[en] Numerous infectious diseases impacting livestock impose an important economic burden and in some cases also represent a threat to humans and are classified as zoonoses. Some zoonotic diseases are transmitted by vectors and, due to complex environmental and socio-economic factors, the distribution of many of these pathogens is changing, with increasing numbers being found in previously unaffected countries. Here, we developed a multiplex assay, based on a suspension microarray, able to detect specific antibodies to five important pathogens of livestock (three of them zoonotic) that are currently emerging in new geographical locations: Rift Valley fever virus (RVFV), Crimean-Congo haemorrhagic fever virus (CCHFV), Schmallenberg virus (SBV), Bluetongue virus (BTV) and the bacteria complex Mycobacterium tuberculosis. Using the Luminex platform, polystyrene microspheres were coated with recombinant proteins from each of the five pathogens. The mix of microspheres was used for the simultaneous detection of antibodies against the five corresponding diseases affecting ruminants. The following panel of sera was included in the study: 50 sera from sheep experimentally infected with RVFV, 74 sera from calves and lambs vaccinated with SBV, 26 sera from cattle vaccinated with Mycobacterium bovis, 30 field sera from different species of ruminants infected with CCHFV and 88 calf sera infected with BTV. Finally, to determine its diagnostic specificity 220 field sera from Spanish farms free of the five diseases were assessed. All the sera were classified using commercial ELISAs specific for each disease, used in this study as the reference technique. The results showed the multiplex assay exhibited good performance characteristics with values of sensitivity ranging from 93% to 100% and of specificity ranging from 96% to 99% depending on the pathogen. This new tool allows the simultaneous detection of antibodies against five important pathogens, reducing the volume of sample needed and the time of analysis where these pathogens are usually tested individually.
Disciplines :
Veterinary medicine & animal health
Author, co-author :
Hoste, Alexis ; Université de Liège - ULiège > Département GxABT > Microbial technologies ; Eurofins-Inmunología y Genética Aplicada (Eurofins-INGENASA), Madrid, Spain ; School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
Ruiz, Tamara; Eurofins-Inmunología y Genética Aplicada (Eurofins-INGENASA), Madrid, Spain
Fernández-Pacheco, Paloma; Centro de Investigación en Sanidad Animal - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Valdeolmos, Spain
Jiménez-Clavero, Miguel Ángel ; Centro de Investigación en Sanidad Animal - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Valdeolmos, Spain
Djadjovski, Igor; Faculty of Veterinary Medicine, University Ss. Cyril & Methodius, Skopje, North Macedonia
Moreno, Sandra; Centro de Investigación en Sanidad Animal - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Valdeolmos, Spain
Brun, Alejandro; Centro de Investigación en Sanidad Animal - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Valdeolmos, Spain
Edwards, Thomas A; School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
Barr, John N; School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
Rueda, Paloma; Eurofins-Inmunología y Genética Aplicada (Eurofins-INGENASA), Madrid, Spain
Sastre, Patricia ; Eurofins-Inmunología y Genética Aplicada (Eurofins-INGENASA), Madrid, Spain
Language :
English
Title :
Development of a multiplex assay for antibody detection in serum against pathogens affecting ruminants.
We thank Isabel García and Mercedes Montón for technical assistance. Finally, we would like to thank the EU Marie Skłodowska‐Curie Actions (MSCA) Innovative Training Network (ITN): H2020‐MSCA‐ITN‐2016, under grant No 721367 (to Alexis C. R. Hoste).
Aradaib, I. E., Erickson, B. R., Elageb, R. M., Khristova, M. L., Carroll, S. A., Elkhidir, I. M., … Nichol, S. T. (2013). Rift valley fever, Sudan, 2007 and 2010. Emerging Infectious Diseases, 19(2), 246–253. https://doi.org/10.3201/eid1902.120834
Bente, D. A., Forrester, N. L., Watts, D. M., McAuley, A. J., Whitehouse, C. A., & Bray, M. (2013). Crimean-Congo hemorrhagic fever: History, epidemiology, pathogenesis, clinical syndrome and genetic diversity. Antiviral Research, 100(1), 159–189. https://doi.org/10.1016/j.antiviral.2013.07.006
Bett, B., Kiunga, P., Gachohi, J., Sindato, C., Mbotha, D., Robinson, T., … Grace, D. (2017). Effects of climate change on the occurrence and distribution of livestock diseases. Preventive Veterinary Medicine, 137, 119–129. https://doi.org/10.1016/j.prevetmed.2016.11.019
Brand, S. P. C., & Keeling, M. J. (2017). The impact of temperature changes on vector-borne disease transmission: Culicoides midges and bluetongue virus. Journal of the Royal Society Interface, 14(128), 20160481. https://doi.org/10.1098/rsif.2016.0481
Brustolin, M., Talavera, S., Nuñez, A., Santamaría, C., Rivas, R., Pujol, N., … Busquets, N. (2017). Rift Valley fever virus and European mosquitoes: Vector competence of Culex pipiens and Stegomyia albopicta (= Aedes albopictus): European mosquitoes as vectors of RVFV. Medical and Veterinary Entomology, 31(4), 365–372. https://doi.org/10.1111/mve.12254
Carter, S. D., Barr, J. N., & Edwards, T. A. (2012). Expression, purification and crystallization of the Crimean-Congo haemorrhagic fever virus nucleocapsid protein. Acta Crystallographica Section F Structural Biology and Crystallization Communications, 68(5), 569–573. https://doi.org/10.1107/S1744309112009736
Dash, A. P., Bhatia, R., Sunyoto, T., & Mourya, D. T. (2013). Emerging and re-emerging arboviral diseases in Southeast Asia. Journal of Vector Borne Diseases, 8, 77–84.
Ejeh, E. F., Raji, M. A., Bello, M., Lawan, F. A., Francis, M. I., Kudi, A. C., & Cadmus, S. I. B. (2014). Prevalence and direct economic losses from bovine tuberculosis in Makurdi, Nigeria. Veterinary Medicine International, 2014, 1–6. https://doi.org/10.1155/2014/904861
El-Sayed, A., El-Shannat, S., Kamel, M., Castañeda-Vazquez, M. A., & Castañeda-Vazquez, H. (2016). Molecular epidemiology of Mycobacterium bovis in humans and cattle. Zoonoses and Public Health, 63(4), 251–264. https://doi.org/10.1111/zph.12242
Estrada-Peña, A., Ruiz-Fons, F., Acevedo, P., Gortazar, C., & de la Fuente, J. (2013). Factors driving the circulation and possible expansion of Crimean-Congo haemorrhagic fever virus in the western Palearctic. Journal of Applied Microbiology, 114(1), 278–286. https://doi.org/10.1111/jam.12039
Estrada-Peña, A., Sánchez, N., & Estrada-Sánchez, A. (2012). An assessment of the distribution and spread of the tick Hyalomma marginatum in the Western Palearctic under different climate scenarios. Vector-Borne and Zoonotic Diseases, 12(9), 758–768. https://doi.org/10.1089/vbz.2011.0771
European Commission (2020). Map showing the location of the restriction zones for different BTV serotypes in Europe as of 9th March 2020. Retrieved from https://ec.europa.eu/food/sites/food/files/animals/docs/ad_control-measures_bt_restrictedzones-map.jpg
Fafetine, J. M., Tijhaar, E., Paweska, J. T., Neves, L. C. B. G., Hendriks, J., Swanepoel, R., … Rutten, V. P. M. G. (2007). Cloning and expression of Rift Valley fever virus nucleocapsid (N) protein and evaluation of a N-protein based indirect ELISA for the detection of specific IgG and IgM antibodies in domestic ruminants. Veterinary Microbiology, 121(1–2), 29–38. https://doi.org/10.1016/j.vetmic.2006.11.008
Fresco-Taboada, A., Risalde, M. A., Gortázar, C., Tapia, I., González, I., Venteo, Á., … Rueda, P. (2019). A lateral flow assay for the rapid diagnosis of Mycobacterium bovis infection in wild boar. Transboundary and Emerging Diseases, 66(5), 2175–2179. https://doi.org/10.1111/tbed.13260
Häsler, B., Alarcon, P., Raboisson, D., Waret-Szkuta, A., & Rushton, J. (2015). Integration of production and financial models to analyse the financial impact of livestock diseases: A case study of Schmallenberg virus disease on British and French dairy farms. Veterinary Record Open, 2(1), e000035. https://doi.org/10.1136/vetreco-2014-000035
Hassan, O. A., Ahlm, C., Sang, R., & Evander, M. (2011). The 2007 Rift Valley fever outbreak in Sudan. PLoS Neglected Tropical Diseases, 5(9), e1229. https://doi.org/10.1371/journal.pntd.0001229
Hermanson, G. (2013). Microparticles and nanoparticles. In G. Hermanson (Ed.), Bioconjugate techniques (3rd ed., pp. 549–587). London, UK: Academic Press.
Himeidan, Y. E., Kweka, E. J., Mahgoub, M. M., El Rayah, E. A., & Ouma, J. O. (2014). Recent outbreaks of Rift Valley fever in East Africa and the Middle East. Frontiers in Public Health, 2, 169. https://doi.org/10.3389/fpubh.2014.00169
Hoffmann, B., Scheuch, M., Höper, D., Jungblut, R., Holsteg, M., Schirrmeier, H., … Beer, M. (2012). Novel orthobunyavirus in cattle, Europe, 2011. Emerging Infectious Diseases, 18(3), 469–472. https://doi.org/10.3201/eid1803.111905
Lorenzo, G., López-Gil, E., Ortego, J., & Brun, A. (2018). Efficacy of different DNA and MVA prime-boost vaccination regimens against a Rift Valley fever virus (RVFV) challenge in sheep 12 weeks following vaccination. Veterinary Research, 49(1), 21. https://doi.org/10.1186/s13567-018-0516-z
Lorenzo, G., López-Gil, E., Warimwe, G. M., & Brun, A. (2015). Understanding Rift Valley fever: Contributions of animal models to disease characterization and control. Molecular Immunology, 66(1), 78–88. https://doi.org/10.1016/j.molimm.2015.02.001
Maltezou, H. C., & Papa, A. (2010). Crimean-Congo hemorrhagic fever: Risk for emergence of new endemic foci in Europe? Travel Medicine and Infectious Disease, 8(3), 139–143. https://doi.org/10.1016/j.tmaid.2010.04.008
Mathema, B., Kurepina, N. E., Bifani, P. J., & Kreiswirth, B. N. (2006). Molecular epidemiology of tuberculosis: Current insights. Clinical Microbiology Reviews, 19(4), 658–685. https://doi.org/10.1128/CMR.00061-05
Medlock, J. M., & Leach, S. A. (2015). Effect of climate change on vector-borne disease risk in the UK. The Lancet Infectious Diseases, 15(6), 721–730. https://doi.org/10.1016/S1473-3099(15)70091-5
Mertens, M., Schmidt, K., Ozkul, A., & Groschup, M. H. (2013). The impact of Crimean-Congo hemorrhagic fever virus on public health. Antiviral Research, 98(2), 248–260. https://doi.org/10.1016/j.antiviral.2013.02.007
Nakane, P. K., & Kawaoi, A. (1974). Peroxidase-labeled antibody a new method of conjugation. Journal of Histochemistry & Cytochemistry, 22(12), 1084–1091. https://doi.org/10.1177/22.12.1084
Negredo, A., Habela, M. Á., Ramírez de Arellano, E., Diez, F., Lasala, F., López, P., … Sánchez-Seco, M. P. (2019). Survey of Crimean-Congo hemorrhagic fever enzootic focus, Spain, 2011–2015. Emerging Infectious Diseases, 25(6), 1177–1184. https://doi.org/10.3201/eid2506.180877
O'Hearn, A. E., Voorhees, M. A., Fetterer, D. P., Wauquier, N., Coomber, M. R., Bangura, J., … Schoepp, R. J. (2016). Serosurveillance of viral pathogens circulating in West Africa. Virology Journal, 13(1), 163. https://doi.org/10.1186/s12985-016-0621-4
OIE-Listed Diseases (2020). OIE - World Organisation for Animal Health. Retrieved 17 May 2020 from https://www.oie.int/en/animal-health-in-the-world/oie-listed-diseases-2020/
Rojas, J. M., Rodríguez-Martín, D., Martín, V., & Sevilla, N. (2019). Diagnosing bluetongue virus in domestic ruminants: Current perspectives. Veterinary Medicine: Research and Reports, 10, 17–27. https://doi.org/10.2147/VMRR.S163804
Rolin, A. I., Berrang-Ford, L., & Kulkarni, M. A. (2013). The risk of Rift Valley fever virus introduction and establishment in the United States and European Union. Emerging Microbes and Infections, 2(1), 1–8. https://doi.org/10.1038/emi.2013.81
Rushton, J., & Lyons, N. (2015). Economic impact of Bluetongue: A review of the effects on production. Veterinaria Italiana, 6, 401–406.
Samy, A. M., & Peterson, A. T. (2016). Climate change influences on the global potential distribution of bluetongue virus. PLoS One, 11(3), e0150489. https://doi.org/10.1371/journal.pone.0150489
Sanders, C. J., Shortall, C. R., England, M., Harrington, R., Purse, B., Burgin, L., … Gubbins, S. (2019). Long-term shifts in the seasonal abundance of adult Culicoides biting midges and their impact on potential arbovirus outbreaks. Journal of Applied Ecology, 56(7), 1649–1660. https://doi.org/10.1111/1365-2664.13415
Sanz, A., García-Barreno, B., Nogal, M. L., Viñuela, E., & Enjuanes, L. (1985). Monoclonal antibodies specific for African swine fever virus proteins. Journal of Virology, 54, 8. https://doi.org/10.1128/JVI.54.1.199-206.1985
Sindato, C., Karimuribo, E., & Mboera, E. G. (2012). The epidemiology and socio-economic impact of Rift Valley fever epidemics in Tanzania: A review. Onderstepoort Journal of Veterinary Research, 79(2), 1. https://doi.org/10.4102/ojvr.v79i2.467
van der Wal, F. J., Achterberg, R. P., de Boer, S. M., Boshra, H., Brun, A., Maassen, C. B. M., & Kortekaas, J. (2012). Bead-based suspension array for simultaneous detection of antibodies against the Rift Valley fever virus nucleocapsid and Gn glycoprotein. Journal of Virological Methods, 183(2), 99–105. https://doi.org/10.1016/j.jviromet.2012.03.008
Wade-Evans, A. M., Romero, C. H., Mellor, P., Takamatsu, H., Anderson, J., Thevasagayam, J., … Black, D. N. (1996). Expression of the major core structural protein (VP7) of bluetongue virus, by a recombinant capripox virus, provides partial protection of sheep against a virulent heterotypic bluetongue virus challenge. Virology, 220(1), 227–231. https://doi.org/10.1006/viro.1996.0306
Walter, C. T., & Barr, J. N. (2011). Recent advances in the molecular and cellular biology of bunyaviruses. Journal of General Virology, 92(11), 2467–2484. https://doi.org/10.1099/vir.0.035105-0
Weaver, S. C., & Reisen, W. K. (2010). Present and future arboviral threats. Antiviral Research, 85(2), 328–345. https://doi.org/10.1016/j.antiviral.2009.10.008
Wernike, K., & Beer, M. (2017). Schmallenberg virus: A novel virus of veterinary importance. Advances in Virus Research, 99, 39–60. https://doi.org/10.1016/bs.aivir.2017.07.001
Wiker, H. G. (2009). MPB70 and MPB83—Major antigens of Mycobacterium bovis. Scandinavian Journal of Immunology, 69(6), 492–499. https://doi.org/10.1111/j.1365-3083.2009.02256.x
Wright, D., Kortekaas, J., Bowden, T. A., & Warimwe, G. M. (2019). Rift Valley fever: Biology and epidemiology. Journal of General Virology, 100(8), 1187–1199. https://doi.org/10.1099/jgv.0.001296
Wu, W., Zhang, S., Qu, J., Zhang, Q., Li, C., Li, J., … Li, D. (2014). Simultaneous detection of IgG antibodies associated with viral hemorrhagic fever by a multiplexed Luminex-based immunoassay. Virus Research, 187, 84–90. https://doi.org/10.1016/j.virusres.2013.12.037