Natural neighbour method; Meshless method; Fraeijs de Veubeke variational principle
Abstract :
[en] The natural neighbour method can be considered as one of many variants of the meshless methods. In the present paper, a new approach based on the Fraeijs de Veubeke (FdV) functional, which is initially developed for linear elasticity, is extended to the case of geometrically linear but materially non-linear solids. The new approach provides an original treatment to two classical problems: the numerical evaluation of the integrals over the domain A and the enforcement of boundary conditions of the type u i = ũ i on S u . In the absence of body forces (F i = 0), it will be shown that the calculation of integrals can be avoided and that boundary conditions of the type u i = ũ i on S u can be imposed in the average sense in general and exactly if ũ i is linear between two contour nodes, which is obviously the case for ũ i = 0.
Disciplines :
Civil engineering
Author, co-author :
Xiang, Li
Cescotto, Serge ; Université de Liège - ULiège > Département Argenco : Secteur MS2F > Mécanique des solides
Rossi, Barbara ; Université de Liège - ULiège > Département Argenco : Secteur MS2F > Adéquat. struct. aux exig. de fonct.& perfor. techn.-écon.
Language :
English
Title :
A natural neighbour method for materially non linear problems based on Fraeijs de Veubeke variational principle
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Cuteo, E., Sukumar, N., Calvo, B., Cegonino, J., Doblare, M., Overview and recent advances in natural neighbour Galerkin methods (2003) Arch. Comput. Methods Eng., 10, pp. 307-384. , 4
Yoo, J., Moran, B., Chen, J.S., Stabilized conforming nodal integration in the natural element method (2004) Int. J. Numer. Methods Eng., 60, pp. 861-890
Sukumar, N., Moran, B., Belytschko, T.B., The natural element method in solid mechanics (1998) Int. J. Numer. Methods Eng., 43, pp. 839-887
Lancaster, P., Salkauskas, K., (1990) Curve and Surface Fitting: An Introduction, , Academic Press London
Atluri, S.N., Kim, H.G., Cho, J.Y., A critical assessment of the truly meshless local Petrov-Galerkin and local boundary integral equation methods (1999) Comput. Mech., 24, pp. 348-372
Atluri, S.N., Zhu, T., New concepts in meshless methods (2000) Int. J. Numer. Methods Eng., 47, pp. 537-556
Chen, J.S., Wu, C.T., Yoon, S., You, Y., A stabilized conforming nodal integration for Galerkin mesh-free methods (2001) Int. J. Numer. Methods Eng., 50, pp. 435-466
Yvonnet, J., Ryckelynck, D., Lorong, Ph., Chinesta, F., A new extension of the natural element method for non-convex and discontinuous domains: The constrained natural element method (c-nem) (2004) Int. J. Numer. Methods Eng., 60, pp. 1451-1474
Yvonnet, J., (2004) Nouvelles Approches Sans Maillage Basées sur la Méthode des Éléments Naturels Pour la Simulation Numérique des Procédés de Mise en Forme, , [Ph.D. Thesis], Ecole Nationale Supérieure d'Arts et Métiers
Gonzalez, D., Cueto, E., Martinez, M.A., Doblare, M., Numerical integration in natural neighbour Galerkin methods (2004) Int. J. Numer. Methods Eng., 60, pp. 2077-2104
Yagawa, G., Matsubara, H., Enriched element method and its application to solid mechanics Proc. EPMESC X, pp. 15-18. , Computational methods in Engineering and Science 2006 Aug. 21-23, Tsinghua University Press, Springer
Nayroles, B., Touzot, G., Villon, P., Generalizing the finite element method: Diffuse approximation and diffuse elements (1992) J. Comput. Mech., 10, pp. 307-318
Kronghauz, Y., Belytchko, T., Enforcement of essential boundary conditions in meshless approximations using finite elements (1996) Comput. Methods Appl. Mech. Eng., 131, pp. 133-145
Belytchko, T., Gu, L., Lu, Y.Y., Fracture and crack growth by element free Galerkin methods (1994) Model. Simul. Mater. Sci. Eng., 2, pp. 519-534
Gavette, L., Benito, J.J., Falcon, S., Ruiz, A., Penalty functions in constrained variational principles for element free Galerkin method (2000) Eur. J. Mech. A/Solids, 19, pp. 699-720
Belytchko, T., Lu, Y.Y., Gu, L., Element-free Galerkin methods (1994) Int. J. Numer. Methods Eng., 37, pp. 229-256
Lu, Y.Y., Belytchko, T., Gu, L., A new implementation of the element-free Galerkin method (1994) Comput. Methods Appl. Mech. Eng., 113, pp. 397-414
Kaljevic, I., Saigal, S., An improved element-free Galerkin formulation (1997) Int. J. Numer. Methods Eng., 40, pp. 2953-2974
Ghosh, S., Moorthy, S., Particle fracture simulation in non-uniform microstructures of metal-matrix composites (1998) Acta Mater., 46, pp. 965-982
Moorthy, S., Ghosh, S., A Voronoi cell finite element model for particle cracking in elastic-plastic composite materials (1998) Comput. Methods Appl. Mech. Eng., 151, pp. 377-400
Hu, C., Bai, J., Ghosh, S., Micromechanical and macroscopic models of ductile fracture in particle reinforced metallic materials (2007) Model. Simul. Mater. Sci. Eng., 15, pp. 5377-5392. , 4
Zhang, H.W., Wang, H., Chen, B.S., Xie, Z.Q., Analysis of Cosserat materials with Voronoi cell finite element method and parametric variational principle (2008) Comput. Methods Appl. Mech. Eng., 197, pp. 741-755
Vu-Quoc, L., Tan, X.G., Optimal solid shells for non-linear analyses of multilayer composites (2003) I. Statics. Comput. Methods Appl. Mech. Eng., 192, pp. 975-1016
Herrmann, L.R., Roms, R.M., A reformulation of the elastic field equations in terms of displacements valid for all admissible values of Poisson's ratio (1964) Trans. ASME, Int. J. Appl. Mech., 140-141
Fraeijs De Veubeke, B.M., Diffusion des inconnues hyperstatiques dans les voilures à longerons couplé (1951) Bull. Serv. Technique de l'Aéronautique N° 24, p. 56. , Imprimerie Marcel Hayez, Bruxelles
Belikov, V.V., Ivanov, V.D., Kontorovich, V.K., Korytnik, S.A., Semonov, A.Y., The non Sibsonian interpolation: A new method of interpolation of the values of a function on an arbitrary set of points (1997) Comput. Math. Math. Physics, 37, pp. 9-15. , 1
Hiyoshi, H., Sugihara, K., Two generations of an interpolant based on Voronoi diagrams (1999) Int. J. Shape Modelling, 5, pp. 219-231. , 2
Sibson, R., A vector identity for the Dirichlet tessellation (1980) Math. Proc. Camb. Philos. Soc., 87, pp. 151-155
Rossi, B., Pascon, F., Habraken, A.M., (2007) Theoretical and Numerical Evaluation of Residual Stresses in Thin-walled Sections, , Report N° AG2007-02/01, ArGEnCo Department, Division of Mechanics of Solids, Fluids and Structures
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.