Unpublished conference/Abstract (Scientific congresses and symposiums)
Binomial^3: coefficient, equivalence, and complexities
Stipulanti, Manon
2023Journées de combinatoire de Bordeaux (JCB) 2023
 

Files


Full Text
Beamer_JCB2023.pdf
Author preprint (2.69 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Combinatorics on words; binomial coefficient; Pascal's triangle; Binomial equivalence; Binomial complexity
Abstract :
[en] In combinatorics on words, for two words u and v, the binomial coefficient (u,v) of u and v is the number of times v appears as a (scattered) subword of u. For example, with u=ababba and v=aba, there are (6,3)=15 ways to select 3 letters among 6, but only (u,v)=6 of them give back v. Generalizing famous binomial coefficients of integers, the word version has received a lot of attention within the combinatorics-on-words community. A few years ago, M. Rigo and P. Salimov introduced the notion of k-binomial equivalence: two words u and v are k-binomially equivalent if the binomial coefficients (u,x) and (v,x) are equal for all words x of length up to k. This is a refinement of the usual abelian equivalence and Simon's congruence. Very naturally, one can then associate the corresponding k-binomial complexity function which, for a given infinite word x, maps n to the number of length-n factors of x up to the k-binomial equivalence relation. In this talk, I present a broad overview of the theory of binomial coefficients, equivalence, and complexities, focusing on some recent results obtained by M. Rigo, M. Whiteland, and myself.
Disciplines :
Mathematics
Author, co-author :
Stipulanti, Manon  ;  Université de Liège - ULiège > Mathematics
Language :
English
Title :
Binomial^3: coefficient, equivalence, and complexities
Publication date :
31 January 2023
Event name :
Journées de combinatoire de Bordeaux (JCB) 2023
Event organizer :
LaBRI
Event place :
Bordeaux, France
Event date :
January 30 to February 1, 2023
By request :
Yes
Audience :
International
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Commentary :
Work in collaboration with Michel Rigo (ULiège) and Markus A. Whiteland (ULiège). // Travail en collaboration avec Michel Rigo (ULiège) et Markus A. Whiteland (ULiège).
Available on ORBi :
since 17 January 2023

Statistics


Number of views
53 (5 by ULiège)
Number of downloads
37 (1 by ULiège)

Bibliography


Similar publications



Contact ORBi