[en] BACKGROUND: Virtual reality hypnosis (VRH) has emerged as a new and promising option for pain management. Nonetheless, neural dynamics of pain modulation during VRH have not been investigated yet. The aim of this study was to measure the effects of VRH on pain, combining neurophysiological and self-reported measurements. METHODS: Eighteen healthy subjects underwent noxious electrical stimulations in both normal wakefulness and VRH conditions. Dissociation, absorption, time perception, anxiety, pain intensity and unpleasantness, heart rate variability and breathing were reported for each condition. EEG signals were analyzed using event-related potentials (ERP) and time-frequency response (TFR) time-locked to stimuli. Neurophysiological features were correlated with self-reported data. RESULTS: VRH condition was associated with lower pain and higher dissociation. VRH significantly decreased amplitudes of N100 and P200 ERP components, reduced EEG power between 1 and 5Hz from 100 to 560ms, and increased EEG power from 5 to 11Hz from 340 to 800ms. These findings were observed at frontal, central, and posterior electrodes. Heart rate variability was significantly higher and breathing frequency reduced with VRH. Correlations were found between the self-reported level of pain and ERP components. CONCLUSION: VRH modulates cerebral pain processes and body physiology, leading to reduced pain levels. These findings offer a first insight on the analgesic mechanisms of VRH, and suggest that VRH is an effective approach to reduce experimental pain. SIGNIFICANCE: VRH decreases experimental pain perception, increases subject level of dissociation and modulates cerebral pain processing mechanisms.
Disciplines :
Neurosciences & comportement
Auteur, co-auteur :
Rousseaux, Floriane ✱; Université de Liège - ULiège > Département de Psychologie > Ergonomie et intervention au travail
Panda, Rajanikant ✱; Université de Liège - ULiège > GIGA > GIGA Consciousness - Coma Science Group
Toussaint, Clémence; Oncomfort SA, Wavre, Belgium.
Bicego, Aminata Yasmina ; Sensation & Perception Research Group, GIGA Consciousness, University of Liege, ; Laboratory of Cognitive Ergonomics and Work Intervention, University of Liege,
Niimi, Masachika ; Université de Liège - ULiège > GIGA > GIGA Consciousness - Coma Science Group
Bicego, A., Monseur, J., Collinet, A., Donneau, A.-F., Fontaine, R., Libbrecht, D., Malaise, N., Nyssen, A.-S., Raaf, M., Rousseaux, F., Salamun, I., Staquet, C., Teuwis, S., Tomasella, M., Faymonville, M.-E., & Vanhaudenhuyse, A. (2021). Complementary treatment comparison for chronic pain management: A randomized longitudinal study. PLoS One, 16, e0256001.
Cattan, G. H., Andreev, A., Mendoza, C., & Congedo, M. (2019). A comparison of mobile VR display running on an ordinary smartphone with standard PC display for P300-BCI stimulus presentation. IEEE Transactions on Games, 13(1), 68–77.
Clifford, G. D., Azuaje, F., & McSharry, P. E. (2006). Advanced methods and tools for ECG analysis. Engineering in medicine and biology. Artech House.
Cornelis, F. H., Monard, E., Moulin, M.-A., Vignaud, E., Laveissiere, F., Ben Ammar, M., Nouri-Neuville, M., Barral, M., & Lombart, B. (2019). Sedation and analgesia in interventional radiology: Where do we stand, where are we heading and why does it matter? Diagnostic and Interventional Imaging, 100, 753–762.
De Benedittis, G. (2020). Hypnosis: From neural mechanisms to clinical practice. OBM Integrative and Complementary Medicine, 5(3), 039. https://doi.org/10.21926/obm.icm.2003039
De Ridder, D., Adhia, D., & Vanneste, S. (2021). The anatomy of pain and suffering in the brain and its clinical implications. Neuroscience and Biobehavioral Reviews, 130, 125–146.
Defechereux, T., Degauque, C., Fumal, I., Faymonville, M. E., Joris, J., Hamoir, E., & Meurisse, M. (2000). L'hypnosédation, un nouveau mode d'anesthésie pour la chirurgie endocrinienne cervicale. Étude prospective randomisée. Annales de Chirurgie, 125, 539–546.
Dunham, C. M., Burger, A. J., Hileman, B. M., Chance, E. A., & Hutchinson, A. E. (2021). Bispectral index alterations and associations with autonomic changes during hypnosis in trauma center researchers: Formative evaluation study. JMIR Formative Research, 5, e24044.
Elkins, G. R., Barabasz, A. F., Council, J. R., & Spiegel, D. (2015). Advancing research and practice: The revised APA division 30 definition of hypnosis. The American Journal of Clinical Hypnosis, 57, 378–385.
Enea, V., Dafinoiu, I., Opriş, D., & David, D. (2014). Effects of hypnotic analgesia and virtual reality on the reduction of experimental pain among high and low hypnotizables. The International Journal of Clinical and Experimental Hypnosis, 62, 360–377.
Fingelkurts, A. A., Fingelkurts, A. A., Kallio, S., & Revonsuo, A. (2007). Cortex functional connectivity as a neurophysiological correlate of hypnosis: An EEG case study. Neuropsychologia, 45, 45–1462.
Fox, J., Bouchet-Valat, M., Andronic, L., Ash, M., Boye, T., Calza, S., Chang, A., Grosjean, P., Heiberger, R., Pour, K.K., Kerns, G.J., Lancelot, R., Lesnoff, M., Ligges, U., Messad, S., Maechler, M., Muenchen, R., Murdoch, D., Neuwirth, E., Putler, D., Ripley, B., Ristic, M., Wolf, P., Wright, K. (2019). Rcmdr: R Commander. R package version 2.5-2. https://cran.r-project.org/web/packages/Rcmdr/index.html
Hung, P. D., Bonnet, S., Guillemaud, R., Castelli, E., & Yen, P. T. N. (2008). Estimation of respiratory waveform using an accelerometer. In 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro (pp. 1493–1496). IEEE.
Iannetti, G. D., Hughes, N. P., Lee, M. C., & Mouraux, A. (2008). Determinants of laser-evoked eeg responses: Pain perception or stimulus saliency? Journal of Neurophysiology, 100, 815–828.
Lee, M. C., Mouraux, A., & Iannetti, G. D. (2009). Characterizing the cortical activity through which pain emerges from nociception. Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29, 7909–7916.
Li, X., Ma, R., Liangjun, P., Lv, W., Xie, Y., Chen, Y., Pengyu, Z., Chen, J., Wu, Q., Cui, G., Peng, Z., Zhou, Y., & Xiaochu, Z. (2017). Delta coherence in resting-state EEG predicts the reduction in cigarette craving after hypnotic aversion suggestions. Scientific Reports, 7(1), 2430.
Lier, E. J., Oosterman, J. M., Assmann, R., de Vries, M., & van Goor, H. (2020). The effect of virtual reality on evoked potentials following painful electrical stimuli and subjective pain. Scientific Reports, 10, 9067.
Matre, D., Hu, L., Viken, L. A., Hjelle, I. B., Wigemyr, M., Knardahl, S., Sand, T., & Nilsen, K. B. (2015). Experimental sleep restriction facilitates pain and electrically induced cortical responses. Sleep, 38, 1607–1617.
Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 2011, 1–9.
Palaniappan, Y., Vishanth, V. A., Santhosh, N., Karthika, R., & Ganesanw, M. (2020). R - peak detection using altered pan-Tompkins algorithm. In Proceedings of the 2020 IEEE International Conference on Communication and Signal Processing. ICCSP.
Panda, R., Gosseries, O., Vanhaudenhuyse, A., Demertzi, A., Piarulli, A., Faymonville, M.-E., & Laureys, S. (2018). Neural correlates of modified subjective state of consciousness induced by hypnosis using EEG-connectivity approach. Frontiers in Neuroscience, 12. https://doi.org/10.3389/conf.fnins.2018.95.00100
Patterson, D. R., Hoffman, H. G., Chambers, G., Bennetts, D., Hunner, H. H., Wiechman, S. A., Garcia-Palacios, A., & Jensen, M. P. (2021). Hypnotic enhancement of virtual reality distraction analgesia during thermal pain: A randomized trial. The International Journal of Clinical and Experimental Hypnosis, 69, 225–245.
Patterson, D. R., Jensen, M. P., Wiechman, S. A., & Sharar, S. R. (2010). Virtual reality hypnosis for pain associated with recovery from physical trauma. The International Journal of Clinical and Experimental Hypnosis, 58, 288–300.
Patterson, D. R., Tininenko, J. R., Schmidt, A. E., & Sharar, S. R. (2004). Virtual reality hypnosis: A case report. The International Journal of Clinical and Experimental Hypnosis, 52, 27–38.
Ree, A., Nilsen, K. B., Knardahl, S., Sand, T., & Matre, D. (2020). Sleep restriction does not potentiate nocebo-induced changes in pain and cortical potentials. Eur J Pain U K, 24, 110–121.
Rousseaux, F., Bicego, A., Ledoux, D., Massion, P., Nyssen, A. S., Faymonville, M. E., Laureys, S., & Vanhaudenhuyse, A. (2020). Hypnosis associated with 3d immersive virtual reality technology in the management of pain: A review of the literature. Journal of Pain Research, 13, 1129–1138.
Rousseaux, F., Bicego, A., Malengreaux, C., Faymonville, M.-E., Ledoux, D., Massion, P. B., Nyssen, A.-S., & Vanhaudenhuyse, A. (2020). Can hypnosis be used in intensive care units? Médecine Intensive Réanimation.
Shaffer, F., & Ginsberg, J. P. (2017). An overview of heart rate variability metrics and norms. Front Public Health, 5, 5.
Tarrant, J., Viczko, J., & Cope, H. (2018). Virtual reality for anxiety reduction demonstrated by quantitative EEG: A pilot study. Frontiers in Psychology, 9, 1280.
Vanhaudenhuyse, A., Nyssen, A. S., & Faymonville, M. E. (2020). Recent insight on how the neuroscientific approach helps clinicians. OBM Integrative and Complementary Medicine, 5(2), 028. https://doi.org/10.21926/obm.icm.2002028
Vanhaudenhuyse, A., Boly, M., Balteau, E., Schnakers, C., Moonen, G., Luxen, A., Lamy, M., Degueldre, C., Brichant, J. F., Maquet, P., Laureys, S., & Faymonville, M. E. (2009). Pain and non-pain processing during hypnosis: A thulium-YAG event-related fMRI study. Neuroimage., 47(3), 1047–1054. https://doi.org/10.1016/j.neuroimage.2009.05.031.
Vanhaudenhuyse, A., Ledoux, D., Gosseries, O., Demertzi, A., Laureys, S., & Faymonville, M.-E. (2019). Can subjective ratings of absorption, dissociation, and time perception during “neutral hypnosis” predict hypnotizability?: An exploratory study. The International Journal of Clinical and Experimental Hypnosis, 67, 28–38.