Agent-based model; Bone defect healing; Bone morphogenetic protein 2; Finite element analysis; Mechanobiology; BMP2 protein, human; Bone Morphogenetic Protein 2; Recombinant Proteins; Transforming Growth Factor beta; recombinant human bone morphogenetic protein-2; Collagen; Animals; Bone Morphogenetic Protein 2/chemistry; Bone Regeneration/drug effects; Bony Callus; Cell Differentiation; Chemotaxis/drug effects; Collagen/chemistry; Computer Simulation; Femur/drug effects; Finite Element Analysis; Humans; In Vitro Techniques; Mesenchymal Stem Cells/metabolism; Osteogenesis/drug effects; Rats; Recombinant Proteins/chemistry; Risk; Transforming Growth Factor beta/chemistry; Wound Healing/physiology; X-Ray Microtomography; Biological principles; Bone morphogenetic proteins; Bone tissue formation; Computational model; Mesenchymal stromal cells; Spatial and temporal distribution; Specific concentration; Bone Regeneration; Chemotaxis; Femur; Mesenchymal Stem Cells; Osteogenesis; Wound Healing; Biotechnology; Modeling and Simulation; Mechanical Engineering
Abstract :
[en] Critical-sized bone defects are critical healing conditions that, if left untreated, often lead to non-unions. To reduce the risk, critical-sized bone defects are often treated with recombinant human BMP-2. Although enhanced bone tissue formation is observed when BMP-2 is administered locally to the defect, spatial and temporal distribution of callus tissue often differs from that found during regular bone healing or in defects treated differently. How this altered tissue patterning due to BMP-2 treatment is linked to mechano-biological principles at the cellular scale remains largely unknown. In this study, the mechano-biological regulation of BMP-2-treated critical-sized bone defect healing was investigated using a multiphysics multiscale in silico approach. Finite element and agent-based modeling techniques were combined to simulate healing within a critical-sized bone defect (5 mm) in a rat femur. Computer model predictions were compared to in vivo microCT data outcome of bone tissue patterning at 2, 4, and 6 weeks postoperation. In vivo, BMP-2 treatment led to complete healing through periosteal bone bridging already after 2 weeks postoperation. Computer model simulations showed that the BMP-2 specific tissue patterning can be explained by the migration of mesenchymal stromal cells to regions with a specific concentration of BMP-2 (chemotaxis). This study shows how computational modeling can help us to further understand the mechanisms behind treatment effects on compromised healing conditions as well as to optimize future treatment strategies.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Borgiani, Edoardo ; Julius Wolff Institute, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Institutsgebäude Süd/ Südstraße 2, Augustenburger Platz 1, 13353, Berlin, Germany
Duda, Georg N; Julius Wolff Institute, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Institutsgebäude Süd/ Südstraße 2, Augustenburger Platz 1, 13353, Berlin, Germany
Willie, Bettina M ; Research Centre, Department of Pediatric Surgery, Shriners Hospital for Children-Canada, McGill University, 1003 Decarie Blvd, Montreal, QC, H4A 0A9, Canada
Checa, Sara ; Julius Wolff Institute, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Institutsgebäude Süd/ Südstraße 2, Augustenburger Platz 1, 13353, Berlin, Germany. sara.checa@charite.de
Language :
English
Title :
Bone morphogenetic protein 2-induced cellular chemotaxis drives tissue patterning during critical-sized bone defect healing: an in silico study.
Publication date :
August 2021
Journal title :
Biomechanics and Modeling in Mechanobiology
ISSN :
1617-7959
eISSN :
1617-7940
Publisher :
Springer Science and Business Media Deutschland GmbH, Germany
DFG - Deutsche Forschungsgemeinschaft Charité - Universitätsmedizin Berlin
Funding text :
Open Access funding enabled and organized by Projekt DEAL. This study was funded by the German Research Foundation [Deutsche Forschungsgemeinschaft; WI 3761/4‐1, DU298/14‐1; CH 1123/4‐1]. Bettina M. Willie receives supported from Shriners Hospital for Children and the FRQS Programme de bourses de chercheur.
Augat P, Burger J, Schorlemmer S, Henke T, Peraus M, Claes L (2003) Shear movement at the fracture site delays healing in a diaphyseal fracture model. J Orthop Res 21(6):1011–1017. 10.1016/S0736-0266(03)00098-6 DOI: 10.1016/S0736-0266(03)00098-6
Bailón-Plaza A, van der Meulen MC (2003) Beneficial effects of moderate, early loading and adverse effects of delayed or excessive loading on bone healing. J Biomech 36(8):1069–1077. 10.1016/s0021-9290(03)00117-9 DOI: 10.1016/s0021-9290(03)00117-9
Bajada S, Marshall MJ, Wright KT, Richardson JB, Johnson WEB (2009) Decreased osteogenesis, increased cell senescence and elevated Dickkopf-1 secretion in human fracture non union stromal cells. Bone 45(4):726–735. 10.1016/j.bone.2009.06.015 DOI: 10.1016/j.bone.2009.06.015
Bhakta G, Lim ZX, Rai B, Lin T, Hui JH, Prestwich GD, van Wijnen AJ, Nurcombe V, Cool SM (2013) The influence of collagen and hyaluronan matrices on the delivery and bioactivity of bone morphogenetic protein-2 and ectopic bone formation. Acta Biomater 9(11):9098–9106. 10.1016/j.actbio.2013.07.008 DOI: 10.1016/j.actbio.2013.07.008
Boerckel JD, Kolambkar YM, Dupont KM, Uhrig BA, Phelps EA, Stevens HY, García AJ, Guldberg RE (2011) Effects of protein dose and delivery system on BMP-mediated bone regeneration. Biomaterials 32(22):5241–5251. 10.1016/j.biomaterials.2011.03.063 DOI: 10.1016/j.biomaterials.2011.03.063
Borgiani E, Duda GN, Willie B, Checa S (2015) Bone healing in mice: does it follow generic mechano-regulation rules? Series: Mechanical Engineering. Facta Universitatis 13:217–227
Borgiani E, Figge C, Kruck B, Willie BM, Duda G, Checa S (2019) Age-related changes in the mechanical regulation of bone healing are explained by altered cellular mechanoresponse. J Bone Miner Res 34(10):1923–1937. 10.1002/jbmr.3801 DOI: 10.1002/jbmr.3801
Bramono DS, Murali S, Rai B, Ling L, Poh WT, Lim ZX, Stein GS, Nurcombe V, van Wijnen AJ, Cool SM (2012) Bone marrow-derived heparan sulfate potentiates the osteogenic activity of bone morphogenetic protein-2 (BMP-2). Bone 50(4):954–964. 10.1016/j.bone.2011.12.013 DOI: 10.1016/j.bone.2011.12.013
Cahill KS, McCormick PC, Levi AD (2015) A comprehensive assessment of the risk of bone morphogenetic protein use in spinal fusion surgery and postoperative cancer diagnosis. J Neurosurg Spine 23(1):86–93. 10.3171/2014.10.SPINE14338 DOI: 10.3171/2014.10.SPINE14338
Carter DR (1987) Mechanical loading history and skeletal biology. J Biomech 20(11–12):1095–1109. 10.1016/0021-9290(87)90027-3 DOI: 10.1016/0021-9290(87)90027-3
Chaubey A, Grawe B, Meganck JA, Dyment N, Inzana J, Jiang X, Connolley C, Awad H, Rowe D, Kenter K, Goldstein SA, Butler D (2013) Structural and biomechanical responses of osseous healing: a novel murine nonunion model. J Orthop Traumatol 14(4):247–257. 10.1007/s10195-013-0269-4 DOI: 10.1007/s10195-013-0269-4
Checa S, Prendergast PJ, Duda GN (2011) Inter-species investigation of the mechano-regulation of bone healing: comparison of secondary bone healing in sheep and rat. J Biomech 44(7):1237–1245. 10.1016/j.jbiomech.2011.02.074 DOI: 10.1016/j.jbiomech.2011.02.074
Claes L, Augat P, Suger G, Wilke HJ (1997) Influence of size and stability of the osteotomy gap on the success of fracture healing. J Orthop Res 15(4):577–584 DOI: 10.1002/jor.1100150414
Claes LE, Heigele CA, Neidlinger-Wilke C, Kaspar D, Seidl W, Margevicius KJ, Augat P (1998) Effects of mechanical factors on the fracture healing process. Clin Orthop Relat Res (355 Suppl):S132–S47. 10.1097/00003086-199810001-00015.
Claes L, Blakytny R, Göckelmann M, Schoen M, Ignatius A, Willie BM (2009) Early dynamization by reduced fixation stiffness does not improve fracture healing in a rat femoral osteotomy model. J Orthop Res 27(1):22–27. 10.1002/jor.20712 DOI: 10.1002/jor.20712
Dimitriou R, Mataliotakis GI, Angoules AG, Kanakaris NK, Giannoudis PV (2011) Complications following autologous bone graft harvesting from the iliac crest and using the RIA: a systematic review. Injury 42(Suppl 2):S3–S15. 10.1016/j.injury.2011.06.015 DOI: 10.1016/j.injury.2011.06.015
Epari DR, Schell H, Bail HJ, Duda GN (2006) Instability prolongs the chondral phase during bone healing in sheep. Bone 38(6):864–870. 10.1016/j.bone.2005.10.023 DOI: 10.1016/j.bone.2005.10.023
Fiedler J, Röderer G, Günther KP, Brenner RE (2002) BMP-2, BMP-4, and PDGF-bb stimulate chemotactic migration of primary human mesenchymal progenitor cells. J Cell Biochem 87(3):305–312. 10.1002/jcb.10309 DOI: 10.1002/jcb.10309
Fujioka-Kobayashi M, Schaller B, Saulacic N, Zhang Y, Miron RJ (2017) Growth factor delivery of BMP9 using a novel natural bovine bone graft with integrated atelo-collagen type I: Biosynthesis, characterization, and cell behavior. J Biomed Mater Res a 105(2):408–418. 10.1002/jbm.a.35921 DOI: 10.1002/jbm.a.35921
Geiger M, Li RH, Friess W (2003) Collagen sponges for bone regeneration with rhBMP-2. Adv Drug Deliv Rev 55(12):1613–1629. 10.1016/j.addr.2003.08.010 DOI: 10.1016/j.addr.2003.08.010
Gerhard A, Webster DJ, Van Lenthe GH, Müller R (2009) In silico biology of bone modelling and remodelling: adaptation. Philos Trans A Math Phys Eng Sci 367(1895):2011–2030. 10.1098/rsta.2008.0297.
Geris L, Sloten JV, Van Oosterwyck H (2010) Connecting biology and mechanics in fracture healing: an integrated mathematical modeling framework for the study of nonunions. Biomech Model Mechanobiol 9(6):713–724. 10.1007/s10237-010-0208-8 DOI: 10.1007/s10237-010-0208-8
Ghiasi MS, Chen J, Vaziri A, Rodriguez EK, Nazarian A (2017) Bone fracture healing in mechanobiological modeling: a review of principles and methods. Bone Rep 6:87–100. 10.1016/j.bonr.2017.03.002 DOI: 10.1016/j.bonr.2017.03.002
Glatt V, Miller M, Ivkovic A, Liu F, Parry N, Griffin D, Vrahas M, Evans C (2012) Improved healing of large segmental defects in the rat femur by reverse dynamization in the presence of bone morphogenetic protein-2. J Bone Joint Surg Am 94(22):2063–2073. 10.2106/JBJS.K.01604 DOI: 10.2106/JBJS.K.01604
Gómez-Barrena E, Padilla-Eguiluz NG, Rosset P (2020) Frontiers in non-union research. EFORT Open Rev 5(10):574–583. 10.1302/2058-5241.5.190062 DOI: 10.1302/2058-5241.5.190062
Gugala Z, Lindsey R, Gogolewski S (2007) New approaches in the treatment of critical-size segmental defects in long bones. Macromol Symp 253(1):147–161. 10.1002/masy.200750722 DOI: 10.1002/masy.200750722
Harrison LJ, Cunningham JL, Strömberg L, Goodship AE (2003) Controlled induction of a pseudarthrosis: a study using a rodent model. J Orthop Trauma 17(1):11–21. 10.1097/00005131-200301000-00003 DOI: 10.1097/00005131-200301000-00003
Isaksson H, van Donkelaar CC, Huiskes R, Ito K (2008) A mechano-regulatory bone-healing model incorporating cell-phenotype specific activity. J Theor Biol 252(2):230–246. 10.1016/j.jtbi.2008.01.030 DOI: 10.1016/j.jtbi.2008.01.030
Judex S, Lei X, Han D, Rubin C (2007) Low-magnitude mechanical signals that stimulate bone formation in the ovariectomized rat are dependent on the applied frequency but not on the strain magnitude. J Biomech 40(6):1333–1339. 10.1016/j.jbiomech.2006.05.014 DOI: 10.1016/j.jbiomech.2006.05.014
Kameo Y, Miya Y, Hayashi M, Nakashima T, Adachi T (2020) In silico experiments of bone remodeling explore metabolic diseases and their drug treatment. Science Adv 6(10). 10.1126/sciadv.aax0938
Kaspar K, Schell H, Seebeck P, Thompson MS, Schütz M, Haas NP, Duda GN (2005) Angle stable locking reduces interfragmentary movements and promotes healing after unreamed nailing. Study of a displaced osteotomy model in sheep tibiae. J Bone Joint Surg Am 87(9):2028–2037. 10.2106/JBJS.D.02268.
Kim HK, Oxendine I, Kamiya N (2013) High-concentration of BMP2 reduces cell proliferation and increases apoptosis via DKK1 and SOST in human primary periosteal cells. Bone 54(1):141–150. 10.1016/j.bone.2013.01.031 DOI: 10.1016/j.bone.2013.01.031
Klein P, Schell H, Streitparth F, Heller M, Kassi JP, Kandziora F, Bragulla H, Haas NP, Duda GN (2003) The initial phase of fracture healing is specifically sensitive to mechanical conditions. J Orthop Res 21(4):662–669 DOI: 10.1016/S0736-0266(02)00259-0
Knippenberg M, Helder MN, Zandieh Doulabi B, Wuisman PI, Klein-Nulend J (2006) Osteogenesis versus chondrogenesis by BMP-2 and BMP-7 in adipose stem cells. Biochem Biophys Res Commun 342(3):902–908. 10.1016/j.bbrc.2006.02.052 DOI: 10.1016/j.bbrc.2006.02.052
Kokubo S, Mochizuki M, Fukushima S, Ito T, Nozaki K, Iwai T, Takahashi K, Yokota S, Miyata K, Sasaki N (2004) Long-term stability of bone tissues induced by an osteoinductive biomaterial, recombinant human bone morphogenetic protein-2 and a biodegradable carrier. Biomaterials 25(10):1795–1803. 10.1016/j.biomaterials.2003.08.030 DOI: 10.1016/j.biomaterials.2003.08.030
Koolen M, Longoni A, Van der Stok J, Van der Jagt O, Gawlitta D, Weinans H (2019) Complete Regeneration of Large Bone Defects in Rats With Commercially Available Fibrin Loaded With BMP-2. Eur Cell Mater 38:94–105. 10.22203/eCM.v038a08.
Kopf J, Petersen A, Duda GN, Knaus P (2012) BMP2 and mechanical loading cooperatively regulate immediate early signalling events in the BMP pathway. BMC Biol 30(10):37. 10.1186/1741-7007-10-37 DOI: 10.1186/1741-7007-10-37
Krishnan L, Priddy LB, Esancy C, Klosterhoff BS, Stevens HY, Tran L, Guldberg RE (2017) Delivery vehicle effects on bone regeneration and heterotopic ossification induced by high dose BMP-2. Acta Biomater 49:101–112 DOI: 10.1016/j.actbio.2016.12.012
La WG, Kang SW, Yang HS, Bhang SH, Lee SH, Park JH, Kim BS (2010) The efficacy of bone morphogenetic protein-2 depends on its mode of delivery. Artif Organs 34(12):1150–1153. 10.1111/j.1525-1594.2009.00988.x DOI: 10.1111/j.1525-1594.2009.00988.x
Lanyon LE, Rubin CT (1984) Static vs dynamic loads as an influence on bone remodelling. J Biomech 17(12):897–905. 10.1016/0021-9290(84)90003-4 DOI: 10.1016/0021-9290(84)90003-4
Lind M, Eriksen EF, Bünger C (1996) Bone morphogenetic protein-2 but not bone morphogenetic protein-4 and -6 stimulates chemotactic migration of human osteoblasts, human marrow osteoblasts, and U2-OS cells. Bone 18(1):53–57. 10.1016/8756-3282(95)00423-8 DOI: 10.1016/8756-3282(95)00423-8
Liu H, Li M, Du L, Yang P, Ge S (2015) Local administration of stromal cell-derived factor-1 promotes stem cell recruitment and bone regeneration in a rat periodontal bone defect model. Mater Sci Eng C Mater Biol Appl 53:83–94. 10.1016/j.msec.2015.04.002 DOI: 10.1016/j.msec.2015.04.002
Liu C, Carrera R, Flamini V, Kenny L, Cabahug-Zuckerman P, George BM, Hunter D, Liu B, Singh G, Leucht P, Mann KA, Helms JA, Castillo AB (2018) Effects of mechanical loading on cortical defect repair using a novel mechanobiological model of bone healing. Bone 108:145–155. 10.1016/j.bone.2017.12.027 DOI: 10.1016/j.bone.2017.12.027
Mehta M, Checa S, Lienau J, Hutmacher D, Duda GN (2012) In vivo tracking of segmental bone defect healing reveals that callus patterning is related to early mechanical stimuli. Eur Cell Mater 24:358–371; discussion 371. 10.22203/ecm.v024a26.
Moore SR, Saidel GM, Knothe U, Knothe Tate ML (2014) Mechanistic, mathematical model to predict the dynamics of tissue genesis in bone defects via mechanical feedback and mediation of biochemical factors. PLoS Comput Biol 10(6). 10.1371/journal.pcbi.1003604
Pelaez M, Susin C, Lee J, Fiorini T, Bisch FC, Dixon DR, McPherson JC 3rd, Buxton AN, Wikesjö UM (2014) Effect of rhBMP-2 dose on bone formation/maturation in a rat critical-size calvarial defect model. J Clin Periodontol 41(8):827–836. 10.1111/jcpe.12270 DOI: 10.1111/jcpe.12270
Prendergast PJ, Huiskes R, Søballe K (1997) Biophysical stimuli on cells during tissue differentiation at implant interfaces. J Biomech 30(6):539–548. 10.1016/s0021-9290(96)00140-6 DOI: 10.1016/s0021-9290(96)00140-6
Rauch F, Lauzier D, Croteau S, Travers R, Glorieux FH, Hamdy R (2000) Temporal and spatial expression of bone morphogenetic protein-2, −4, and −7 during distraction osteogenesis in rabbits. Bone 27(3):453–459. 10.1016/s8756-3282(00)00337-9 DOI: 10.1016/s8756-3282(00)00337-9
Reddi AH (1998) Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat Biotechnol 16(3):247–252. 10.1038/nbt0398-247 DOI: 10.1038/nbt0398-247
Ribeiro FO, Gómez-Benito MJ, Folgado J, Fernandes PR, García-Aznar JM (2015) In silico mechano-chemical model of bone healing for the regeneration of critical defects: the effect of BMP-2. PLoS ONE 10(6). 10.1371/journal.pone.0127722
Roberts TT, Rosenbaum AJ (2012) Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organogenesis 8(4):114–124. 10.4161/org.23306 DOI: 10.4161/org.23306
Röntgen V, Blakytny R, Matthys R, Landauer M, Wehner T, Göckelmann M, Jermendy P, Amling M, Schinke T, Claes L, Ignatius A (2010) Fracture healing in mice under controlled rigid and flexible conditions using an adjustable external fixator. J Orthop Res 28(11):1456–1462. 10.1002/jor.21148 DOI: 10.1002/jor.21148
Sato M, Ochi T, Nakase T, Hirota S, Kitamura Y, Nomura S, Yasui N (1999) Mechanical tension-stress induces expression of bone morphogenetic protein (BMP)-2 and BMP-4, but not BMP-6, BMP-7, and GDF-5 mRNA, during distraction osteogenesis. J Bone Miner Res 14(7):1084–1095. 10.1359/jbmr.1999.14.7.1084 DOI: 10.1359/jbmr.1999.14.7.1084
Scheiner S, Pivonka P, Hellmich C (2013) Coupling systems biology with multiscale mechanics, for computer simulations of bone remodeling. Computer Meth Appl Mech Engineer 254:181–196. 10.1016/j.cma.2012.10.015 DOI: 10.1016/j.cma.2012.10.015
Schell H, Epari DR, Kassi JP, Bragulla H, Bail HJ, Duda GN (2005) The course of bone healing is influenced by the initial shear fixation stability. J Orthop Res 23(5):1022–1028 DOI: 10.1016/j.orthres.2005.03.005
Schell H, Thompson MS, Bail HJ, Hoffmann JE, Schill A, Duda GN, Lienau J (2008) Mechanical induction of critically delayed bone healing in sheep: radiological and biomechanical results. J Biomech 41(14):3066–3072. 10.1016/j.jbiomech.2008.06.038 DOI: 10.1016/j.jbiomech.2008.06.038
Schmidmaier G, Schwabe P, Wildemann B, Haas NP (2007) Use of bone morphogenetic proteins for treatment of non-unions and future perspectives. Injury 38(Suppl 4):S35-41. 10.1016/s0020-1383(08)70007-x DOI: 10.1016/s0020-1383(08)70007-x
Schmidt-Bleek K, Willie BM, Schwabe P, Seemann P, Duda GN (2016) BMPs in bone regeneration: Less is more effective, a paradigm-shift. Cytokine Growth Factor Rev 27:141–148. 10.1016/j.cytogfr.2015.11.006 DOI: 10.1016/j.cytogfr.2015.11.006
Schmitz JP, Hollinger JO (1986) The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res 205:299–308
Schwarz C, Wulsten D, Ellinghaus A, Lienau J, Willie BM, Duda GN (2013) Mechanical load modulates the stimulatory effect of BMP2 in a rat nonunion model. Tissue Eng Part a 19(1–2):247–254. 10.1089/ten.TEA.2012.0265 DOI: 10.1089/ten.TEA.2012.0265
Schwarz C, Ott CE, Wulsten D, Brauer E, Schreivogel S, Petersen A, Hassanein K, Roewer L, Schmidt T, Willie BM, Duda GN (2018) The Interaction of BMP2-Induced Defect Healing in Rat and Fixator Stiffness Modulates Matrix Alignment and Contraction. JBMR plus 2(3):174–186. 10.1002/jbm4.10031 DOI: 10.1002/jbm4.10031
Shu B, Zhang M, Xie R, Wang M, Jin H, Hou W, Tang D, Harris SE, Mishina Y, O`Keefe RJ, Hilton MJ, Wang Y, Chen D (2011) BMP2, but not BMP4, is crucial for chondrocyte proliferation and maturation during endochondral bone development. J Cell Sci 124(Pt 20):3428–3440. 10.1242/jcs.083659.
Skaliczki G, Schandl K, Weszl M, Major T, Kovács M, Skaliczki J, Szendrői M, Dobó-Nagy C, Lacza Z (2013) Serum albumin enhances bone healing in a nonunion femoral defect model in rats: a computer tomography micromorphometry study. Int Orthop 37(4):741–745. 10.1007/s00264-012-1770-8 DOI: 10.1007/s00264-012-1770-8
Tressler MA, Richards JE, Sofianos D, Comrie FK, Kregor PJ, Obremskey WT (2011) Bone morphogenetic protein-2 compared to autologous iliac crest bone graft in the treatment of long bone nonunion. Orthopedics 34(12):e877–e884. 10.3928/01477447-20111021-09 DOI: 10.3928/01477447-20111021-09
Visser R, Arrabal PM, Becerra J, Rinas U, Cifuentes M (2009) The effect of an rhBMP-2 absorbable collagen sponge-targeted system on bone formation in vivo. Biomaterials 30(11):2032–2037. 10.1016/j.biomaterials.2008.12.046 DOI: 10.1016/j.biomaterials.2008.12.046
Wang Q, Huang C, Xue M, Zhang X (2011) Expression of endogenous BMP-2 in periosteal progenitor cells is essential for bone healing. Bone 48(3):524–532. 10.1016/j.bone.2010.10.178 DOI: 10.1016/j.bone.2010.10.178
Wang M, Wu H, Li Q, Yang Y, Che F, Wang G, Zhang L (2019) Novel Aptamer-functionalized nanoparticles enhances bone defect repair by improving stem cell recruitment. Int J Nanomed 6(14):8707–8724. 10.2147/IJN.S223164 DOI: 10.2147/IJN.S223164
Wehner T, Wolfram U, Henzler T, Niemeyer F, Claes L, Simon U (2010) Internal forces and moments in the femur of the rat during gait. J Biomech 43(13):2473–2479. 10.1016/j.jbiomech.2010.05.028 DOI: 10.1016/j.jbiomech.2010.05.028
Weinkamer R, Eberl C, Fratzl P (2019) Mechanoregulation of Bone Remodeling and Healing as Inspiration for Self-Repair in Materials. Biomimetics (basel) 4(3):46. 10.3390/biomimetics4030046 DOI: 10.3390/biomimetics4030046
Willie BM, Blakytny R, Glöckelmann M, Ignatius A, Claes L (2011) Temporal variation in fixation stiffness affects healing by differential cartilage formation in a rat osteotomy model. Clin Orthop Relat Res 469(11):3094–3101. 10.1007/s11999-011-1866-2 DOI: 10.1007/s11999-011-1866-2
Wolf S, Augat P, Eckert-Hübner K, Laule A, Krischak GD, Claes LE (2001) Effects of high-frequency, low-magnitude mechanical stimulus on bone healing. Clin Orthop Relat Res 385:192–198. 10.1097/00003086-200104000-00030 DOI: 10.1097/00003086-200104000-00030
Wulsten D, Glatt V, Ellinghaus A, Schmidt-Bleek K, Petersen A, Schell H, Lienau J, Sebald W, Plöger F, Seemann P, Duda GN (2011) Time kinetics of bone defect healing in response to BMP-2 and GDF-5 characterised by in vivo biomechanics. Eur Cell Mater 21:177–192. 10.22203/ecm.v021a14. DOI: 10.22203/ecm.v021a14
Zhao Z, Yang D, Ma X, Zhao H, Nie C (2009) Si Z Successful repair of a critical-sized bone defect in the rat femur with a newly developed external fixator. Tohoku J Exp Med 219(2):115–120. 10.1620/tjem.219.115 DOI: 10.1620/tjem.219.115