Ashley, C., The Ashley Book of Knots. 1994, Doubleday.
Maddocks, J.H., Keller, J.B., Ropes in equilibrium. SIAM J. Appl. Math. 47 (1987), 1185–1200, 10.1137/0147080.
Pieranski, P., Kasas, S., Dietler, G., Dubochet, J., Stasiak, A., Localization of breakage points in knotted strings. New J. Phys., 3, 2001, 10.1088/1367-2630/3/1/310.
Patil, V.P., Sandt, J.D., Kolle, M., Dunkel, J., Topological mechanics of knots and tangles. Science 367 (2020), 71–75, 10.1126/science.aaz0135.
Meluzzi, D., Smith, D.E., Arya, G., Biophysics of knotting. Annu. Rev. Biophys. 39 (2010), 349–366, 10.1146/annurev.biophys.093008.131412.
Zhao, M., Woodside, M.T., Mechanical strength of RNA knot in Zika virus protects against cellular defenses. Nat. Chem. Biol. 17 (2021), 975–981, 10.1038/s41589-021-00829-z.
Lim, N.C.H., Jackson, S.E., Molecular knots in biology and chemistry. J. Phys. Condens. Matter, 27, 2015, 354101, 10.1088/0953-8984/27/35/354101.
Frank-Kamenetskii, M.D., Lukashin, A.V., Vologodskii, A.V., Statistical mechanics and topology of polymer chains. Nature 258 (1975), 398–402, 10.1038/258398a0.
Saitta, A.M., Soper, P.D., Wasserman, E., Klein, M.L., Influence of a knot on the strength of a polymer strand. Nature 399 (1999), 46–48, 10.1038/19935.
Arai, Y., Yasuda, R., Akashi, K., Harada, Y., Miyata, H., Kinosita, K.J., Itoh, H., Tying a molecular knot with optical tweezers. Nature 399 (1999), 446–448, 10.1038/20894.
Bornschlogl, T., Anstrom, D.M., Mey, E., Dzubiella, J., Rief, M., Forest, K.T., Tightening the knot in phytochrome by single-molecule atomic force microscopy. Biophys. J. 96 (2009), 1508–1514, 10.1016/j.bpj.2008.11.012.
He, C., Genchev, G.Z., Lu, H., Li, H., Mechanically untying a protein slipknot: multiple pathways revealed by force spectroscopy and steered molecular dynamics simulations. J. Am. Chem. Soc. 134 (2012), 10428–10435, 10.1021/ja3003205.
He, C., Lamour, G., Xiao, A., Gsponer, J., Li, H., Mechanically tightening a protein slipknot into a trefoil knot. J. Am. Chem. Soc. 136 (2014), 11946–11955, 10.1021/ja503997h.
Ziegler, F., Lim, N.C.H., Mandal, S.S., Pelz, B., Ng, W.-P., Schlierf, M., Jackson, S.E., Rief, M., Knotting and unknotting of a protein in single molecule experiments. Proc. Natl. Acad. Sci. USA 113 (2016), 7533–7538, 10.1073/pnas.1600614113.
Bustamante, A., Sotelo-Campos, J., Guerra, D.G., Floor, M., Wilson, C.A.M., Bustamante, C., Baez, M., The energy cost of polypeptide knot formation and its folding consequences. Nat. Commun., 8, 2017, 1581, 10.1038/s41467-017-01691-1.
Xu, Y., Li, S., Yan, Z., Luo, Z., Ren, H., Ge, G., Huang, F., Yue, T., Stabilizing effect of inherent knots on proteins revealed by molecular dynamics simulations. Biophys. J. 115 (2018), 1681–1689, 10.1016/j.bpj.2018.09.015.
He, C., Li, S., Gao, X., Xiao, A., Hu, C., Hu, X., Hu, X., Li, H., Direct observation of the fast and robust folding of a slipknotted protein by optical tweezers. Nanoscale 11 (2019), 3945–3951, 10.1039/C8NR10070E.
Wang, H., Li, H., Mechanically tightening, untying and retying a protein trefoil knot by single-molecule force spectroscopy. Chem. Sci. 11 (2020), 12512–12521, 10.1039/D0SC02796K.
Bao, Y., Luo, Z., Cui, S., Environment-dependent single-chain mechanics of synthetic polymers and biomacromolecules by atomic force microscopy-based single-molecule force spectroscopy and the implications for advanced polymer materials. Chem. Soc. Rev. 49 (2020), 2799–2827, 10.1039/C9CS00855A.
Zhang, L., Lemmonier, J.-F., Acocella, A., Calvaresi, M., Zerbetto, F., Leigh, D.A., Effects of knot tightness at the molecular level. Proc. Natl. Acad. Sci. USA 116 (2019), 2452–2457, 10.1073/pnas.1815570116.
Forgan, R.S., Sauvage, J.-P., Stoddart, J.F., Chemical topology: complex molecular knots, links, and entanglements. Chem. Rev. 111 (2011), 5434–5464, 10.1021/cr200034u.
Guo, J., Mayers, P.C., Breault, G.A., Hunter, C.A., Synthesis of a molecular trefoil knot by folding and closing on an octahedral coordination template. Nat. Chem. 2 (2010), 218–222, 10.1038/nchem.544.
Ayme, J.-F., Beves, J.E., Leigh, D.A., McBurney, R.T., Rissanen, K., Schultz, D., A synthetic molecular pentafoil knot. Nat. Chem. 4 (2012), 15–20, 10.1038/nchem.1193.
Zhang, G., Gil-Ramirez, G., Markevicius, A., Browne, C., Vitorica-Yrezabal, I.J., Leigh, D.A., Lanthanide template synthesis of trefoil knots of single handedness. J. Am. Chem. Soc. 137 (2015), 10437–10442, 10.1021/jacs.5b07069.
Danon, J.J., Krüger, A., Leigh, D.A., Lemonnier, J.-F., Stephens, A.J., Vitorica-Yrezabal, I.J., Woltering, S.L., Braiding a molecular knot with eight crossings. Science 355 (2017), 159–162, 10.1126/science.aal1619.
Zhang, L., August, D.P., Zhong, J., Whitehead, G.F.S., Vitorica-Yrezabal, I.J., Leigh, D.A., Molecular trefoil knot from a trimeric circular helicate. J. Am. Chem. Soc. 140 (2018), 4982–4985, 10.1021/jacs.8b00738.
Cougnon, F.B.L., Caprice, K., Pupier, M., Bauza, A., Frontera, A., A strategy to synthesize molecular knots and links using the hydrophobic effect. J. Am. Chem. Soc. 140 (2018), 12442–12450, 10.1021/jacs.8b05220.
Segawa, Y., Kuwayama, M., Hijikata, Y., Fushimi, M., Nishihara, T., Pirillo, J., Shirasaki, J., Kubota, N., Itami, K., Topological molecular nanocarbons: All-benzene catenane and trefoil knot. Science 365 (2019), 272–276, 10.1126/science.aav5021.
Zhang, H.-N., Gao, W.-X., Lin, Y.-J., Jin, G.-X., Reversibly structural transformation between a molecular Solomon link and an unusual unsymmetrical trefoil knot. J. Am. Chem. Soc. 141 (2019), 16057–16063, 10.1021/jacs.9b08254.
Dang, L.-L., Feng, H.-J., Lin, Y.-J., Jin, G.-X., Self-assembly of molecular figure-eight knots induced by quadruple stacking interactions. J. Am. Chem. Soc. 142 (2020), 18946–18954, 10.1021/jacs.0c09162.
Leigh, D.A., Schaufelberger, F., Pirvu, L., Stenlid, J.H., August, D.P., Segard, J., Tying different knots in a molecular strand. Nature 584 (2020), 562–568, 10.1038/s41586-020-2614-0.
Inomata, Y., Sawada, T., Fujita, M., Metal-peptide torus knots from flexible short peptides. Chem 6 (2020), 294–303, 10.1016/j.chempr.2019.12.009.
Ayme, J.-F., Beves, J.E., Campbell, C.J., Gil-Ramírez, G., Leigh, D.A., Stephens, A.J., Strong and selective anion binding within the central cavity of molecular knots and links. J. Am. Chem. Soc. 137 (2015), 9812–9815, 10.1021/jacs.5b06340.
Bilbeisi, R.A., Prakasam, T., Lusi, M., El-Khoury, R., Platas-Iglesias, C., Charbonnière, L.J., Olsen, J.-C., Elhabiri, M., Trabolsi, A., [C–H···anion] interactions mediate the templation and anion binding properties of topologically non-trivial metal-organic structures in aqueous solutions. Chem. Sci. 7 (2016), 2524–2532, 10.1039/C5SC04246A.
August, D.P., Borsley, S., Cockroft, S.L., della Sala, F., Leigh, D.A., Webb, S.J., Transmembrane ion channels formed by a Star of David [2]catenane and a molecular pentafoil knot. J. Am. Chem. Soc. 142 (2020), 18859–18865, 10.1021/jacs.0c07977.
Marcos, V., Stephens, A.J., Jaramillo-Garcia, J., Nussbaumer, A.L., Woltering, S.L., Valero, A., Lemonnier, J.-F., Vitorica-Yrezabal, I.J., Leigh, D.A., Allosteric initiation and regulation of catalysis with a molecular knot. Science 352 (2016), 1555–1559, 10.1126/science.aaf3673.
Gil-Ramírez, G., Hoekman, S., Kitching, M.O., Leigh, D.A., Vitorica-Yrezabal, I.J., Zhang, G., Tying a molecular overhand knot of single handedness and asymmetric catalysis with the corresponding pseudo-D3-symmetric trefoil knot. J. Am. Chem. Soc. 138 (2016), 13159–13162, 10.1021/jacs.6b08421.
Katsonis, N., Lancia, F., Leigh, D.A., Pirvu, L., Ryabchun, A., Schaufelberger, F., Knotting a molecular strand can invert macroscopic effects of chirality. Nat. Chem. 12 (2020), 939–944, 10.1038/s41557-020-0517-1.
Benyettou, F., Prakasam, T., Nair, A.R., Witzel, I.-I., Alhashimi, M., Skorjanc, T., Olsen, J.-C., Sadler, K.C., Trabolsi, A., Potent and selective in vitro and in vivo antiproliferative effects of metal-organic trefoil knots. Chem. Sci. 10 (2019), 5884–5892, 10.1039/C9SC01218D.
Leigh, D.A., Pirvu, L., Schaufelberger, F., Tetlow, D.J., Zhang, L., Securing a supramolecular architecture by tying a stopper knot. Angew. Chem. Int. Ed. 57 (2018), 10484–10488, 10.1002/anie.201803871.
Duwez, A.-S., Willet, N., Molecular Manipulation with Atomic Force Microscopy. 2012, CRC Press, 10.1201/b11269.
Clausen-Schaumann, H., Seitz, M., Krautbauer, R., Gaub, H.E., Force spectroscopy with single bio-molecules. Curr. Opin. Chem. Biol. 4 (2000), 524–530, 10.1016/S1367-5931(00)00126-5.
Müller, D.J., Dumitru, A.C., Giudice, C.L., Gaub, H.E., Hinterdorfer, P., Hummer, G., De Yoreo, J.J., Dufrêne, Y.F., Alsteens, D., Atomic force microscopy-based force spectroscopy and multiparametric imaging of biomolecular and cellular systems. Chem. Rev. 121 (2021), 11701–11725, 10.1021/acs.chemrev.0c00617.
Bao, Y., Luo, Z., Cui, S., Environment-dependent single-chain mechanics of synthetic polymers and biomacromolecules by atomic force microscopy-based single-molecule force spectroscopy and the implications for advanced polymer materials. Chem. Soc. Rev. 49 (2020), 2799–2827, 10.1039/C9CS00855A.
Brown, C., Craig, S.L., Molecular engineering of mechanophore activity for stress-responsive polymeric materials. Chem. Sci. 6 (2015), 2158–2165, 10.1039/C4SC01945H.
Ghanem, M.A., Basu, A., Behrou, R., Boechler, N., Boydston, A.J., Craig, S.L., Lin, Y., Lynde, B.E., Nelson, A., Shen, H., Storti, D.W., The role of polymer mechanochemistry in responsive materials and additive manufacturing. Nat. Rev. Mater. 6 (2021), 84–98, 10.1038/s41578-020-00249-w.
Bowser, B.H., Wang, S., Kouznetsova, T.B., Beech, H.K., Olsen, B.D., Rubinstein, M., Craig, S.L., Single-event spectroscopy and unravelling kinetics of covalent domains based on cyclobutane mechanophores. J. Am. Chem. Soc. 143 (2021), 5269–5276, 10.1021/jacs.1c02149.
Zhang, Y., Wang, Z., Kouznetsova, T.B., Sha, Y., Xu, E., Shannahan, L., Fermen-Coker, M., Lin, Y., Tang, C., Craig, S.L., Distal conformational locks on ferrocene mechanophores guide reaction pathways for increased mechanochemical reactivity. Nat. Chem. 13 (2021), 56–62, 10.1038/s41557-020-00600-2.
Janke, M., Rudzevich, Y., Molokanova, O., Metzroth, T., Mey, I., Diezemann, G., Marszalek, P.E., Gauss, J., Böhmer, V., Janshoff, A., Mechanically interlocked Calix[4]arene dimers display reversible bond breakage under force. Nat. Nanotechnol. 4 (2009), 225–229, 10.1038/nnano.2008.416.
Xing, H., Li, Z., Wang, W., Liu, P., Liu, J., Song, Y., Wu, Z.L., Zhang, W., Huang, F., Mechanochemistry of an interlocked poly[2]catenane: from single molecule to bulk gel. CCS Chem. 1 (2019), 513–523, 10.31635/ccschem.019.201900043.
Sluysmans, D., Zhang, L., Li, X., Garci, A., Stoddart, J.F., Duwez, A.-S., Viologen tweezers to probe the force of individual donor-acceptor π-interactions. J. Am. Chem. Soc. 142 (2020), 21153–21159, 10.1021/jacs.0c10339.
Devaux, F., Li, X., Sluysmans, D., Maurizot, V., Bakalis, E., Zerbetto, F., Huc, I., Duwez, A.-S., Single-molecule mechanics of synthetic aromatic amide helices: ultrafast and robust non-dissipative winding. Chem 7 (2021), 1333–1346, 10.1016/j.chempr.2021.02.030.
Lussis, P., Svaldo-Lanero, T., Bertocco, A., Fustin, C.-A., Leigh, D.A., Duwez, A.-S., A single synthetic small molecule that generates force against a load. Nat. Nanotechnol. 6 (2011), 553–557, 10.1038/nnano.2011.132.
van Quaethem, A., Lussis, P., Leigh, D.A., Duwez, A.-S., Fustin, C.-A., Probing the mobility of catenane rings in single molecules. Chem. Sci. 5 (2014), 1449–1452, 10.1039/C3SC53113A.
Naranjo, T., Lemishko, K.M., de Lorenzo, S., Somoza, A., Ritort, F., Peŕez, E., Ibarra, B., Dynamics of individual molecular shuttles under mechanical force. Nat. Commun., 9, 2018, 4512, 10.1038/s41467-018-06905-8.
Sluysmans, D., Hubert, S., Bruns, C.J., Zhu, Z., Stoddart, J.F., Duwez, A.-S., Synthetic oligorotaxanes exert high forces when folding under mechanical load. Nat. Nanotechnol. 13 (2018), 209–213, 10.1038/s41565-017-0033-7.
Sluysmans, D., Devaux, F., Bruns, C.J., Stoddart, J.F., Duwez, A.-S., Dynamic force spectroscopy of synthetic oligorotaxane foldamers. Proc. Natl. Acad. Sci. USA 115 (2018), 9362–9366, 10.1073/pnas.1712790115.
Sluysmans, D., Lussis, P., Fustin, C.-A., Bertocco, A., Leigh, D.A., Duwez, A.-S., Real-time fluctuations in single-molecule rotaxane experiments reveal an intermediate weak binding state during shuttling. J. Am. Chem. Soc. 143 (2021), 2348–2352, 10.1021/jacs.0c12161.
Rostovstev, V.V., Green, L.G., Fokin, V.V., Sharpless, K.B., A stepwise Huisgen cycloaddition process: Copper(I)-catalyzed regioselective ligation of azides and terminal alkynes. Angew. Chem. Int. Ed. 41 (2002), 2596–2599, 10.1002/1521-3773(20020715)41 14%3C2596::AID-ANIE2596%3E3.0.CO;2-4.
Marantan, A., Mahadevan, L., Mechanics and statistics of the worm-like chain. Am. J. Phys. 86 (2018), 86–94, 10.1119/1.5003376.
Marszalek, P.E., Oberhauser, A.F., Pang, Y.-P., Fernandez, J.M., Polysaccharide elasticity governed by chair-boat transitions of the glucopyranose ring. Nature 396 (1998), 661–664, 10.1038/25322.
Howard, J., Mechanics of motor proteins and the cytoskeleton. Physics Today, 55, 2001, 63, 10.1063/1.1472396.
Hunter, C.A., Quantifying intermolecular interactions: guidelines for the molecular recognition toolbox. Angew. Chem. Int. Ed. 43 (2004), 5310–5324, 10.1002/anie.200301739.