Characterization and applications of a Crimean-Congo hemorrhagic fever virus nucleoprotein-specific Affimer: Inhibitory effects in viral replication and development of colorimetric diagnostic tests.
[en] Crimean-Congo hemorrhagic fever orthonairovirus (CCHFV) is one of the most widespread medically important arboviruses, causing human infections that result in mortality rates of up to 60%. We describe the selection of a high-affinity small protein (Affimer-NP) that binds specifically to the nucleoprotein (NP) of CCHFV. We demonstrate the interference of Affimer-NP in the RNA-binding function of CCHFV NP using fluorescence anisotropy, and its inhibitory effects on CCHFV gene expression in mammalian cells using a mini-genome system. Solution of the crystallographic structure of the complex formed by these two molecules at 2.84 Å resolution revealed the structural basis for this interference, with the Affimer-NP binding site positioned at the critical NP oligomerization interface. Finally, we validate the in vitro application of Affimer-NP for the development of enzyme-linked immunosorbent and lateral flow assays, presenting the first published point-of-care format test able to detect recombinant CCHFV NP in spiked human and animal sera.
Disciplines :
Microbiology
Author, co-author :
Álvarez-Rodríguez, Beatriz ; School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
Tiede, Christian ; School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
Hoste, Alexis ; Université de Liège - ULiège > Département GxABT > Microbial technologies ; School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom ; INGENASA, Inmunología y Genética Aplicada S.A., Madrid, Spain
Surtees, Rebecca A; School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
Trinh, Chi H; School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
Slack, Gillian S; National Infection Service, Public Health England, Porton Down, Salisbury, United Kingdom
Chamberlain, John ; National Infection Service, Public Health England, Porton Down, Salisbury, United Kingdom
Hewson, Roger; National Infection Service, Public Health England, Porton Down, Salisbury, United Kingdom
Fresco, Alba ; INGENASA, Inmunología y Genética Aplicada S.A., Madrid, Spain
Sastre, Patricia; INGENASA, Inmunología y Genética Aplicada S.A., Madrid, Spain
Tomlinson, Darren C ; School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
Millner, Paul A; School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
Edwards, Thomas A; School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
Barr, John N ; School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
Characterization and applications of a Crimean-Congo hemorrhagic fever virus nucleoprotein-specific Affimer: Inhibitory effects in viral replication and development of colorimetric diagnostic tests.
H2020 - 721367 - HONOURs - Host switching pathogens, infectious outbreaks and zoonosis; a Marie Sklodowska-Curie Training Network
Funders :
EU - European Union
Funding text :
This work was supported by an EU Marie Skłodowska-Curie Actions (MSCA, ec.europa.eu) Innovative Training Network (ITN): H2020-MSCA-ITN-2016, under grant No 721367 (to B. Álvarez-Rodríguez). The funders had no role in study.
Bente DA, Forrester NL, Watts DM, McAuley AJ, Whitehouse CA, Bray M. Crimean-Congo hemor-rhagic fever: History, epidemiology, pathogenesis, clinical syndrome and genetic diversity. Antiviral Res. 2013; 100: 159–189. https://doi.org/10.1016/j.antiviral.2013.07.006 PMID: 23906741
Messina JP, Pigott DM, Golding N, Duda KA, Brownstein JS, Weiss DJ, et al. The global distribution of Crimean-Congo hemorrhagic fever. Trans R Soc Trop Med Hyg. 2015; 109: 503–513. https://doi.org/10.1093/trstmh/trv050 PMID: 26142451
Gargili A, Estrada-Peña A, Spengler JR, Lukashev A, Nuttall PA, Bente DA. The role of ticks in the maintenance and transmission of Crimean-Congo hemorrhagic fever virus: A review of published field and laboratory studies. Antiviral Res. 2017; 144: 93–119. https://doi.org/10.1016/j.antiviral.2017.05.010 PMID: 28579441
Abudurexiti A, Adkins S, Alioto D, Alkhovsky S V., Avšič-Županc T, Ballinger MJ, et al. Taxonomy of the order Bunyavirales: update 2019. Arch Virol. 2019; 164: 1949–1965. https://doi.org/10.1007/s00705-019-04253-6 PMID: 31065850
Zivcec M, Scholte F, Spiropoulou C, Spengler J, Bergeron É. Molecular Insights into Crimean-Congo Hemorrhagic Fever Virus. Viruses. 2016; 8: 106. https://doi.org/10.3390/v8040106 PMID: 27110812
Carter SD, Barr JN, Edwards TA. Expression, purification and crystallization of the Crimean-Congo hae-morrhagic fever virus nucleocapsid protein. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2012; 68: 569–573. https://doi.org/10.1107/S1744309112009736 PMID: 22691790
Guo Y, Wang W, Ji W, Deng M, Sun Y, Zhou H, et al. Crimean-Congo hemorrhagic fever virus nucleo-protein reveals endonuclease activity in bunyaviruses. Proc Natl Acad Sci. 2012; 109: 5046–5051. https://doi.org/10.1073/pnas.1200808109 PMID: 22421137
Wang Y, Dutta S, Karlberg H, Devignot S, Weber F, Hao Q, et al. Structure of Crimean-Congo Hemor-rhagic Fever Virus Nucleoprotein: Superhelical Homo-Oligomers and the Role of Caspase-3 Cleavage. J Virol. 2012; 86: 12294–12303. https://doi.org/10.1128/JVI.01627-12 PMID: 22951837
Carter SD, Surtees R, Walter CT, Ariza A, Bergeron E, Nichol ST, et al. Structure, Function, and Evolution of the Crimean-Congo Hemorrhagic Fever Virus Nucleocapsid Protein. J Virol. 2012; 86: 10914– 10923. https://doi.org/10.1128/JVI.01555-12 PMID: 22875964
Mehand MS, Al-Shorbaji F, Millett P, Murgue B. The WHO R&D Blueprint: 2018 review of emerging infectious diseases requiring urgent research and development efforts. Antiviral Res. 2018; 159: 63–67. https://doi.org/10.1016/j.antiviral.2018.09.009 PMID: 30261226
Papa A. Diagnostic approaches for crimean-congo hemorrhagic fever virus. Expert Rev Mol Diagn. 2019; 19: 531–536. https://doi.org/10.1080/14737159.2019.1615450 PMID: 31053042
Saijo M, Tang Q, Shimayi B, Han L, Zhang Y, Asiguma M, et al. Recombinant nucleoprotein-based serological diagnosis of Crimean-Congo hemorrhagic fever virus infections. J Med Virol. 2005; 75: 295– 299. https://doi.org/10.1002/jmv.20270 PMID: 15602720
Emmerich P, Mika A, von Possel R, Rackow A, Liu Y, Schmitz H, et al. Sensitive and specific detection of Crimean-Congo Hemorrhagic Fever Virus (CCHFV)—Specific IgM and IgG antibodies in human sera using recombinant CCHFV nucleoprotein as antigen in μ-capture and IgG immune complex (IC) ELISA tests. PLoS Negl Trop Dis. 2018; 12: 1–24. https://doi.org/10.1371/journal.pntd.0006366 PMID: 29579040
Shrivastava N, Shrivastava A, Ninawe SM, Sharma S. Development of Multispecies Recombinant Nucleoprotein-Based Indirect ELISA for High-Throughput Screening of Crimean-Congo Hemorrhagic Fever Virus-Specific Antibodies. 2019; 10: 1–14. https://doi.org/10.3389/fmicb.2019.01822 PMID: 31507540
Schuster I, Mertens M, Köllner B, Korytář T, Keller M, Hammerschmidt B, et al. A competitive ELISA for species-independent detection of Crimean-Congo hemorrhagic fever virus specific antibodies. Antiviral Res. 2016; 134: 161–166. https://doi.org/10.1016/j.antiviral.2016.09.004 PMID: 27623345
Sas MA, Comtet L, Donnet F, Mertens M, Vatansever Z, Tordo N, et al. A novel double-antigen sand-wich ELISA for the species-independent detection of Crimean-Congo hemorrhagic fever virus-specific antibodies. Antiviral Res. 2018; 151: 24–26. https://doi.org/10.1016/j.antiviral.2018.01.006 PMID: 29330092
Burt FJ, Swanepoel R, Braack LEO. Enzyme-linked immunosorbent assays for the detection of antibody to Crimean-Congo haemorrhagic fever virus in the sera of livestock and wild vertebrates. Epide-miol Infect. 1993; 111: 547–558. https://doi.org/10.1017/s0950268800057277 PMID: 8270014
Escadafal C, Ölschläger S, Avšič-Županc T, Papa A, Vanhomwegen J, Wölfel R, et al. First international external quality assessment of molecular detection of crimean-congo hemorrhagic fever virus. PLoS Negl Trop Dis. 2012;6. https://doi.org/10.1371/journal.pntd.0001706 PMID: 22745842
Duh D, Saksida A, Petrovec M, Ahmeti S, Dedushaj I, Panning M, et al. Viral load as predictor of Cri-mean-Congo hemorrhagic fever outcome. Emerg Infect Dis. 2007; 13: 1769–1772. https://doi.org/10. 3201/eid1311.070222 PMID: 18217568
Papa A, Drosten C, Bino S, Papadimitriou, Panning M, Velo E, et al. Viral Load and Hemorrhagic Fever. Emerg Infect Dis. 2007; 13: 805–806. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2738474&tool=pmcentrez&rendertype=abstract https://doi.org/10.3201/eid1305.061588 PMID: 18044055
Spengler JR, Bente DA, Bray M, Burt F, Hewson R, Korukluoglu G, et al. Second International Confer-ence on Crimean-Congo Hemorrhagic Fever. 2017; 5: 395–404. https://doi.org/10.1021/acssynbio. 5b00266.Quantitative
Surtees R, Ariza A, Punch EK, Trinh CH, Dowall SD, Hewson R, et al. The crystal structure of the Hazara virus nucleocapsid protein. BMC Struct Biol. 2015; 15: 1–13. https://doi.org/10.1186/s12900-014-0028-7
Tang AAS, Tiede C, Hughes DJ, McPherson M, Tomlinson DC. Isolation of isoform-specific binding proteins (Affimers) by phage display using negative selection. Sci Signal. 2017; 10: 1–12. https://doi.org/10.1126/scisignal.aan0868 PMID: 29138294
Tiede C, Tang AAS, Deacon SE, Mandal U, Nettleship JE, Owen RL, et al. Adhiron: A stable and versatile peptide display scaffold for molecular recognition applications. Protein Eng Des Sel. 2014; 27: 145– 155. https://doi.org/10.1093/protein/gzu007 PMID: 24668773
Tiede C, Bedford R, Heseltine SJ, Smith G, Wijetunga I, Ross R, et al. Affimer proteins are versatile and renewable affinity reagents. Elife. 2017; 6: 1–35. https://doi.org/10.7554/eLife.24903 PMID: 28654419
Agent ANEW, From I, Redikorzevi I. Tick-Borne viruses of west pakistan. Hazara virus, a new agent isolated from ixodes redikorzevi ticks from the kaghan valley. Am J Epidemiol. 1970; 2: 192–194.
Micsonai A, Wien F, Bulyáki É, Kun J, Moussong É, Lee YH, et al. BeStSel: A web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra. Nucleic Acids Res. 2018; 46: W315–W322. https://doi.org/10.1093/nar/gky497 PMID: 29893907
30.Wang X, Li B, Guo Y, Shen S, Zhao L, Zhang P, et al. Molecular basis for the formation of ribonucleo-protein complex of Crimean-Congo hemorrhagic fever virus. J Struct Biol. 2016; 196: 455–465. https://doi.org/10.1016/j.jsb.2016.09.013 PMID: 27666016
Tang Q, Saijo M, Zhang Y, Asiguma M, Tianshu D, Han L, et al. A Patient with Crimean-Congo Hemor-rhagic Fever Serologically Diagnosed by Recombinant Nucleoprotein-Based Antibody Detection Sys-tems. Clin Vaccine Immunol. 2003; 10: 489–491. https://doi.org/10.1128/CDLI.10.3.489–491.2003
Logan TM, Linthicum KJ, Moulton JR, Ksiazek TG. Antigen-capture enzyme-linked immunosorbent assay for detection and quantification of Crimean-Congo hemorrhagic fever virus in the tick, Hyalomma truncatum. J Virol Methods. 1993; 42: 33–44. https://doi.org/10.1016/0166-0934(93)90174-p PMID: 8320308
Drain PK, Hyle EP, Noubary F, Freedberg KA, Wilson D, Bishai WR, et al. Diagnostic point-of-care tests in resource-limited settings. Lancet Infect Dis. 2014; 14: 239–249. https://doi.org/10.1016/S1473-3099 (13)70250-0 PMID: 24332389
Mattiuzzo G, Bentley EM, Page M. The Role of Reference Materials in the Research and Development of Diagnostic Tools and Treatments for Haemorrhagic Fever Viruses. Viruses. 2019; 11: 781. https://doi.org/10.3390/v11090781 PMID: 31450611
Boisen ML, Hartnett JN, Shaffer JG, Goba A, Momoh M, Sandi JD, et al. Field validation of recombinant antigen immunoassays for diagnosis of Lassa fever. Sci Rep. 2018; 8: 1–14. https://doi.org/10.1038/s41598-017-17765-5
Yoshida R, Muramatsu S, Akita H, Saito Y, Kuwahara M, Kato D, et al. Development of an Immunochro-matography Assay (QuickNavi-Ebola) to Detect Multiple Species of Ebolaviruses. J Infect Dis. 2016; 214: S185–S191. https://doi.org/10.1093/infdis/jiw252 PMID: 27462094
Cêtre-Sossah C, Pédarrieu A, Juremalm M, Jansen Van Vuren P, Brun A, Ould EL Mamy AB, et al. Development and validation of a pen side test for Rift Valley fever. PLoS Negl Trop Dis. 2019; 13: e0007700. https://doi.org/10.1371/journal.pntd.0007700 PMID: 31509527