[en] Stevia rebaudiana Bertoni is an endemic species to Paraguay famous for its sweetening power and therapeutic potential for various diseases such as diabetes. The present work evaluates the chemical composition and antioxidant, anticholinesterase, and α-glucosidase activities of S. rebaudiana. The essential oil (EO) of dry Stevia leaves was analyzed by GC/MS and detected the presence of 33 components. Caryophyllene oxide (24.28%), spathulenol (12.31%) and nerolidol (11.8%), and manool oxide (7.36%) were identified as the major ones. The antioxidant activity was evaluated by four complementary methods: DPPH (2,2 diphenylpicrylhydrazyl, ABTS (2, 2’-azino-bis 3-ethylbenzthiazoline-6-sulfonic acid) free radicals scavenging, Cupric reducing antioxidant capacity (CUPRAC), and reducing power. The crude methanolic extract and its fractions showed a variable antioxidant activity and strongly correlated with the content of quantified bioactive compounds. The ethyl acetate fraction showed a very high antioxidant activity close to the tested standards, while EO was active only in the CUPRAC assy. The petrol ether and chloroform fractions showed the best butyrylcholinesterase (BChE) inhibitory activity with IC50 values: 123.7 ± 1.78 and 170.1 ± 0.78 μg/mL, respectively. On the other hand, EO and chloroform revealed a moderate inhibitory activity against acetylcholinesterase (AChE). The in vitro inhibitory effect of the extracts on α-glucosidase indicated that EO effectively inhibited the enzyme with an IC50: 74.9 ± 6.4 µg/mL, better than the standard acarbose. The EO of Stevia has a significant anti-diabetic potential.
Disciplines :
Agriculture & agronomy Chemistry
Author, co-author :
Lremizi, Imane
Ait Ouazzou, Abdenour
Bensouici, Chawki
Fauconnier, Marie-Laure ; Université de Liège - ULiège > TERRA Research Centre > Chimie des agro-biosystèmes
Language :
English
Title :
Chemical composition, antioxidant, anticholinesterase, and alpha-glucosidase activity of Stevia rebaudiana Bertoni extracts cultivated in Algeria
Ministry of Higher Education and Scientific Research
Funding number :
5/PNE/PHD/BEL- GIUM/2019-2020
Funding text :
This research was funded by the Algerian Ministry of Higher Education through the scholarship (35/PNE/PHD/BELGIUM/ 2019-2020) granted to Lremizi Imane to finalize her Ph.D. thesis.
W. Mamache, S. Amira, C. Ben Souici, H. Laouer, F. Benchikh, In vitro antioxidant, anticholinesterases, anti α-amylase, and anti α-glucosidase effects of Algerian Salvia aegyptiaca and Salvia verbenaca. J. Food Biochem. (2020). 10.1111/jfbc.13472 DOI: 10.1111/jfbc.13472
L. Gali, F. Bedjou, Antioxidant and anticholinesterase effects of the ethanol extract, ethanol extract fractions and total alkaloids from the cultivated Ruta chalepensis. South Afr. J. Bot. 120, 163–169 (2019). 10.1016/j.sajb.2018.04.011 DOI: 10.1016/j.sajb.2018.04.011
S. Darvesh, D.A. Hopkins, C. Geula, Neurobiology of butyrylcholinesterase. Nat. Rev. Neurosci. 4(2), 131–138 (2003). 10.1038/nrn1035 DOI: 10.1038/nrn1035
A. Ibrahim et al., In vitro antioxidant and anti-diabetic potential of gymnema sylvestre methanol leaf extract. Eur. Sci. J. ESJ 13(36), 218 (2017). 10.19044/esj.2017.v13n36p218 DOI: 10.19044/esj.2017.v13n36p218
M. Mehta, A. Adem, M. Sabbagh, New acetylcholinesterase inhibitors for alzheimer’s disease. Int. J. Alzheimers Dis. 2012, 1–8 (2012). 10.1155/2012/728983 DOI: 10.1155/2012/728983
R.C. Fierascu, I. Fierascu, A. Ortan, M.I. Georgiev, E. Sieniawska, Innovative approaches for recovery of phytoconstituents from medicinal/aromatic plants and biotechnological production. Molecules 25(2), 309 (2020). 10.3390/molecules25020309 DOI: 10.3390/molecules25020309
L.G. Sarmiento-López, M. López-Meyer, G. Sepúlveda-Jiménez, L. Cárdenas, M. Rodríguez-Monroy, Arbuscular mycorrhizal symbiosis in Stevia rebaudiana increases trichome development, flavonoid and phenolic compound accumulation. Biocatal. Agric. Biotechnol. 31, 101889 (2021). 10.1016/j.bcab.2020.101889 DOI: 10.1016/j.bcab.2020.101889
R.P. Pereira et al., Antioxidant effects of different extracts from Melissa officinalis, Matricaria recutita and Cymbopogon citratus. Neurochem. Res. 34(5), 973–983 (2009). 10.1007/s11064-008-9861-z DOI: 10.1007/s11064-008-9861-z
R. Lemus-Mondaca et al., Antioxidant, antimicrobial and anti-inflammatory potential of Stevia rebaudiana leaves: effect of different drying methods. J. Appl. Res. Med. Aromat. Plants 11, 37–46 (2018). 10.1016/j.jarmap.2018.10.003 DOI: 10.1016/j.jarmap.2018.10.003
M.F. Hossain, M.T. Islam, M.A. Islam, S. Akhtar, Cultivation and uses of stevia (Stevia rebaudiana bertoni): A review. Afr. J. FOOD Agric. Nutr. Dev. 17(4), 12745–12757 (2017). 10.18697/ajfand.80.16595 DOI: 10.18697/ajfand.80.16595
R. Lemus-Mondaca, A. Vega-Gálvez, L. Zura-Bravo, K. Ah-Hen, Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: A comprehensive review on the biochemical, nutritional and functional aspects. Food Chem. 132(3), 1121–1132 (2012). 10.1016/j.foodchem.2011.11.140 DOI: 10.1016/j.foodchem.2011.11.140
N. Ilias, H. Hamzah, I.S. Ismail, T.B. Mohd, M. Mohidin, F. Idris, M. Ajat, An insight on the future therapeutic application potential of Stevia rebaudiana Bertoni for atherosclerosis and cardiovascular diseases. Biomed. Pharmacother. 143, 112207 (2021). 10.1016/j.biopha.2021.112207 DOI: 10.1016/j.biopha.2021.112207
D. Bursać Kovačević et al., Innovative technologies for the recovery of phytochemicals from Stevia rebaudiana Bertoni leaves: a review. Food Chem. 268, 513–521 (2018). 10.1016/j.foodchem.2018.06.091 DOI: 10.1016/j.foodchem.2018.06.091
K. Gaweł-Bęben et al., Stevia Rebaudiana Bert. leaf extracts as a multifunctional source of natural antioxidants. Molecules 20(4), 5468–5486 (2015). 10.3390/molecules20045468 DOI: 10.3390/molecules20045468
J. Ahmad, I. Khan, R. Blundell, J. Azzopardi, M.F. Mahomoodally, Stevia rebaudiana Bertoni.: an updated review of its health benefits, industrial applications and safety. Trends Food Sci. Technol. 100, 177–189 (2020). 10.1016/j.tifs.2020.04.030 DOI: 10.1016/j.tifs.2020.04.030
G. Benelli, R. Pavela, E. Drenaggi, N. Desneux, F. Maggi, Phytol (E)-nerolidol and spathulenol from Stevia rebaudiana leaf essential oil as effective and eco-friendly botanical insecticides against Metopolophium dirhodum. Ind. Crops Prod. 155, 112844 (2020). 10.1016/j.indcrop.2020.112844 DOI: 10.1016/j.indcrop.2020.112844
A.B. Siddique, S.M. Mizanur Rahman, M.A. Hossain, Chemical composition of essential oil by different extraction methods and fatty acid analysis of the leaves of Stevia Rebaudiana Bertoni. Arab. J. Chem. 9, S1185–S1189 (2016). 10.1016/j.arabjc.2012.01.004 DOI: 10.1016/j.arabjc.2012.01.004
T.S. Mann et al., In vitro cytotoxic activity guided essential oil composition of flowering twigs of Stevia rebaudiana. Nat. Prod. Commun. 9(5), 1934X1400900 (2014). 10.1177/1934578X1400900535 DOI: 10.1177/1934578X1400900535
Y.A. Turko et al., GC—MS research. I. essential oil from Stevia rebaudiana. Chem. Nat. Compd. 43(6), 744–745 (2007). 10.1007/s10600-007-0254-3 DOI: 10.1007/s10600-007-0254-3
F.N. Muanda, R. Soulimani, B. Diop, A. Dicko, Study on chemical composition and biological activities of essential oil and extracts from Stevia rebaudiana Bertoni leaves. LWT Food Sci. Technol. 44(9), 1865–1872 (2011). 10.1016/j.lwt.2010.12.002 DOI: 10.1016/j.lwt.2010.12.002
V.I. Babushok, P.J. Linstrom, I.G. Zenkevich, Retention indices for frequently reported compounds of plant essential oils. J. Phys. Chem. Ref. Data. 40(4), 043101 (2011). 10.1063/1.3653552 DOI: 10.1063/1.3653552
V.L. Singleton, J.A. Rossi, Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16(3), 144–158 (1965) DOI: 10.5344/ajev.1965.16.3.144
G. Topçu, M. Ay, A. Bilici, C. Sarıkürkcü, M. Öztürk, A. Ulubelen, A new flavone from antioxidant extracts of Pistacia terebinthus. Food Chem. 103(3), 816–822 (2007). 10.1016/j.foodchem.2006.09.028 DOI: 10.1016/j.foodchem.2006.09.028
A. Kumaran, R. Joel Karunakaran, In vitro antioxidant activities of methanol extracts of five Phyllanthus species from India. LWT Food Sci. Technol. 40(2), 344–352 (2007). 10.1016/j.lwt.2005.09.011 DOI: 10.1016/j.lwt.2005.09.011
M.S. Blois, Antioxidant determinations by the use of a stable free radical. Nature 181(4617), 1199–1200 (1958) DOI: 10.1038/1811199a0
R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26(9–10), 1231–1237 (1999). 10.1016/S0891-5849(98)00315-3 DOI: 10.1016/S0891-5849(98)00315-3
M. Oyaizu, Studies on products of browning reaction. Jpn. J. Nutr. Diet. 44(6), 307–315 (1986). 10.5264/eiyogakuzashi.44.307 DOI: 10.5264/eiyogakuzashi.44.307
R. Apak, K. Güçlü, M. Özyürek, S.E. Karademir, Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 52(26), 7970–7981 (2004). 10.1021/jf048741x DOI: 10.1021/jf048741x
G.L. Ellman, K.D. Courtney, V. Andres, R.M. Featherstone, A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7(2), 88–95 (1961). 10.1016/0006-2952(61)90145-9 DOI: 10.1016/0006-2952(61)90145-9
S. Lordan, T.J. Smyth, A. Soler-Vila, C. Stanton, R.P. Ross, The α-amylase and α-glucosidase inhibitory effects of Irish seaweed extracts. Food Chem. 141(3), 2170–2176 (2013). 10.1016/j.foodchem.2013.04.123 DOI: 10.1016/j.foodchem.2013.04.123
A. Martelli, C. Frattini, F. Chialva, Unusual essential oils with aromatic properties—I. Volatile components of Stevia rebaudiana bertoni. Flavour Fragr. J. 1(1), 3–7 (1985). 10.1002/ffj.2730010103 DOI: 10.1002/ffj.2730010103
K. Fidyt, A. Fiedorowicz, L. Strządała, A. Szumny, β -caryophyllene and β -caryophyllene oxide-natural compounds of anticancer and analgesic properties. Cancer Med. 5(10), 3007–3017 (2016). 10.1002/cam4.816 DOI: 10.1002/cam4.816
D. Fiorini, A. Molle, M. Nabissi, G. Santini, G. Benelli, F. Maggi, Valorizing industrial hemp (Cannabis sativa L.) by-products: Cannabidiol enrichment in the inflorescence essential oil optimizing sample pre-treatment prior to distillation. Ind. Crops Prod. 128, 581–589 (2019). 10.1016/j.indcrop.2018.10.045 DOI: 10.1016/j.indcrop.2018.10.045
K.F. do Nascimento et al., Antioxidant, anti-inflammatory, antiproliferative and antimycobacterial activities of the essential oil of Psidium guineense Sw. and spathulenol. J. Ethnopharmacol. 210, 351–358 (2018). 10.1016/j.jep.2017.08.030 DOI: 10.1016/j.jep.2017.08.030
S. Dall’Acqua et al., Phytochemical investigations and antiproliferative secondary metabolites from Thymus alternans growing in Slovakia. Pharm. Biol. 55(1), 1162–1170 (2017). 10.1080/13880209.2017.1291689 DOI: 10.1080/13880209.2017.1291689
J.R. Medina-Medrano, J.E. Torres-Contreras, J.I. Valiente-Banuet, M.D. Mares-Quiñones, M. Vázquez-Sánchez, D. Álvarez-Bernal, Effect of the solid–liquid extraction solvent on the phenolic content and antioxidant activity of three species of Stevia leaves. Sep. Sci. Technol. 54(14), 2283–2293 (2019). 10.1080/01496395.2018.1546741 DOI: 10.1080/01496395.2018.1546741
Addai ZR, Abdullah A, Mutalib SA, Effect of extraction solvents on the phenolic content and antioxidant properties of two papaya cultivars. J. Med. Plants Res. 7, 3354–3359 (2013)
U.H. Zaidan, N.I. Mohamad Zen, N.A. Amran, S. Shamsi, S.S.A. Gani, Biochemical evaluation of phenolic compounds and steviol glycoside from Stevia rebaudiana extracts associated with in vitro antidiabetic potential. Biocatal. Agric. Biotechnol. 18, 101049 (2019). 10.1016/j.bcab.2019.101049 DOI: 10.1016/j.bcab.2019.101049
R. Lemus-Mondaca, K. Ah-Hen, A. Vega-Gálvez, C. Honores, N.O. Moraga, Stevia rebaudiana leaves: effect of drying process temperature on bioactive components, antioxidant capacity and natural sweeteners. Plant Foods Hum. Nutr. 71(1), 49–56 (2016). 10.1007/s11130-015-0524-3 DOI: 10.1007/s11130-015-0524-3
F. Al-rimawi, S. Abu-lafi, J. Abbadi, A.A.A. Alamarneh, R.A. Sawahreh, I. Odeh, Analysis of phenolic and flavonoids of wild ephedra alata plant extracts by LC/PDA and LC/MS and their antioxidant activity. Afr. J. Tradit. Complement. Altern. Med. 14(2), 130–141 (2017). 10.21010/ajtcam.v14i2.14 DOI: 10.21010/ajtcam.v14i2.14
J. Bose, A. Rodrigo-Moreno, S. Shabala, ROS homeostasis in halophytes in the context of salinity stress tolerance. J. Exp. Bot. 65(5), 1241–1257 (2014). 10.1093/jxb/ert430 DOI: 10.1093/jxb/ert430
F.S. Ait Chaouche, F. Mouhouche, M. Hazzit, Antioxidant capacity and total phenol and flavonoid contents of Teucrium polium L. grown in Algeria. Mediterr. J. Nutr. Metab. 11(2), 135–144 (2018). 10.3233/MNM-17189 DOI: 10.3233/MNM-17189
A. Moongngarm, N. Sriharboot, P. Loypimai, T. Moontree, Ohmic heating-assisted water extraction of steviol glycosides and phytochemicals from Stevia rebaudiana leaves. LWT 154, 112798 (2022). 10.1016/j.lwt.2021.112798 DOI: 10.1016/j.lwt.2021.112798
H. Chouit, O. Touafek, M. Brada, C. Benssouici, M.L. Fauconnier, M. El Hattab, GC-MS analysis and biological activities of Algerian Salvia microphylla essential oils. J. Chem. Soc. Mex. (2021). 10.29356/jmcs.v65i4.1581 DOI: 10.29356/jmcs.v65i4.1581
C. Bensouici et al., Chemical characterization, antioxidant, anticholinesterase and alpha-glucosidase potentials of essential oil of Rosmarinus tournefortii de noé. J. Food Meas. Charact. 14(2), 632–639 (2020). 10.1007/s11694-019-00309-y DOI: 10.1007/s11694-019-00309-y
M. Hazzit, A. Baaliouamer, M.L. Faleiro, M.G. Miguel, Composition of the essential oils of Thymus and Origanum species from Algeria and their antioxidant and antimicrobial activities. J. Agric. Food Chem. 54(17), 6314–6321 (2006). 10.1021/jf0606104 DOI: 10.1021/jf0606104
I. Achili et al., Chemical constituents, antioxidant, anticholinesterase and antiproliferative effects of Algerian Pistacia atlantica Desf. extracts. Recent Pat. Food Nutr. Agric. 11(3), 249–256 (2020). 10.2174/2212798411666200207101502 DOI: 10.2174/2212798411666200207101502
B. Asghari, G. Zengin, M.B. Bahadori, M. Abbas-Mohammadi, L. Dinparast, Amylase, glucosidase, tyrosinase, and cholinesterases inhibitory, antioxidant effects, and GC-MS analysis of wild mint (Mentha longifolia var. calliantha) essential oil: A natural remedy. Eur. J. Integr. Med. 22, 44–49 (2018). 10.1016/j.eujim.2018.08.004 DOI: 10.1016/j.eujim.2018.08.004
American Diabetes Association, Diagnosis and classification of diabetes mellitus. Diabetes Care 37(Supplement_1), 8S81-S90 (2014). 10.2337/dc14-S081 DOI: 10.2337/dc14-S081
K. zar Myint et al., Polyphenols from Stevia rebaudiana (Bertoni) leaves and their functional properties. J. Food Sci. 85(2), 240–248 (2020). 10.1111/1750-3841.15017 DOI: 10.1111/1750-3841.15017
C. Lankatillake, T. Huynh, D.A. Dias, Understanding glycaemic control and current approaches for screening antidiabetic natural products from evidence-based medicinal plants. Plant Methods 15(1), 105 (2019). 10.1186/s13007-019-0487-8 DOI: 10.1186/s13007-019-0487-8
H. Bischoff, The mechanism of alpha-glucosidase inhibition in the management of diabetes. Clin. Investig. Med. Med. Clin. Exp. 18(4), 303–311 (1995)
J.C. Ruiz-Ruiz, Y.B. Moguel-Ordoñez, A.J. Matus-Basto, M.R. Segura-Campos, Antidiabetic and antioxidant activity of Stevia rebaudiana extracts (Var. Morita) and their incorporation into a potential functional bread. J. Food Sci. Technol. 52(12), 7894–7903 (2015). 10.1007/s13197-015-1883-3 DOI: 10.1007/s13197-015-1883-3