Aurivillius; Co and Ni; Computational studies; Divalents; Ferrimagnetics; Ferroelectric property; Lows-temperatures; Oxide ions; Oxide-fluoride; Research focus; Chemistry (all); Chemical Engineering (all); Materials Chemistry
Abstract :
[en] Aurivillius oxides have been a research focus due to their ferroelectric properties, but by replacing oxide ions by fluoride, divalent magnetic cations can be introduced, giving Bi2 MO2F4 (M = Fe, Co, and Ni). Our combined experimental and computational study on Bi2CoO2F4 indicates a low-temperature polar structure of P21 ab symmetry (analogous to ferroelectric Bi2WO6) and a ferrimagnetic ground state. These results highlight the potential of Aurivillius oxide-fluorides for multiferroic properties. Our research has also revealed some challenges associated with the reduced tendency for polar displacements in the more ionic fluoride-based systems.
Disciplines :
Physics
Author, co-author :
Scott, Euan A S; School of Physical Sciences, University of Kent, Kent, Canterbury CT2 7NH, U.K
Mitoudi Vagourdi, Eleni; Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
Johnsson, Mats ; Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
Cascos, Vanessa; School of Physical Sciences, University of Kent, Kent, Canterbury CT2 7NH, U.K
John, Filbin; School of Physical Sciences, University of Kent, Kent, Canterbury CT2 7NH, U.K
Pickup, Dave; School of Physical Sciences, University of Kent, Kent, Canterbury CT2 7NH, U.K
Chadwick, Alan V ; School of Physical Sciences, University of Kent, Kent, Canterbury CT2 7NH, U.K
Djani, Hania; Centre de Développement des Technologies Avancées, cité 20 aout 1956, Baba Hassan, Alger 16081, Algeria
Bousquet, Eric ; Université de Liège - ULiège > Département de physique
Zhang, Weiguo; Department of Chemistry, University of Houston, 112 Fleming Building, Houston, Texas 77204, United States
Halasyamani, P Shiv ; Department of Chemistry, University of Houston, 112 Fleming Building, Houston, Texas 77204, United States
McCabe, Emma E ; School of Physical Sciences, University of Kent, Kent, Canterbury CT2 7NH, U.K ; Department of Physics, Durham University, South Road, Durham DH1 3LE, U.K
Language :
English
Title :
Bi2CoO2F4 - A Polar, Ferrimagnetic Aurivillius Oxide-Fluoride.
Publication date :
08 November 2022
Journal title :
Chemistry of Materials
ISSN :
0897-4756
eISSN :
1520-5002
Publisher :
American Chemical Society, United States
Volume :
34
Issue :
21
Pages :
9775 - 9785
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif Tier-1 supercomputer
Royal Society Welch Foundation Sverige Vetenskapsrådet Leverhulme Trust SFTC - Science and Technology Facilities Council RSV - Royal Society of Chemistry COST - European Cooperation in Science and Technology
Funding text :
We thank funding agencies including the Royal Society (international exchange scheme IES\R3\170112), The Leverhulme Trust (RPG-2017-362), and EU COST Action “Towards oxide-based electronics”. F.J. is grateful to the Analytical Division of the Royal Society of Chemistry for a funding to support his summer internship. We are grateful to the ISIS Neutron and Muon Source (STFC) for the provision of beamtime and to Dr. Ivan da Silva for assistance with data collection. NPD data are available at https://data.isis.stfc.ac.uk/doi/STUDY/105605763/ . We are grateful to Prof. T. Lancaster for helpful discussions. P.S.H. and W.Z. thank the Welch Foundation (grant E-1457) and the NSF (DMR-2002319) for support. XANES data were collected via the “ENERGY Materials” Block Allocation Grant at Diamond Light Source. E.M.V. and M.J. are grateful to the Swedish Research Council (VR) grant 2014-3931. Computational resources were provided by the Consortium des Equipements de Calcul Intensif (CECI) and the Tier-1 supercomputer of the Fédération Wallonie-Bruxelles.
Hill, N. A. Why are there so few magnetic ferroelectrics?. J. Phys. Chem. B 2000, 104, 6694-6709, 10.1021/jp000114x
Spaldin, N. A.; Ramesh, R. Advances in magnetoelectric multiferroics. Nat. Mater. 2019, 18, 203-212, 10.1038/s41563-018-0275-2
Fang, P. H.; Robbins, C. R.; Aurivillius, B. Ferroelectricity In Compound Bi4ti3o12. Phys. Rev. 1962, 126, 892, 10.1103/PhysRev.126.892
Dearaujo, C. A. P.; Cuchiaro, J. D.; McMillan, L. D.; Scott, M. C.; Scott, J. F. FATIGUE-FREE FERROELECTRIC CAPACITORS WITH PLATINUM-ELECTRODES. Nature 1995, 374, 627-629, 10.1038/374627a0
McCabe, E. E.; Greaves, C. Structural and magnetic characterisation of Bi2Sr1.4La0.6Nb2MnO12and its relationship to Bi2Sr2Nb2MnO12. J. Mater. Chem. 2005, 15, 177-182, 10.1039/B413732A
McCabe, E. E.; Greaves, C. Structural and magnetic characterisation of Aurivillius material Bi2Sr2Nb2.5Fe0.5O12. J. Solid State Chem. 2008, 181, 3051-3056, 10.1016/j.jssc.2008.08.004
Giddings, A. T.; Stennett, M. C.; Reid, D. P.; McCabe, E. E.; Greaves, C.; Hyatt, N. C. Synthesis, structure and characterisation of the n=4 Aurivillius phase Bi5Ti3CrO15. J. Solid State Chem. 2011, 184, 252-263, 10.1016/j.jssc.2010.09.031
Keeney, L.; Colfer, L.; Schmidt, M. Probing Ferroelectric Behavior in Sub-10 nm Bismuth-Rich Aurivillius Films by Piezoresponse Force Microscopy. Microsc. Microanal. 2022, 28, 1396-1406, 10.1017/S1431927621013726
Halpin, J. C.; Schmidt, M.; Maity, T.; Pemble, M. E.; Keeney, L. Compositional Tuning of the Aurivillius Phase Material Bi5Ti3-2xFe1+xNbxO15 (0 ≤ x ≤ 0.4) Grown by Chemical Solution Deposition and its Influence on the Structural, Magnetic, and Optical Properties of the Material. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 303-313, 10.1109/TUFFC.2020.2997406
Snedden, A.; Hervoches, C. H.; Lightfoot, P. Ferroelectric phase transitions in SrBi2Nb2O9 and Bi5Ti3FeO15: A powder neutron diffraction study. Phys. Rev. B 2003, 67, 092102 10.1103/PhysRevB.67.092102
Guo, Y.-Y.; Gibbs, A. S.; Perez-Mato, J. M.; Lightfoot, P. Unexpected phase transition sequence in the ferroelectric Bi4Ti3O12. IUCrJ 2019, 6, 438-446, 10.1107/S2052252519003804
Armstrong, R. A.; Newnham, R. E. Bismuth titanate solid solutions. Mater. Res. Bull. 1972, 7, 1025-1034, 10.1016/0025-5408(72)90154-7
McDowell, N. A.; Knight, K. S.; Lightfoot, P. Unusual high-temperature structural behaviour in ferroelectric Bi2WO6. Chemistry-a European Journal 2006, 12, 1493-1499, 10.1002/chem.200500904
Knight, K. S. THE CRYSTAL STRUCTURE OF FERROELECTRIC Bi2WO6 AT 961 K. Ferroelectrics 1993, 150, 319-330, 10.1080/00150199308211450
Hatch, D. M.; Stokes, H. T.; Aleksandrov, K. S.; Misyul, S. V. Phase transitions in the perovskitelike A2BX4 structure. Phys. Rev. B 1989, 39, 9282-9288, 10.1103/PhysRevB.39.9282
Hatch, D. M.; Stokes, H. T. Classification of octahedral tilting phases in the perovskite-like A2BX4 structure. Phys. Rev. B 1987, 35, 8509-8516, 10.1103/PhysRevB.35.8509
Stokes, H. T.; Hatch, D. M.; Campbell, B. J.; Tanner, D. E. ISODISPLACE: a web-based tool for exploring structural distortions. J. Appl. Crystallogr. 2006, 39, 607-614
Glazer, A. The classification of tilted octahedra in perovskites. Acta Crystallogr., Sect. B: Struct. Sci. 1972, 28, 3384-3392, 10.1107/S0567740872007976
Knight, K. S. THE CRYSTAL-STRUCTURE OF RUSSELLITE-A REDETERMINATION USING NEUTRON POWDER DIFFRACTION OF SYNTHETIC BI2WO6. Mineral. Mag. 1992, 56, 399-409, 10.1180/minmag.1992.056.384.13
Djani, H.; Bousquet, E.; Kellou, A.; Ghosez, P. First-principles study of the ferroelectric Aurivillius phase Bi2WO6. Phys. Rev. B 2012, 86, 054107 10.1103/PhysRevB.86.054107
Aurivillius, B. The structure of Bi2NbO5F and isomorphous compounds. Ark. Kemi 1952, 4, 39-47
Needs, R. L.; Dann, S. E.; Weller, M. T.; Cherryman, J. C.; Harris, R. K. The structure and oxide/fluoride ordering of the ferroelectrics Bi2TiO4F2 and Bi2NbO5F. J. Mater. Chem. 2005, 15, 2399-2407, 10.1039/b502499d
McCabe, E. E.; Jones, I. P.; Zhang, D.; Hyatt, N. C.; Greaves, C. Crystal structure and electrical characterisation of Bi2NbO5F: an Aurivillius oxide fluoride. J. Mater. Chem. 2007, 17, 1193-1200, 10.1039/b613970a
Morita, K.; Park, J.-S.; Kim, S.; Yasuoka, K.; Walsh, A. Crystal Engineering of Bi2WO6 to Polar Aurivillius-Phase Oxyhalides. J. Phys. Chem. C 2019, 123, 29155-29161, 10.1021/acs.jpcc.9b09806
Mitoudi Vagourdi, E.; Müllner, S.; Lemmens, P.; Kremer, R. K.; Johnsson, M. Synthesis and Characterization of the Aurivillius Phase CoBi2O2F4. Inorg. Chem. 2018, 57, 9115-9121, 10.1021/acs.inorgchem.8b01118
Yu, X. W.; Mitoudi-Vagourdi, E.; Johnsson, M. The Aurivillius Compound CoBi2O2F4-an Efficient Catalyst for Electrolytic Water Oxidation after Liquid Exfoliation. ChemCatChem 2019, 11, 6105-6110, 10.1002/cctc.201901561
Mentré, O.; Juárez-Rosete, M. A.; Colmont, M.; Ritter, C.; Fauth, F.; Duttine, M.; Huvé, M.; Terryn, C.; Duffort, V.; Arévalo-López, Á. M. All-Magnetic Slabs and Multiferroism in (Bi2-xO2)(MF4) Aurivillius Oxyfluorides (M = Fe and Ni). Chem. Mater. 2022, 34, 5706-5716, 10.1021/acs.chemmater.2c01213
Coelho, A. A. Topas Academic: General profile and structure analysis software for powder diffraction data, Bruker AXS: Karlsruhe, Germany, 2012.
Coelho, A. TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++. J. Appl. Crystallogr. 2018, 51, 210-218, 10.1107/S1600576718000183
Campbell, B. J.; Stokes, H. T.; Tanner, D. E.; Hatch, D. M. ISODISTORT. J. Appl. Crystallogr. 2006, 39, 607-614, 10.1107/S0021889806014075
Petricek, V.; Dusek, M.; Palatinus, L. Crystallographic computing system Jana2006: general features. Z. Kristallogr. 2014, 229, 345-352
Ok, K. M.; Chi, E. O.; Halasyamani, P. S. Bulk characterisation methods for non-centrosymmetric materials: second harmonic generation, piezoelectricity, pyroelectricity and ferroelectricity. Chem. Soc. Rev. 2006, 35, 710-717, 10.1039/b511119f
Hohenberg, P.; Kohn, W. INHOMOGENEOUS ELECTRON GAS. Phys. Rev. B 1964, 136, B864, 10.1103/PhysRev.136.B864
Gonze, X.; Amadon, B.; Anglade, P. M.; Beuken, J. M.; Bottin, F.; Boulanger, P.; Bruneval, F.; Caliste, D.; Caracas, R.; Cote, M.; Deutsch, T.; Genovese, L.; Ghosez, P.; Giantomassi, M.; Goedecker, S.; Hamann, D. R.; Hermet, P.; Jollet, F.; Jomard, G.; Leroux, S.; Mancini, M.; Mazevet, S.; Oliveira, M. J. T.; Onida, G.; Pouillon, Y.; Rangel, T.; Rignanese, G. M.; Sangalli, D.; Shaltaf, R.; Torrent, M.; Verstraete, M. J.; Zerah, G.; Zwanziger, J. W. ABINIT: First-principles approach to material and nanosystem properties. Comput. Phys. Commun. 2009, 180, 2582-2615, 10.1016/j.cpc.2009.07.007
Gonze, X.; Rignanese, G. M.; Verstraete, M.; Beuken, J. M.; Pouillon, Y.; Caracas, R.; Jollet, F.; Torrent, M.; Zerah, G.; Mikami, M.; Ghosez, P.; Veithen, M.; Raty, J. Y.; Olevano, V.; Bruneval, F.; Reining, L.; Godby, R.; Onida, G.; Hamann, D. R.; Allan, D. C. A brief introduction to the ABINIT software package. Zeitschrift Fur Kristallographie 2005, 220, 558-562
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979, 10.1103/PhysRevB.50.17953
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865-3868, 10.1103/PhysRevLett.77.3865
Jollet, F.; Torrent, M.; Holzwarth, N. Generation of Projector Augmented-Wave atomic data: A 71 element validated table in the XML format. Comput. Phys. Commun. 2014, 185, 1246-1254, 10.1016/j.cpc.2013.12.023
Anisimov, V. I.; Gunnarsson, O. Density-functional calculation of effective Coulomb interactions in metals. Phys. Rev. B 1991, 43, 7570-7574, 10.1103/PhysRevB.43.7570
Liechtenstein, A. I.; Anisimov, V. I.; Zaanen, J. Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. Phys. Rev. B 1995, 52, R5467-R5470, 10.1103/PhysRevB.52.R5467
Baroni, S.; de Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 2001, 73, 515-562, 10.1103/RevModPhys.73.515
Gonze, X.; Lee, C. Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B 1997, 55, 10355-10368, 10.1103/PhysRevB.55.10355
Berry, F. J.; Moore, E.; Mortimer, M.; Ren, X.; Heap, R.; Slater, P.; Thomas, M. F. Synthesis and structural characterisation of a new oxide fluoride of composition Ba2SnO2.5F3.xH2O (x=0.5). J. Solid State Chem. 2008, 181, 2185-2190, 10.1016/j.jssc.2008.05.015
Sears, V. F. Neutron news 1990, 3, 29-37
McCabe, E. E.; Free, D. G.; Mendis, B. G.; Higgins, J. S.; Evans, J. S. O. Preparation, Characterization, and Structural Phase Transitions in a New Family of Semiconducting Transition Metal Oxychalcogenides β-La2O2MSe2 (M=Mn, Fe). Chem. Mater. 2010, 22, 6171-6182, 10.1021/cm1023103
Tuxworth, A. J.; McCabe, E. E.; Free, D. G.; Clark, S. J.; Evans, J. S. O. Structural Characterization and Physical Properties of the New Transition Metal Oxyselenide La2O2ZnSe2. Inorg. Chem. 2013, 52, 2078-2085, 10.1021/ic302484x
McCabe, E. E.; Stock, C.; Rodrigues, E. E.; Wills, A. S.; Taylor, J. W.; Evans, J. S. O. Weak spin interactions in Mott insulating La2O2Fe2OSe2. Phys. Rev. B 2014, 89, 100402, 10.1103/PhysRevB.89.100402
Hayward, M. A.; Rosseinsky, M. J. Anion Vacancy Distribution and Magnetism in the New Reduced Layered Co(II)/Co(I) Phase LaSrCoO3.5-x. Chem. Mater. 2000, 12, 2182-2195, 10.1021/cm9906811
Brown, I. D.; Altermatt, D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Cryst. 1985, B41, 244-247
Brese, N. E.; O'Keefe, M. Bond-valence sum parameters for solids. Acta Cryst. 1991, B47, 192-197
Huvé, M.; Mentre, O.; Arevalo-Lopez, A., Incommensurate structural modulation in Bi2CoO2F4. private communication, 2022.
Yamada, K.; Matsuda, M.; Endoh, Y.; Keimer, B.; Birgeneau, R. J.; Onodera, S.; Mizusaki, J.; Matsuura, T.; Shirane, G. Successive antiferromagnetic phase transitions in single-crystal La2CoO4. Phys. Rev. B 1989, 39, 2336, 10.1103/PhysRevB.39.2336
Perez-Mato, J. M.; Orobengoa, D.; Aroyo, M. I. Mode crystallography of distorted structures. Acta Crystallogr., Sect. A: Found. Adv. 2010, 66, 558-590, 10.1107/S0108767310016247
Orobengoa, D.; Capillas, C.; Aroyo, M. I.; Perez-Mato, J. M. AMPLIMODES: symmetry-mode analysis on the Bilbao Crystallographic Server. J. Appl. Crystallogr. 2009, 42, 820-833, 10.1107/S0021889809028064
Furukawa, Y.; Wada, S.; Kajitani, T.; Hosoya, S. 59Co Zero-Field NMR Study of Antiferromagnetism in Low-Temperature Tetragonal Phase of La2CoO3.86. J. Phys. Soc. Jpn. 1999, 68, 346-349, 10.1143/JPSJ.68.346
Birgeneau, R. J.; Chen, C. Y.; Gabbe, D. R.; Jenssen, H. P.; Kastner, M. A.; Peters, C. J.; Picone, P. J.; Thio, T.; Thurston, T. R.; Tuller, H. L.; Axe, J. D.; Böni, P.; Shirane, G. Soft-phonon behavior and transport in single-crystal La2CuO4. Phys. Rev. Lett. 1987, 59, 1329-1332, 10.1103/PhysRevLett.59.1329
Böni, P.; Axe, J. D.; Shirane, G.; Birgeneau, R. J.; Gabbe, D. R.; Jenssen, H. P.; Kastner, M. A.; Peters, C. J.; Picone, P. J.; Thurston, T. R. Lattice instability and soft phonons in single-crystal La2-xSrxCuO4. Phys. Rev. B 1988, 38, 185-194, 10.1103/PhysRevB.38.185
Heger, G.; Mullen, D.; Knorr, K. On the importance of hydrogen bonding for the structural phase transitions in (CH3NH3)2MnCl4. A single-crystal neutron diffraction study. Phys. Status Solidi A 1976, 35, 627-637, 10.1002/pssa.2210350225
Walsh, A.; Payne, D. J.; Egdell, R. G.; Watson, G. W. Stereochemistry of post-transition metal oxides: revision of the classical lone pair model. Chem. Soc. Rev. 2011, 40, 4455-4463, 10.1039/c1cs15098g
Ok, K. M.; Halasyamani, P. S.; Casanova, D.; Llunell, M.; Alemany, P.; Alvarez, S. Distortions in Octahedrally Coordinated d0 Transition Metal Oxides: A Continuous Symmetry Measures Approach. Chem. Mater. 2006, 18, 3176-3183, 10.1021/cm0604817
Eng, H. W.; Barnes, P. W.; Auer, B. M.; Woodward, P. M. Investigations of the electronic structure of d0 transition metal oxides belonging to the perovskite family. J. Solid State Chem. 2003, 175, 94-109, 10.1016/S0022-4596(03)00289-5
Kang, S. K.; Albright, T. A.; Eisenstein, O. THE STRUCTURE OF D0 ML6 COMPLEXES. Inorg. Chem. 1989, 28, 1611-1613, 10.1021/ic00308a001
Woodward, P. M.; Karen, P.; Evans, J. S. O.; Vogt, T., Solid state materials chemistry. Cambridge University Press: 2021, 10.1017/9781139025348.
Garcia-Castro, A. C.; Spaldin, N. A.; Romero, A. H.; Bousquet, E. Geometric ferroelectricity in fluoroperovskites. Phys. Rev. B 2014, 89, 104107 10.1103/PhysRevB.89.104107
Djani, H.; Hermet, P.; Ghosez, P. First-Principles Characterization of the P21ab Ferroelectric Phase of Aurivillius Bi2WO6. J. Phys. Chem. C 2014, 118, 13514-13524, 10.1021/jp504674k
Her, J.-H.; Stephens, P. W.; Gao, Y.; Soloveichik, G. L.; Rijssenbeek, J.; Andrus, M.; Zhao, J.-C. Structure of unsolvated magnesium borohydride Mg(BH4)2. Acta Cryst 2007, 63, 561-568, 10.1107/S0108768107022665
Babkevich, P.; Prabhakaran, D.; Frost, C. D.; Boothroyd, A. T. Magnetic spectrum of the two-dimensional antiferromagnet La2CoO4studied by inelastic neutron scattering. Phys. Rev. B 2010, 82, 184425 10.1103/PhysRevB.82.184425
Qureshi, N.; Ulbrich, H.; Sidis, Y.; Cousson, A.; Braden, M. Magnetic structure and magnon dispersion in LaSrFeO4. Phys. Rev. B 2013, 87, 054433 10.1103/PhysRevB.87.054433
Jung, M. H.; Alsmadi, A. M.; Chang, S.; Fitzsimmons, M. R.; Zhao, Y.; Lacerda, A. H.; Kawanaka, H.; El-Khatib, S.; Nakotte, H. Magnetic ordering in single-crystalline SrLaFeO4and Sr1.1La0.9FeO4. J. Appl. Phys. 2005, 97, 10A926, 10.1063/1.1861416
Rodriguez-Carvajal, J.; Fernandez-Diaz, M. T.; Martinez, J. L. Neutron diffraction study on structural and magnetic properties of La2NiO4. J. Phys.: Condens. Matter 1991, 3, 3215-3234, 10.1088/0953-8984/3/19/002
Le Dréau, L.; Prestipino, C.; Hernandez, O.; Schefer, J.; Vaughan, G.; Paofai, S.; Perez-Mato, J. M.; Hosoya, S.; Paulus, W. Structural Modulation and Phase Transitions in La2CoO4.14Investigated by Synchrotron X-ray and Neutron Single-Crystal Diffraction. Inorg. Chem. 2012, 51, 9789-9798, 10.1021/ic301165a
Yosida, K., Theory of Magnetism. 1 ed.; Springer Berlin: Heidelberg, 1996.
Moskvin, A. Dzyaloshinskii-Moriya Coupling in 3d Insulators. Condensed Matter 2019, 4, 84, 10.3390/condmat4040084
Crawford, M. K.; Subramanian, M. A.; Harlow, R. L.; Fernandez-Baca, J. A.; Wang, Z. R.; Johnston, D. C. Structural and magnetic studies of Sr2IrO4. Phys. Rev. B 1994, 49, 9198-9201, 10.1103/PhysRevB.49.9198
Wang, J.; Shin, Y.; Paudel, J. R.; Grassi, J. D.; Sah, R. K.; Yang, W.; Karapetrova, E.; Zaidan, A.; Strocov, V. N.; Klewe, C.; Shafer, P.; Gray, A. X.; Rondinelli, J. M.; May, S. J. Strain-Induced Anion-Site Occupancy in Perovskite Oxyfluoride Films. Chem. Mater. 2021, 33, 1811-1820, 10.1021/acs.chemmater.0c04793