation in Ethiopia. Soil Tillage Research, 94, 101–108. https://doi.org/10.1016/j.still.2006.07.005
Aubrey, D. P., Blake, J. I., & Zarnoch, S. J. (2019). From farms to forests: Landscape carbon balance after 50years of afforestation, harvesting, and prescribed fire. Forests, 10, 760. https://doi.org/10.3390/f10090760
Awale, R., Emeson, M. A., & Machado, S. (2017). Soil organic carbon pools as early indicators for soil organic matter stock changes under different tillage practices in inland Pacific northwest. Frontiers in Ecology and Evolution, 15, 96. https://doi.org/10.3389/fevo.2017.00096
Ayoubi, S., Mirbagheri, Z., & Mosaddeghi, M. R. (2020). Soil organic carbon physical fractions and aggregate stability influenced by land use in humid region of northern Iran. International Agrophysics, 14(1), 343–353. https://doi.org/10.31545/intagr/125620
Bach, E. M. (2014). Soil aggregate distribution and turnover affects soil microbial ecology and ecosystem processes in three bioenergy systems. Graduate Theses and Dissertations. Doctor of Philosophy, Ecology and Evolutionary Biology. Iowa State University.
Bai, N., Zhang, H., Zhou, S., Sun, H., Zhao, Y., Zheng, X., Li, S., Zhang, J., & Lv, W. (2020). Long-term effects of straw return and straw-derived biochar amendment on bacterial communities in soil aggregates. Scientific Reports, 10(1), 1–10. https://doi.org/10.1038/s41598-020-64857-w
Bongiovanni, M. D., & Lobartini, J. C. (2006). Particulate organic matter, carbohydrate, humic acid contents in soil macro-and microaggregates as affected by cultivation. Geoderma, 136(3–4), 660–665. https://doi.org/10.1016/j.geoderma.2006.05.002
Bongiorno, G., Bünemann, E. K., Oguejiofor, C.,. U., Meier, J., Gort, G., Comans, C., Mäde, P., Brussaard, L., & Goede, R. D. (2019). Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe. Ecological Indicators, 99, 38–50. https://doi.org/10.1038/s41598-020-64857-w
Bouyoucos, G. H. (1951). A recalibration of the hydrometer method for making mechanical analysis of soils. Agronomy Journal, 43, 434–438. https://doi.org/10.2134/agronj1951.00021962004300090005x
Cambardella, C. A., & Elliott, E. T. (2001). Carbon and nitrogen distribution in aggregates from cultivated and native grassland soil. Soil Science Society of America Journal, 57, 1071–1076. https://doi.org/10.2136/sssaj1993.03615995005700040032x
Chang, X., Qinglin, C., Gaolin, W., Yuanjun, Z., Li, Z. L., Yang, Y., & Wang, G. (2016). Soil organic carbon accumulation in abandoned croplands on the Loess Plateau. Land Degradation & Development, 5, 1519–1527. https://doi.org/10.1002/ldr.2679
Caravaca, F., Alguacil, M. M., Figueroa, D., Barea, J. M., & Roldán, A. (2003). Reestablishment of Retama sphaerocarpa as a target species for reclamation of soil physical and biological properties in a semi-arid Mediterranean area. Ecological Management, 182, 49–58. https://doi.org/10.1016/S0378-1127(03)00067-7
Carter, M. R., & Gregorich, E. G. (2008). Soil sampling and methods of analysis (2nd ed., p. 197). Boca Raton, FL: CRC Press (Taylor and Francis Group). https://doi.org/10.1201/9781420005271
Dar, M. U. D., Bhat, S. A., Meena, R. S., & Shah, A. I. (2020). Carbon footprint in eroded soils and its impact on soil health. In R. Meena (Ed.), Soil health restoration and management. Berlin: Springer. https://doi.org/10.1007/978-981-13-8570-4_1
Davoudian, A. R., Genser, J., Neubauer, F., & Shabanian, N. (2016). 40Ar/39Ar mineral ages of eclogites from north Shahrekord in the Sanandaj–Sirjan zone, Iran: Implications for the tectonic evolution of Zagros orogen. Gondwana Research, 37, 216–240. https://doi.org/10.1016/j.gr.2016.05.013
Dignac, M. F., Derrien, D., Barré, P., Barot, S., Cécillon, L., Chenu, C., Chevallier, T., Freschet, G. T., Garnier, P., Guenet, B., Hedde, M., Klumpp, K., Lashermes, G., Maron, P.-A., Nunan, N., Roumet, C., & Basile-Doelsch, I. (2017). Increasing soil carbon storage: Mechanisms, effects of agricultural practices and proxies. A review. Agronomy for Sustainable Development, 37(2), 14. https://doi.org/10.1007/s13593-017-0421-2
Durán Zuazo, V. H., Pleguezuelo, C. R. R., Rodríguez, B. C., Ruiz, B. G., Gordillo, S. G., Sacristán, P. C., Tavira, S. C., & García-Tejero, I. F. (2020). Terraced subtropical farming: Sustainable strategies for soil conservation. In R. Meena (Ed.), Soil health restoration and management. (pp. 316–326). Berlin: Springer. https://doi.org/10.1007/978-981-13-8570-4_7
Duval, M. E., Galantinib, J. A., Juan, M., Martíneza, J. M., & Limbozzib, F. (2018). Labile soil organic carbon for assessing soil quality: Influence of management practices and edaphic conditions. Catena, 171, 316–326. https://doi.org/10.1016/j.catena.2018.07.023
Gessesse, T. A., Khamzina, A., Gebresamuel, G., & Amelung, W. (2020). Terrestrial carbon stocks following 15years of integrated watershed management intervention in semi-arid Ethiopia. Catena, 190, 104543. https://doi.org/10.1016/j.catena.2020.104543
Guebel, D. V., Nudel, B. C., & Giulietti, A. M. (1991). A simple and rapid micro-Kjeldahl method for total nitrogen analysis. Biotechnology Techniques, 5(6), 427–430. https://doi.org/10.1007/BF00155487
Guo, Z., Wang, Y., Wan, Z., Zuo, Y., He, L., Li, D., Yuan, F., Wang, N., Liu, J., Song, Y., Song, C., & Xu, X. (2020). Soil dissolved organic carbon in terrestrial ecosystems: Global budget, spatial distribution and controls. Global Ecology and Biogeography, 29(12), 2159–2175. https://doi.org/10.1111/geb.13186
Feng, Q., An, C., Chen, Z., & Wang, Z. (2020). Can deep tillage enhance carbon sequestration in soils? A meta-analysis towards GHG mitigation and sustainable agricultural management. Renewable & Sustainable Energy Reviews, 133, e110293. https://doi.org/10.1016/j.rser.2020.110293
John, B., Yamashita, T., Ludwig, B., & Flessa, H. (2005). Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use. Geoderma, 128, 63–79. https://doi.org/10.1016/j.geoderma.2004.12.013
Heidary, J., & Ghorbani, D. S. (2013). The effect of fire on soil quality in semi-steppe rangelands of Karsanak, Chaharmahal and Bakhtiari. Journal of Water and Soil Conservation, 20, 125–142.
Huluka, G., & Miller, R. (2014). Particle size determination by hydrometer method. Southern Cooperative Series Bulletin, 419, 180–184.
Kämpf, I., Hölzel, N., Störrle, M., Broll, G., & Kiehl, K. (2016). Potential of temperate agricultural soils for carbon sequestration: A meta-analysis of land-use effects. Science of the Total Environment, 566, 428–435. https://doi.org/10.1016/j.scitotenv.2016.05.067
Kashi, H., Abdipoor, M., & Arastoo, B. (2016). Impacts of land use changes on soil carbon and nitrogen stocks (case study: Shahmirzad Lands, Semnan Province, Iran). Journal of Rangeland Science, 6(2), 156–168. https://doi.org/10.1001/1.20089996-2016-6-2-8-7
Ke, W., Zhang, X., Zhu, F., Wu, H., Zhang, Y., Shi, Y., Hartley, W., & Xue, S. (2021). Appropriate human intervention stimulates the development of microbial communities and soil formation at a long-term weathered bauxite residue disposal area. Journal of Hazardous Materials, 405, e124689. https://doi.org/10.1016/j.jhazmat.2020.124689
Kemper, D. W., & Rosenau, R. C. (1986). Aggregate stability and aggregate size distribution. In A. Klute (Ed.), Methods of soil analysis, part 1 (pp. 425–442). Snake River Conservation Research Center, Agricultural Research Service, USDA, Kimberly, Idaho. American Society of Agronomy. https://doi.org/10.2136/sssabookser5.1.2ed.c17
Knut, R., Delczeg-Czirjak, E. K., Jana, S., Shaw, J. M., Nembach, H. T., Kvashnin, Y., Stefaniuk, R., Malik, R. S., Grychtol, P., Zusin, D., Gentry, C., Chimata, R., Pereiro, M., Söderström, J., Turgut, E., Ahlberg, M., Åkerman, J., Kapteyn, H. C., Murnane, M. M., Arena, D. A., Eriksson, O. & Silva, T. J …. (2018). Inhomogeneous magnon scattering during ultrafast demagnetization. arXiv:1810.10994. 6,1–10.
Kurganova, I. N., Kudeyarov, V. N., & Gerenyu, L. D. (2010). Updated estimate of carbon balance on Russian territory. Tellus B: Chemical and Physical Meteorology, 62, 497–505. https://doi.org/10.1111/j.1600-0889.2010.00467.x
Kurganova, I. N., Merino, A., Lopes de Gerenyu, V. O., Barros, N., Kalinina, O., Giani, L., & Kuzyakov, Y. (2019). Mechanisms of carbon sequestration and stabilization by restoration of arable soils after abandonment: A chronosequence study on Phaeozems and Chernozems. Geoderma, 354, 1–15. https://doi.org/10.1016/j.geoderma.2019.113882
Lavallee, J. M., Soong, J. L., & Cotrufo, M. F. (2020). Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Global Change Biology, 26(1), 261–273. https://doi.org/10.1111/gcb.14859
Li, X., Wang, Z., Ma, Q., & Li, F. (2007). Crop cultivation and intensive grazing affect organic C pools and aggregate stability in arid grassland soil. Soil and Tillage, 95, 172–181. https://doi.org/10.1016/j.still.2006.12.005
Li, X. G., Zhang, P. L., Yin, P., Li, Y. K., Ma, Q. F., Long, R. J., & Li, F. M. (2009). Soil organic carbon and nitrogen fractions and water-stable aggregation as affected by cropping and grassland reclamation in an arid sub-alpine soil. Land Degradation & Development, 20, 176–186. https://doi.org/10.1002/ldr.895
Li, Z., Liu, C., Dong, Y., Chang, X., Nie, X., Liu, L., Xiao, H., Lu, Y., & Zeng, G. (2017). Response of soil organic carbon and nitrogen stocks to soil erosion and land use types in the loess hilly–gully region of China. Soil and Tillage Research, 166, 1–9. https://doi.org/10.1016/j.still.2016.10.004
Li, D., Wen, L., Yang, L., Luo, P., Xiao, K., Chen, H., Zhang, W., He, X., Chen, H., & Wang, K. (2017). Dynamics of soil organic carbon and nitrogen following agricultural abandonment in a karst region. Journal of Geophysical Research, 122, 230–242. https://doi.org/10.1002/2016JG003683
Li, Y., Chang, S. X., Tian, L., & Zhang, Q. (2018). Conservation agriculture practices increase soil microbial biomass carbon and nitrogen in agricultural soils: A global meta-analysis. Soil Biology and Biochemistry, 121, 50–58. https://doi.org/10.1016/j.soilbio.2018.02.024
Liu, M., Han, G., & Zhang, Q. (2019). Effects of soil aggregate stability on soil organic carbon and nitrogen under land use change in an erodible region in Southwest China. International Journal of Environmental Research and Public Health, 16, 1–14. https://doi.org/10.3390/ijerph16203809
Liu, M., Han, G., Li, Z., Zhang, Q., & Song, Z. (2019). Soil organic carbon sequestration in soil aggregates in the karst critical zone observatory, Southwest China. Plant, Soil and Environment, 65, 253–259. https://doi.org/10.17221/602/2018-PSE
Lozano-García, B., Muñoz-Rojas, M., & Parras-Alcántara, L. (2017). Climate and land use changes effects on soil organic carbon stocks in a Mediterranean semi-natural area. Science of the Total Environment, 579, 1249–1259. https://doi.org/10.1016/j.scitotenv.2016.11.111
Ma, C., Chen, X., Zhang, J., Zhu, Y., Kalkhajeh, Y. K., Chai, R., Ye, X., Gao, H.-j., Chu, W., Mao, J.-d., & Thompson, M. L. (2019). Linking chemical structure of dissolved organic carbon and microbial community composition with submergence-induced soil organic carbon mineralization. Science of the Total Environment, 692, 930–939. https://doi.org/10.1016/j.scitotenv.2019.07.286
Malou, O. P., Sebag, D., Moulin, P., Chevallier, T., Badiane-Ndour, N. Y., Thiam, A., & Chapuis-Lardy, L. (2020). The rock-eval signature of soil organic carbon in Arenosols of the Senegalese groundnut basin. How do agricultural practices matter? Agriculture, Ecosystems & Environment, 30, e107030. https://doi.org/10.1016/j.agee.2020.107030
Meyer, R. S., Cullen, B. R., Whetton, P. H., Robertson, F. A., & Eckard, R. J. (2018). Potential impacts of climate change on soil organic carbon and productivity in pastures of south eastern Australia. Agricultural Systems, 167, 34–46. https://doi.org/10.1016/j.agsy.2018.08.010
Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., Chaplot, V., Chen, Z.-S., Cheng, K., Das, B. S., Field, D. J., Gimona, A., Hedley, C. B., Hong, S. Y., Mandal, B., Marchant, B. P., Martin, M., McConkey, B. G., Mulder, V. L., … Richer-de-Forges, A. C. (2017). Soil carbon 4 per mille. Geoderma, 292, 59–86. https://doi.org/10.1016/j.geoderma.2017.01.002
Mondal, S., Chakraborty, D., Bandyopadhyay, K., Aggarwal, P., & Rana, D. S. (2019). A global analysis of the impact of zero-tillage on soil physical condition, organic carbon content, and plant root response. Land Degradation & Development, 31(5), 557–567. https://doi.org/10.1002/ldr.3470
Moradianfar Junaghani, F., Taheri Abkenar, K., & Iranmanesh, Y. (2015). Effects of physiographic factors and some physical and chemical soil properties on distribution of Marsdenia erecta (L.) R. Br. Ex DC. In Chahar, Mahal and Bakhtiari provinces. Iranian Journal of Forest and Poplar Research, 23(4), 757–768. https://doi.org/10.22092/ijfpr.2015.106595
Moreno, A. R., Garcia, C. A., Larkin, A. A., Lee, J. A., Wang, W. L., Moore, J. K., Primeau, F. W., & Martiny, A. C. (2020). Latitudinal gradient in the respiration quotient and the implications for ocean oxygen availability. Proceedings of the National Academy of Sciences, 117(37), 22866–22872. https://doi.org/10.1073/pnas.2004986117
Nath, A. J., Brahma, B., Sileshi, G. W., & Das, A. K. (2018). Impact of land use changes on the storage of soil organic carbon in active and recalcitrant pools in a humid tropical region of India. Science of the Total Environment, 624, 908–917. https://doi.org/10.1016/j.scitotenv.2017.12.199
Pérez-Hernández, J., & Gavilán, R. G. (2021). Impacts of land-use changes on vegetation and ecosystem functioning: Old-field secondary succession. Plants., 10(5), 990. https://doi.org/10.3390/plants10050990
Raiesi, F. (2012). Soil properties and C dynamics in abandoned and cultivated farmlands in a semi-arid ecosystem. Plant and Soil, 351, 161–175. https://doi.org/10.1007/s11104-011-0941-5
Raiesi, F., & Salek-Gilani, S. (2018). The potential activity of soil extracellular enzymes as an indicator for ecological restoration of rangeland soils after agricultural abandonment. Applied Soil Ecology, 126, 140–147. https://doi.org/10.1016/j.apsoil.2018.02.022
Ramírez, P. B., Fuentes-Alburquenque, S., Díez, B., Vargas, I., & Bonilla, C. A. (2020). Soil microbial community responses to labile organic carbon fractions in relation to soil type and land use along a climate gradient. Soil Biology and Biochemistry, 141, 107692. https://doi.org/10.1016/j.soilbio.2019.107692
Regina, L., Wilpiszeski, J. A., Aufrecht, S. T., Retterer, M. B., Sullivan, D. E., Graham, E. M., Pierce, O. D., Zablocki, A. V., & Palumbo, D. A. E. (2019). Soil aggregate microbial communities: Towards understanding microbiome interactions at biologically relevant scales. Applied and Environmental Microbiology, 85(14), e00324–e00319. https://doi.org/10.1128/AEM.00324-19
Ren, W., Banger, K., Tao, B., Yang, J., Huang, Y., & Tian, H. (2020). Global pattern and change of cropland soil organic carbon during 1901-2010: Roles of climate, atmospheric chemistry, land use and management. Geography and Sustainability, 1(1), 59–69. https://doi.org/10.1016/j.geosus.2020.03.001
Salek-Gilani, S., Raiesi, F., Tahmasebi, P., & Ghorbani, N. (2013). Soil organic matter in restored rangelands following cessation of rainfed cropping in a mountainous semi-arid landscape. Nutrient Cycling in Agroecosystems, 96(2–3), 215–232. https://doi.org/10.1007/s10705-013-9587-4
Samsonova, V. P., Blagoveshchenskii, Y. N., & Meshalkina, Y. L. (2017). Use of empirical Bayesian kriging for revealing heterogeneities in the distribution of organic carbon on agricultural lands. Eurasian Soil Science, 50, 305–311. https://doi.org/10.1134/S1064229317030103
Saatsaz, M. (2020). A historical investigation on water resources management in Iran. Environment, Development and Sustainability, 22, 1749–1785. https://doi.org/10.1007/s10668-018-00307-y
Sgroi, M., Pelissari, C., Roccaro, P., Sezerino, P. H., García, J., Vagliasindi, F. G., & Ávila, C. (2018). Removal of organic carbon, nitrogen, emerging contaminants and fluorescing organic matter in different constructed wetland configurations. Chemical Engineering Journal, 332, 619–627. https://doi.org/10.1016/j.cej.2017.09.122
Stavi, I., Ungar, E. D., Lavee, H., & Sarah, P. (2010). Variability of soil aggregation in a hilly semi-arid rangeland. Journal of Arid Environments, 74(8), 946–953. https://doi.org/10.1016/j.jaridenv.2009.12.003
Sun, R., Dsouza, M., Gilbert, J. A., Guo, X., Wang, D., Guo, Z., Wang, D., Guo, Z., Ni, Y., & Chu, H. (2016). Fungal community composition in soils subjected to long-term chemical fertilization is most influenced by the type of organic matter. Environmental Microbiology, 18(12), 5137–5150. https://doi.org/10.1111/1462-2920.13512
Tian, J., Lou, Y., Gao, Y., Fang, H., Liu, S., Xu, M., Blagodatskaya, E., & Kuzyakov, Y. (2017). Response of soil organic matter fractions and composition of microbial community to long-term organic and mineral fertilization. Biology and Fertility of Soils, 53, 523–532. https://doi.org/10.1007/s00374-017-1189-x
Villasica, L. J., Lina, S., & Asio, V. (2018). Aggregate stability affects carbon sequestration potential of different tropical soils. Annals Tropical Research, 40, 71–88. https://doi.org/10.32945/atr4016.2018
Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sciences, 37, 29–38.
Wang, P., Wang, J., Zhang, H., Dong, Y., & Zhang, Y. (2019). The role of iron oxides in the preservation of soil organic matter under long-term fertilization. Journal of Soils and Sediments, 19(2), 588–598. https://doi.org/10.1007/s11368-018-2085-1
Wertebach, T. M., Hölzel, N., Kämpf, I., Yurtaev, A., Tupitsin, S., Kiehl, K., & Kleinebecker, T. (2017). Soil carbon sequestration due to post-soviet cropland abandonment: Estimates from a large scale soil organic carbon field inventory. Global Change Biology, 23(9), 3729–3741. https://doi.org/10.1111/gcb.13650
Wilson, D. J., Western, A. W., & Grayson, R. B. (2005). A terrain and data-based method for generating the spatial distribution of soil moisture. Advances in Water Resources, 28(1), 43–54. https://doi.org/10.1016/j.advwatres.2004.09.007
Xu, E., Zhang, H., & Xu, Y. (2019). Effect of large-scale cultivated land expansion on the balance of soil carbon and nitrogen in the Tarim basin. Agronomy, 9, 86. https://doi.org/10.3390/agronomy9020086
Yao, Z., Zhang, D., Liu, N., Yao, P., Zhao, N., Yangyang, L., Suiqi, Z., Bingnian, Z., Donglin, H., Zhaohui, W., Weidong, C., Sina, A., & Ya-Jun, G. (2019). Dynamics and sequestration potential of soil organic carbon and total nitrogen stocks of leguminous green manure-based cropping systems on the Loess Plateau of China. Soil and Tillage Research, 191, 108–116. https://doi.org/10.1016/j.still.2019.03.022
Zhang, L., Xie, Z. H., Zhao, R., & Wang, Y. (2012). The impact of land use change on soil organic carbon and labile organic carbon stocks in the Long zhong region of Loess Plateau. Journal of Arid Lands, 4(3), 241–250. 10.3724/SP.J.1227.2012.00241
Zhao, G., Mu, X., Wen, Z., Wang, F., & Gao, P. (2013). Soil erosion, conservation, and eco-environment changes in the Loess Plateau of China. Land Degradation & Development, 24, 499–510. https://doi.org/10.1002/ldr.2246
Zhao, Y., Wang, M., Hu, S., Zhang, X., Ouyang, Z., Zhang, G., Huang, B., Zhao, S., Wu, J., Xie, D., Zhu, B., Yu, D., Pan, X., Xu, S., & Shi, X. (2017). Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proceedings of the National Academy of Sciences, 115(16), 4045–4050. https://doi.org/10.1073/pnas.1700292114
Zeng, F., Cui, K., Xie, Z., Wu, L., Luo, D., Chen, L., Lin, Y., Liu, M., & Sun, G. (2009). Distribution of phthalate esters in urban soils of subtropical city, Guangzhou, China. Journal of Hazardous Materials, 164(2–3), 1171–1178. https://doi.org/10.1016/j.jhazmat.2008.09.029