CARD14; MALT1; prostate cancer; protease; tumour cell survival; Medicine (miscellaneous); Biochemistry, Genetics and Molecular Biology (all); General Biochemistry, Genetics and Molecular Biology
Abstract :
[en] Prostate cancer (PCa) is one of the most common cancer types in men and represents an increasing global problem due to the modern Western lifestyle. The signalling adapter protein CARD14 is specifically expressed in epithelial cells, where it has been shown to mediate NF-κB signalling, but a role for CARD14 in carcinoma has not yet been described. By analysing existing cancer databases, we found that CARD14 overexpression strongly correlates with aggressive PCa in human patients. Moreover, we showed that CARD14 is overexpressed in the LNCaP PCa cell line and that knockdown of CARD14 severely reduces LNCaP cell survival. Similarly, knockdown of BCL10 and MALT1, which are known to form a signalling complex with CARD14, also induced LNCaP cell death. MALT1 is a paracaspase that mediates downstream signalling by acting as a scaffold, as well as a protease. Recent studies have already indicated a role for the scaffold function of MALT1 in PCa cell growth. Here, we also demonstrated constitutive MALT1 proteolytic activity in several PCa cell lines, leading to cleavage of A20 and CYLD. Inhibition of MALT1 protease activity did not affect PCa cell survival nor activation of NF-κB and JNK signalling, but reduced expression of cancer-associated genes, including the cytokine IL-6. Taken together, our results revealed a novel role for CARD14-induced signalling in regulating PCa cell survival and gene expression. The epithelial cell type-specific expression of CARD14 may offer novel opportunities for more specific therapeutic targeting approaches in PCa.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Vanneste, Domien ✱; Université de Liège - ULiège > GIGA > GIGA I3 - Immunophysiology ; Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, 9000 Ghent, Belgium ; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
Staal, Jens ✱; Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, 9000 Ghent, Belgium ; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
Haegman, Mira; Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, 9000 Ghent, Belgium ; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
Driege, Yasmine; Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, 9000 Ghent, Belgium ; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
Carels, Marieke; Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, 9000 Ghent, Belgium ; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
Van Nuffel, Elien; Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, 9000 Ghent, Belgium ; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
De Bleser, Pieter; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium ; Unit of Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, 9000 Ghent, Belgium
Saeys, Yvan; Unit of Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, 9000 Ghent, Belgium ; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, 9000 Ghent, Belgium
Beyaert, Rudi ✱; Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, 9000 Ghent, Belgium ; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
Afonina, Inna S ✱; Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, 9000 Ghent, Belgium ; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
✱ These authors have contributed equally to this work.
Language :
English
Title :
CARD14 Signalling Ensures Cell Survival and Cancer Associated Gene Expression in Prostate Cancer Cells.
FWO - Flemish Research Foundation [BE] Stichting tegen Kanker [BE] CRIG - Cancer Research Institute Ghent [BE] UGent - Ghent University [BE]
Funding text :
Research in the authors’ lab is supported by the VIB, the Excellence of Science (EOS) Programme from the Fund for Scientific Research Flanders (FWO) (G0I1422N), the Foundation against Cancer (FAF-F/2016/812), Ghent University (BOF19/GOA/004). I.S.A. holds a fundamental mandate of the Foundation against Cancer and was supported by a proof of concept grant from the Cancer Research Institute Ghent (CRIG).
Haas G.P. Delongchamps N. Brawley O.W. Wang C.Y. de la Roza G. The worldwide epidemiology of prostate cancer: Perspectives from autopsy studies Can. J. Urol. 2008 15 3866 3871 18304396
Siegel R.L. Miller K.D. Jemal A. Cancer statistics, 2018 CA Cancer J. Clin. 2018 68 7 30 10.3322/caac.21442 29313949
Di Sebastiano K.M. Pinthus J.H. Duivenvoorden W.C.M. Mourtzakis M. Glucose impairments and insulin resistance in prostate cancer: The role of obesity, nutrition and exercise Obes. Rev. Off. J. Int. Assoc. Study Obes. 2018 19 1008 1016 10.1111/obr.12674 29573216
Ianni M. Porcellini E. Carbone I. Potenzoni M. Pieri A.M. Pastizzaro C.D. Benecchi L. Licastro F. Genetic factors regulating inflammation and DNA methylation associated with prostate cancer Prostate Cancer Prostatic Dis. 2013 16 56 61 10.1038/pcan.2012.30
Staal J. Beyaert R. Inflammation and NF-kappaB Signaling in Prostate Cancer: Mechanisms and Clinical Implications Cells 2018 7 122 10.3390/cells7090122
Afonina I.S. Van Nuffel E. Baudelet G. Driege Y. Kreike M. Staal J. Beyaert R. The paracaspase MALT1 mediates CARD14-induced signaling in keratinocytes EMBO Rep. 2016 17 914 927 10.15252/embr.201642109
Howes A. O’Sullivan P.A. Breyer F. Ghose A. Cao L. Krappmann D. Bowcock A.M. Ley S.C. Psoriasis mutations disrupt CARD14 autoinhibition promoting BCL10-MALT1-dependent NF-kappaB activation Biochem. J. 2016 473 1759 1768 10.1042/BCJ20160270
Jordan C.T. Cao L. Roberson E.D. Pierson K.C. Yang C.F. Joyce C.E. Ryan C. Duan S. Helms C.A. Liu Y. et al. PSORS2 is due to mutations in CARD14 Am. J. Hum. Genet. 2012 90 784 795 10.1016/j.ajhg.2012.03.012
Scudiero I. Vito P. Stilo R. The three CARMA sisters: So different, so similar: A portrait of the three CARMA proteins and their involvement in human disorders J. Cell Physiol. 2014 229 990 997 10.1002/jcp.24543
Jordan C.T. Cao L. Roberson E.D. Duan S. Helms C.A. Nair R.P. Duffin K.C. Stuart P.E. Goldgar D. Hayashi G. et al. Rare and common variants in CARD14, encoding an epidermal regulator of NF-kappaB, in psoriasis Am. J. Hum. Genet. 2012 90 796 808 10.1016/j.ajhg.2012.03.013
Coornaert B. Baens M. Heyninck K. Bekaert T. Haegman M. Staal J. Sun L. Chen Z.J. Marynen P. Beyaert R. T cell antigen receptor stimulation induces MALT1 paracaspase-mediated cleavage of the NF-kappaB inhibitor A20 Nat. Immunol. 2008 9 263 271 10.1038/ni1561 18223652
Staal J. Driege Y. Bekaert T. Demeyer A. Muyllaert D. Van Damme P. Gevaert K. Beyaert R. T-cell receptor-induced JNK activation requires proteolytic inactivation of CYLD by MALT1 EMBO J. 2011 30 1742 1752 10.1038/emboj.2011.85 21448133
Yang W.L. Jin G. Li C.F. Jeong Y.S. Moten A. Xu D. Feng Z. Chen W. Cai Z. Darnay B. et al. Cycles of ubiquitination and deubiquitination critically regulate growth factor-mediated activation of Akt signaling Sci. Signal. 2013 6 ra3 10.1126/scisignal.2003197
Seshadri M.R. Melnick A.M. Targeting MALT1 for the treatment of diffuse large B-cell lymphoma Leuk. Lymphoma 2022 63 789 798 10.1080/10428194.2021.1999444 34783281
Mahanivong C. Chen H.M. Yee S.W. Pan Z.K. Dong Z. Huang S. Protein kinase C alpha-CARMA3 signaling axis links Ras to NF-kappa B for lysophosphatidic acid-induced urokinase plasminogen activator expression in ovarian cancer cells Oncogene 2008 27 1273 1280 10.1038/sj.onc.1210746
Pan D. Jiang C. Ma Z. Blonska M. You M.J. Lin X. MALT1 is required for EGFR-induced NF-kappaB activation and contributes to EGFR-driven lung cancer progression Oncogene 2016 35 919 928 10.1038/onc.2015.146 25982276
Pan D. Zhu Y. Zhou Z. Wang T. You H. Jiang C. Lin X. The CBM Complex Underwrites NF-kappaB Activation to Promote HER2-Associated Tumor Malignancy Mol. Cancer Res. 2016 14 93 102 10.1158/1541-7786.MCR-15-0229-T
Rehman A.O. Wang C.Y. CXCL12/SDF-1 alpha activates NF-kappaB and promotes oral cancer invasion through the Carma3/Bcl10/Malt1 complex Int. J. Oral Sci. 2009 1 105 118 10.4248/IJOS.09059
Tan H. Xie Y. Zhang X. Wu S. Zhao H. Wu J. Wang W. Lin C. Integrative Analysis of MALT1 as a Potential Therapeutic Target for Prostate Cancer and its Immunological Role in Pan-Cancer Front. Mol. Biosci. 2021 8 714906 10.3389/fmolb.2021.714906
Tsui K.H. Chang K.S. Sung H.C. Hsu S.Y. Lin Y.H. Hou C.P. Yang P.S. Chen C.L. Feng T.H. Juang H.H. Mucosa-Associated Lymphoid Tissue 1 Is an Oncogene Inducing Cell Proliferation, Invasion, and Tumor Growth via the Upregulation of NF-kappaB Activity in Human Prostate Carcinoma Cells Biomedicines 2021 9 250 10.3390/biomedicines9030250
Juilland M. Thome M. Role of the CARMA1/BCL10/MALT1 complex in lymphoid malignancies Curr. Opin. Hematol. 2016 23 402 409 10.1097/MOH.0000000000000257 27135977
Li Z. Qu L. Dong Q. Huang B. Li H. Tang Z. Xu Y. Luo W. Liu L. Qiu X. et al. Overexpression of CARMA3 in non-small-cell lung cancer is linked for tumor progression PLoS ONE 2012 7 e36903 10.1371/journal.pone.0036903 22615840
Peng L. He K. Cao Z. Bi L. Yu D. Wang Q. Wang J. CARD10 promotes the progression of renal cell carcinoma by regulating the NFkappaB signaling pathway Mol. Med. Rep. 2020 21 329 337 31939627
Zhao T. Miao Z. Wang Z. Xu Y. Wu J. Liu X. You Y. Li J. CARMA3 overexpression accelerates cell proliferation and inhibits paclitaxel-induced apoptosis through NF-kappaB regulation in breast cancer cells Tumour Biol. 2013 34 3041 3047 10.1007/s13277-013-0869-x
Uhlen M. Zhang C. Lee S. Sjostedt E. Fagerberg L. Bidkhori G. Benfeitas R. Arif M. Liu Z. Edfors F. et al. A pathology atlas of the human cancer transcriptome Science 2017 357 eaan2507 10.1126/science.aan2507
Grasso C.S. Wu Y.M. Robinson D.R. Cao X. Dhanasekaran S.M. Khan A.P. Quist M.J. Jing X. Lonigro R.J. Brenner J.C. et al. The mutational landscape of lethal castration-resistant prostate cancer Nature 2012 487 239 243 10.1038/nature11125
Bardet M. Unterreiner A. Malinverni C. Lafossas F. Vedrine C. Boesch D. Kolb Y. Kaiser D. Gluck A. Schneider M.A. et al. The T-cell fingerprint of MALT1 paracaspase revealed by selective inhibition Immunol. Cell Biol. 2018 96 81 99 10.1111/imcb.1018
Firehose Broad GDAC Available online: https://gdac.broadinstitute.org/ (accessed on 4 March 2019)
The Cancer Genome Atlas Available online: https://portal.gdc.cancer.gov/ (accessed on 23 March 2019)
cBioPortal Available online: https://www.cbioportal.org/ (accessed on 19 March 2019)
Venet D. Dumont J.E. Detours V. Most random gene expression signatures are significantly associated with breast cancer outcome PLoS Comput. Biol. 2011 7 e1002240 10.1371/journal.pcbi.1002240
PANTHER Available online: http://www.pantherdb.org/ (accessed on 17 May 2022)
GSEA Available online: http://www.gsea-msigdb.org/gsea/index.jsp (accessed on 27 April 2021)
Human DNA Repair Genes Available online: https://www.mdanderson.org/documents/Labs/Wood-Laboratory/human-dna-repair-genes.html (accessed on 18 May 2022)
de Vasconcelos N.M. Van Opdenbosch N. Van Gorp H. Martín-Pérez R. Zecchin A. Vandenabeele P. Lamkanfi M. An Apoptotic Caspase Network Safeguards Cell Death Induction in Pyroptotic Macrophages Cell Rep. 2020 32 107959 10.1016/j.celrep.2020.107959
Ran F.A. Hsu P.D. Wright J. Agarwala V. Scott D.A. Zhang F. Genome engineering using the CRISPR-Cas9 system Nat. Protoc. 2013 8 2281 2308 10.1038/nprot.2013.143
Nickoloff J.A. Taylor L. Sharma N. Kato T.A. Exploiting DNA repair pathways for tumor sensitization, mitigation of resistance, and normal tissue protection in radiotherapy Cancer Drug Resist. 2021 4 244 263 10.20517/cdr.2020.89 34337349
Miyauchi T. Suzuki S. Takeda M. Peh J.T. Aiba M. Natsuga K. Fujita Y. Takeichi T. Sakamoto T. Akiyama M. et al. Altered replication stress response due to CARD14 mutations promotes recombination-induced revertant mosaicism Am. J. Hum. Genet. 2021 108 1026 1039 10.1016/j.ajhg.2021.04.021 34004138
Kramara J. Osia B. Malkova A. Break-Induced Replication: The Where, The Why, and The How Trends Genet. 2018 34 518 531 10.1016/j.tig.2018.04.002 29735283
Afonina I.S. Elton L. Carpentier I. Beyaert R. MALT1—A universal soldier: Multiple strategies to ensure NF-kappaB activation and target gene expression FEBS J. 2015 282 3286 3297 10.1111/febs.13325
Xu R. Hu J. The role of JNK in prostate cancer progression and therapeutic strategies Biomed. Pharmacother. 2020 121 109679 10.1016/j.biopha.2019.109679
Shorning B.Y. Dass M.S. Smalley M.J. Pearson H.B. The PI3K-AKT-mTOR Pathway and Prostate Cancer: At the Crossroads of AR, MAPK, and WNT Signaling Int. J. Mol. Sci. 2020 21 4507 10.3390/ijms21124507
Staal J. Driege Y. Haegman M. Kreike M. Iliaki S. Vanneste D. Lork M. Afonina I.S. Braun H. Beyaert R. Defining the combinatorial space of PKC:CARD-CC signal transduction nodes FEBS J. 2021 288 1630 1647 10.1111/febs.15522
Johnson D.E. O’Keefe R.A. Grandis J.R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer Nat. Rev. Clin. Oncol. 2018 15 234 248 10.1038/nrclinonc.2018.8
Schindelin J. Arganda-Carreras I. Frise E. Kaynig V. Longair M. Pietzsch T. Preibisch S. Rueden C. Saalfeld S. Schmid B. et al. Fiji: An open-source platform for biological-image analysis Nat. Methods. 2012 9 676 682 10.1038/nmeth.2019
Tanaka M. Kobiyama K. Honda T. Uchio-Yamada K. Natsume-Kitatani Y. Mizuguchi K. Kabashima K. Ishii K.J. Essential Role of CARD14 in Murine Experimental Psoriasis J. Immunol. 2018 200 71 81 10.4049/jimmunol.1700995
Sun X. Gao H. Yang Y. He M. Wu Y. Song Y. Tong Y. Rao Y. PROTACs: Great opportunities for academia and industry Signal. Transduct. Target. Ther. 2019 4 64 10.1038/s41392-019-0101-6 31885879
Demeyer A. Staal J. Beyaert R. Targeting MALT1 Proteolytic Activity in Immunity, Inflammation and Disease: Good or Bad? Trends Mol. Med. 2016 22 135 150 10.1016/j.molmed.2015.12.004 26787500
Demeyer A. Skordos I. Driege Y. Kreike M. Hochepied T. Baens M. Staal J. Beyaert R. MALT1 Proteolytic Activity Suppresses Autoimmunity in a T Cell Intrinsic Manner Front. Immunol. 2019 10 1898 10.3389/fimmu.2019.01898 31474984
Demeyer A. Driege Y. Skordos I. Coudenys J. Lemeire K. Elewaut D. Staal J. Beyaert R. Long-term MALT1 inhibition in adult mice without severe systemic autoimmunity iScience 2020 23 101557 10.1016/j.isci.2020.101557 33083726
Martin K. Junker U. Tritto E. Sutter E. Rubic-Schneider T. Morgan H. Niwa S. Li J. Schlapbach A. Walker D. et al. Pharmacological Inhibition of MALT1 Protease Leads to a Progressive IPEX-Like Pathology Front. Immunol. 2020 11 745 10.3389/fimmu.2020.00745 32425939
Biswas S. Chalishazar A. Helou Y. DiSpirito J. DeChristopher B. Chatterjee D. Merselis L. Vincent B. Monroe J.G. Rabah D. et al. Pharmacological Inhibition of MALT1 Ameliorates Autoimmune Pathogenesis and Can Be Uncoupled From Effects on Regulatory T-Cells Front. Immunol. 2022 13 875320 10.3389/fimmu.2022.875320 35615349