Continuous-Flow Electrophilic Amination of Arenes and Schmidt Reaction of Carboxylic Acids Utilizing the Superacidic Trimethylsilyl Azide/Triflic Acid Reagent System.
Chen, Yuesu; Gutmann, Bernhard; Kappe, C Oliver
2016 • In Journal of Organic Chemistry, 81 (19), p. 9372 - 9380
[en] A continuous flow protocol for the direct stoichiometric electrophilic amination of aromatic hydrocarbons and the Schmidt reaction of aromatic carboxylic acids using the superacidic trimethylsilyl azide/triflic acid system is described. Optimization of reagent stoichiometry, solvent, reaction time, and temperature led to an intensified protocol at elevated temperatures that allows the direct amination of arenes to be completed within 3 min at 90 °C. In order to improve the selectivity and scope of this direct amination protocol, aromatic carboxylic acids were additionally chosen as substrates. Selected carboxylic acids could be converted to their corresponding amine counterparts in good to excellent yields (11 examples, 55-83%) via a Schmidt reaction employing similar flow reaction conditions (<5 min at 90 °C) and a similar reactor setup as for the amination. The safety issues derived from the explosive, toxic, and volatile hydrazoic acid intermediate, the corrosive nature of triflic acid, and the exothermic quenching were addressed by designing a suitable continuous flow reaction setup for both types of transformations.
Disciplines :
Chemistry
Author, co-author :
Chen, Yuesu ; Université de Liège - ULiège > Molecular Systems (MolSys) ; Institute of Chemistry, University of Graz , NAWI Graz, Heinrichstrasse 28, A-8010 Graz, Austria
Gutmann, Bernhard; Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
Kappe, C Oliver; Institute of Chemistry, University of Graz , NAWI Graz, Heinrichstrasse 28, A-8010 Graz, Austria
Language :
English
Title :
Continuous-Flow Electrophilic Amination of Arenes and Schmidt Reaction of Carboxylic Acids Utilizing the Superacidic Trimethylsilyl Azide/Triflic Acid Reagent System.
Genet, J. P.; Mallart, S.; Greck, C.; Piveteau, E. Tetrahedron Lett. 1991, 32, 2359 10.1016/S0040-4039(00)79923-0
Klinkenberg, J. L.; Hartwig, J. F. Angew. Chem., Int. Ed. 2011, 50, 86 10.1002/anie.201002354
Becker, J.; Hölderich, W. F. Catal. Lett. 1998, 54, 125 10.1023/A:1019048526516
Graebe, C. Ber. Dtsch. Chem. Ges. 1901, 34, 1778 10.1002/cber.19010340276
Kovacic, P.; Bennett, R. P.; Foote, J. L. J. Am. Chem. Soc. 1962, 84, 759 10.1021/ja00864a017
Kovacic, P.; Bennet, R. P.; Foote, J. L. J. Am. Chem. Soc. 1961, 83, 743 10.1021/ja01464a048
Keller, R. N.; Smith, P. A. S. J. Am. Chem. Soc. 1944, 66, 1122 10.1021/ja01235a020
Schmidt, K. F. Ber. Dtsch. Chem. Ges. B 1924, 57 (4) 704 10.1002/cber.19240570423
Kovacic, P.; Russell, R. L.; Bennett, R. P. J. Am. Chem. Soc. 1964, 86, 1588 10.1021/ja01062a029
Mertens, A.; Lammertsma, K.; Arvanighi, M.; Olah, G. A. J. Am. Chem. Soc. 1983, 105, 5657 10.1021/ja00355a023
Borodkin, G. I.; Elanov, I. R.; Popov, S. A.; Pokrovskii, L. M.; Shubin, V. G. Russ. J. Org. Chem. 2003, 39, 718 10.1023/A:1026077716902
Olah, G. A.; Ernst, T. D. J. Org. Chem. 1989, 54, 1203 10.1021/jo00266a040
Borodkin, G. I.; Elanov, I. R.; Shubin, V. G. Russ. J. Org. Chem. 2009, 45, 934 10.1134/S1070428009060220
Prakash, G. K. S.; Gurung, L.; Marinez, E. R.; Mathew, T.; Olah, G. A. Tetrahedron Lett. 2016, 57, 288 10.1016/j.tetlet.2015.11.104
Weaver, J. D.; Recio, A., III; Grenning, A. J.; Tunge, J. A. Chem. Rev. 2011, 111, 1846 10.1021/cr1002744
Rodríguez, N.; Goossen, L. J. Chem. Soc. Rev. 2011, 40, 5030 10.1039/c1cs15093f
Lang, S.; Murphy, J. A. Chem. Soc. Rev. 2006, 35, 146 10.1039/B505080D
Wrobleski, A.; Coombs, T. C.; Huh, C. W.; Li, S.-W.; Aubé, J. Org. React. 2011, 78, 1 10.1002/0471264180.or078.01
Woodroofe, C. C.; Zhong, B.; Lu, X.; Silverman, R. B. J. Chem. Soc., Perkin Trans. 2 2000, 55 10.1039/a907337j
Schuerch, C.; Huntress, E. H. J. Am. Chem. Soc. 1949, 71, 2233 10.1021/ja01174a087
Wolff, H. Org. React. 1946, 3, 308
Briggs, L. H.; Lyttleton, J. W. J. Chem. Soc. 1943, 421 10.1039/jr9430000421
Kopach, M. E.; Murray, M.M.; Braden, T. M.; Kobierski, M. E.; Williams, O. L. Org. Process Res. Dev. 2009, 13, 152 and references cited therein 10.1021/op800265e
Encyclopedia of Inorganic Chemistry, 2 nd ed.; King, R. B., Ed.; Wiley-VCH: Weinheim, 2005.
Gemoets, H. P. L.; Su, Y.; Shang, M.; Hessel, V.; Luque, R.; Noël, T. Chem. Soc. Rev. 2016, 45, 83 10.1039/C5CS00447K
Gutmann, B.; Elsner, P.; O'Kearney-McMullan, A.; Goundry, W.; Roberge, D. M.; Kappe, C. O. Org. Process Res. Dev. 2015, 19, 1062 10.1021/acs.oprd.5b00217
Gutmann, B.; Roduit, J.-P.; Roberge, D.; Kappe, C. O. J. Flow Chem. 2012, 2, 8 10.1556/jfchem.2012.00021
Gutmann, B.; Roduit, J.-P.; Roberge, D.; Kappe, C. O. Chem.-Eur. J. 2011, 17, 13146 10.1002/chem.201102772
Gutmann, B.; Roduit, J.-P.; Roberge, D.; Kappe, C. O. Angew. Chem. 2010, 122, 7255 10.1002/ange.201003733
Smith, C. J.; Nikbin, N.; Ley, S. V.; Lange, H.; Baxendale, I. R. Org. Biomol. Chem. 2011, 9 (6) 1938 10.1039/c0ob00815j
Kupracz, L.; Hartwig, J.; Wegner, J.; Ceylan, S.; Kirschning, A. Beilstein J. Org. Chem. 2011, 7, 1441 10.3762/bjoc.7.168
Baxendale, I.; Ley, S. V.; Mansfield, A.; Smith, C. Angew. Chem., Int. Ed. 2009, 48, 4017 10.1002/anie.200900970
Palde, P. B.; Jamison, T. F. Angew. Chem., Int. Ed. 2011, 50, 3525 10.1002/anie.201006272
Bogdan, A.; Sach, N. W. Adv. Synth. Catal. 2009, 351, 849 10.1002/adsc.200800758
Painter, T. O.; Thornton, P. D.; Orestano, M.; Santini, C.; Organ, M. G.; Aube, J. Chem.-Eur. J. 2011, 17, 9595 10.1002/chem.201100768
Chen, Y.; Liu, B.; Liu, X.; Yang, Y.; Ling, Y.; Jia, Y. Org. Process Res. Dev. 2014, 18, 1589 10.1021/op500269j
Qiao, K.; Deng, Y. J. Mol. Catal. A: Chem. 2001, 171, 81 10.1016/S1381-1169(01)00107-8