Fe 3+; Magnetic metals; Nonlinear optical properties; Single-crystal XRD; Synthesised; Tetrahedra; Three-dimensional frameworks; Type structures; Wide band-gap material; Zigzag chains; Inorganic Chemistry; DFT; Ab Initio; Material science
Abstract :
[en] The polar magnetic chalcogenide phase Ba5Fe2ZnIn4S15 was synthesized and its structure was solved by single crystal XRD. It is the first member with a 3d magnetic metal (Fe3+) in the Pb5ZnGa6S15-type structure family of wide bandgap materials with non-linear optical properties. The three-dimensional framework possesses a low dimensional magnetic character through the presence of weakly interacting zig-zag chains made of corner-sharing FeS4 tetrahedra forming chain 1, [FeS2]-∞. The latter chains are separated by InS4 tetrahedra providing weak magnetic super-super exchanges between them. The framework is also constituted by chain 2, [In3Zn1S9]7-∞ (chain of T2-supertetrahedra) extended similarly to chain 1 along the direction c and connected through InS4 tetrahedra. Symmetry analysis shows that the intrinsic polarization observed in this class of materials is mostly due to the anionic framework. Preliminary magnetic measurements and density functional theory calculations suggest dominating antiferromagnetic interactions with strong super-exchange coupling within the Fe-chains.
Disciplines :
Chemistry
Author, co-author :
Almoussawi, Batoul; Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France. houria.kabbour@univ-lille.fr
Duffort, Victor ; Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France. houria.kabbour@univ-lille.fr
Arevalo-Lopez, Angel M ; Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France. houria.kabbour@univ-lille.fr
Braun, Maxime ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM) ; Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France. houria.kabbour@univ-lille.fr
Kabbour, Houria ; Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France. houria.kabbour@univ-lille.fr
Other collaborator :
Djelal, Nora; Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France. houria.kabbour@univ-lille.fr
Language :
English
Title :
Preparation, characterization and DFT+U study of the polar Fe3+-based phase Ba5Fe2ZnIn4S15 containing S = 5/2 zigzag chains.
CNRS - Centre National de la Recherche Scientifique MESR - France. Ministère de l'Enseignement supérieur et de la Recherche ANR - Agence Nationale de la Recherche
Funding text :
This study was supported by the French government through the Programme Investissement d'Avenir (I-SITE ULNE/ANR-16-IDEX-0004 ULNE) managed by the Agence Nationale de la Recherche (Project ANION-COMBO). X-rays diffractometers were funded by Région NPDC, FEDER, CNRS and MESR. The regional computational cluster supported by Lille University, CPER Nord-Pas-de-Calais/CRDER, France Grille CNRS and FEDER is acknowledged for providing computational resources.
Abudurusuli A., Wu K., Li J., Yalikun A., Yang Z. and Pan S., LiBa 2 M, 2019, vol. 4. https://dx.doi.org/10.1021/acs.inorgchem.9b01810
Nakayama N., Studies on the Compounds in the Ba-Fe-S Antiferromagnetism of Ba, FeS, and Related System. I. Linear Chain Compounds Ba & OS, 1980, vol. 356, pp. 351-356
Lemley J. T., Ba, Fe, S, and Ba, FeS: Crystal Structures, Miissbauer, Magnetic, and Electrical Behavior, 1976, vol. 128, pp. 117-128
Li T. Feng Z. Hou Q. Wu H. Wang K. Ge J.-Y. Cao S. Zhang J. Yeh N.-C. Effects of Cr doping on the superconductivity and magnetism of FeTe0.8S0.2 Solid State Commun. 2020 309 113846 https://dx.doi.org/10.1016/j.ssc.2020.113846 10.1016/j.ssc.2020.113846
Paul P. Rajarajan A. K. Kuila S. Vishwakarma P. N. Mandal B. Rao T. V. C. Plausible Multiferroic and Magneto-Electric Behaviour of Polycrystalline Bi0.85Gd0.05La0.1FeO3 at Room Temperature J. Magn. Magn. Mater. 2021 538 168253 https://dx.doi.org/10.1016/j.jmmm.2021.168253 10.1016/j.jmmm.2021.168253
Chen J. Liu L. Zhu X. L. Gareeva Z. V. Zvezdin A. K. Chen X. M. The Involvement of Pna 21 Phase in the Multiferroic Characteristics of La/Lu Co-Substituted BiFeO3 Ceramics Appl. Phys. Lett. 2021 119 11 112901 https://dx.doi.org/10.1063/5.0059793 10.1063/5.0059793
Augustine P. Yerol N. Kalarikkal N. Raneesh B. Rahul M. T. Chacko S. K. Room Temperature Multiferroic Properties of BiFeO3−MnFe2O4 Nanocomposites Ceram. Int. 2021 47 11 15267 15276 https://dx.doi.org/10.1016/j.ceramint.2021.02.090 10.1016/j.ceramint.2021.02.090
Lin H. Li B.-X. Chen H. Liu P.-F. Wu L.-M. Wu X.-T. Zhu Q.-L. Sr5ZnGa6S15: A New Quaternary Non-Centrosymmetric Semiconductor with a 3D Framework Structure Displaying Excellent Nonlinear Optical Performance Inorg. Chem. Front. 2018 5 6 1458 1462 https://dx.doi.org/10.1039/C8QI00322J 10.1039/C8QI00322J
Duan R.-H. Yu J.-S. Lin H. Zheng Y.-J. Zhao H.-J. Huang-Fu S.-X. Khan M. A. Chen L. Wu L.-M. Pb5Ga6ZnS15: A Noncentrosymmetric Framework with Chains of T2-Supertetrahedra Dalton Trans. 2016 45 31 12288 12291 https://dx.doi.org/10.1039/C6DT02404A 10.1039/C6DT02404A 27434114
Rudyk B. W. Stoyko S. S. Mar A. Rare-Earth Transition-Metal Indium Sulphides RE3FeInS7 (RE=La-Pr), RE3CoInS7 (RE=La, Ce), and La3NiInS7 J. Solid State Chem. 2013 208 78 85 https://dx.doi.org/10.1016/j.jssc.2013.09.035 10.1016/j.jssc.2013.09.035
Balijapelly S. Craig A. J. Bin Cho J. Jang J. I. Ghosh K. Aitken J. A. Chernatynskiy A. V. Choudhury A. Building-Block Approach to the Discovery of Na8Mn2(Ge2Se6)2: A Polar Chalcogenide Exhibiting Promising Harmonic Generation Signals with a High Laser-Induced Damage Threshold J. Alloys Compd. 2022 900 163392 https://dx.doi.org/10.1016/j.jallcom.2021.163392 10.1016/j.jallcom.2021.163392
Feng K. Zhang X. Yin W. Shi Y. Yao J. Wu Y. New Quaternary Rare-Earth Chalcogenides Ba Ln Sn 2 Q 6 (Ln = Ce, Pr, Nd, Q = S; Ln = Ce, Q = Se): Synthesis, Structure, and Magnetic Properties Inorg. Chem. 2014 53 4 2248 2253 https://dx.doi.org/10.1021/ic402934m 10.1021/ic402934m 24498849
Campbell B. J. Stokes H. T. Tanner D. E. Hatch D. M. ISODISPLACE: A Web-Based Tool for Exploring Structural Distortions J. Appl. Crystallogr. 2006 39 607 614 10.1107/S0021889806014075
Momma K. Izumi F. VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data J. Appl. Crystallogr. 2011 44 6 1272 1276 https://dx.doi.org/10.1107/S0021889811038970 10.1107/S0021889811038970
Kresse G. Joubert D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method Phys. Rev. B: Condens. Matter Mater. Phys. 1999 59 3 1758 1775 https://dx.doi.org/10.1103/PhysRevB.59.1758 10.1103/PhysRevB.59.1758
Kresse G., et al., Vienna Ab-Initio Simulation Package (VASP)
Perdew J. P. Burke K. Ernzerhof M. Generalized Gradient Approximation Made Simple Phys. Rev. Lett. 1996 77 18 3865 3868 https://dx.doi.org/10.1103/PhysRevLett.77.3865 10.1103/PhysRevLett.77.3865 10062328
Petříček V. Dušek M. Palatinus L. Crystallographic Computing System JANA2006: General Features Z. Kristallogr. - Cryst. Mater. 2014 229 5 345 352 https://dx.doi.org/10.1515/zkri-2014-1737 10.1515/zkri-2014-1737
van der Lee A. Charge Flipping for Routine Structure Solution J. Appl. Crystallogr. 2013 46 5 1306 1315 https://dx.doi.org/10.1107/S0021889813020049 10.1107/S0021889813020049
Cohen S. Kimizuka N. Steinfink H. The Crystal Structure and Stability of Ba5Fe4S11 J. Solid State Chem. 1980 35 2 181 186 https://dx.doi.org/10.1016/0022-4596(80)90491-0 10.1016/0022-4596(80)90491-0
Yin W. Iyer A. K. Li C. Yao J. Mar A. Ba5CdGa6Se15, a Congruently-Melting Infrared Nonlinear Optical Material with Strong SHG Response J. Mater. Chem. C 2017 5 5 1057 1063 https://dx.doi.org/10.1039/C6TC05111A 10.1039/C6TC05111A
Perez-Mato J. M. Orobengoa D. Aroyo M. I. Mode Crystallography of Distorted Structures Acta Crystallogr., Sect. A: Found. Crystallogr. 2010 66 5 558 590 https://dx.doi.org/10.1107/S0108767310016247 10.1107/S0108767310016247 20720321
Shenton J. K. Bowler D. R. Cheah W. L. Effects of the Hubbard U on Density Functional-Based Predictions of BiFeO3 Properties J. Phys.: Condens. Matter 2017 29 44 445501 https://dx.doi.org/10.1088/1361-648X/aa8935 10.1088/1361-648X/aa8935 28853713
Li X. Yu H. Lou F. Feng J. Whangbo M.-H. Xiang H. Spin Hamiltonians in Magnets: Theories and Computations Molecules 2021 26 4 803 https://dx.doi.org/10.3390/molecules26040803 10.3390/molecules26040803 33557181
Duan L. Zhang J. Wang X. Zhao Z. Xiao C. Li X. Hu Z. Zhao J. Li W. Cao L. Dai G. Ren C. He X. Yu R. Liu Q. Tjeng L. H. Lin H.-J. Chen C.-T. Jin C. High Pressure Phase of Ba2FeS3: An Antiferromagnet with One-Dimensional Spin Chains J. Alloys Compd. 2021 859 157839 https://dx.doi.org/10.1016/j.jallcom.2020.157839 10.1016/j.jallcom.2020.157839
Swinnea J. S. Steinfink H. Mössbauer Spectra, Magnetic and Electrical Behavior of Ba1+xFe2S4 Phases J. Solid State Chem. 1982 41 2 124 131 https://dx.doi.org/10.1016/0022-4596(82)90192-X 10.1016/0022-4596(82)90192-X