Atmospheric composition; Hydrocarbons degradation; Photocatalysis; Quartz crystal microbalance; Self-cleaning; TiO2 thin films; Chemistry (all); Chemical Engineering (all); Physics and Astronomy (all); General Physics and Astronomy; General Chemical Engineering; General Chemistry
Abstract :
[en] The self-cleaning properties provided by photocatalytic reactions have raised a lot of interest for many applications. Nowadays, the widespread analysis methods to study photocatalytic self-cleaning comprise mainly indirect methods such as UV–VIS spectroscopy, chromatography or contact angles measurements. Quartz Crystal Microbalance is another appropriate way to study how the surface is decontaminated because it has the advantage to directly measure the reactant mass. In this study the latter was used to investigate various parameters such as mass loss kinetics, effect of photocatalyst or contaminant effective thicknesses, illumination flux … A special attention was paid to the effects of humidity and O2 on the photocatalytic removal of nanometric paraffin oil (hydrocarbons) films over TiO2. QCM measurements were carried out for several H2O and O2 relative contents in the exposure. Ultimately, water is not essential but acts as a reaction promoter while O2 tends to be essential without significantly affecting the photocatalytic rate provided it is present in sufficient amount. Considering these observations and potential degradation pathways of paraffin oil hydrocarbons, the role of H2O and O2 is discussed.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Chemistry
Author, co-author :
Henry, Théo ; Université de Liège - ULiège > Centres généraux > CSL (Centre Spatial de Liège)
Martins, Paolo ; Thales Research & Technology France, Palaiseau Cedex, France
Eustache, Etienne; Thales Research & Technology France, Palaiseau Cedex, France
Servet, Bernard; Thales Research & Technology France, Palaiseau Cedex, France
Divay, Laurent; Thales Research & Technology France, Palaiseau Cedex, France
Jouanne, Pierre; Thales Alenia Space, 5 Allée des Gabins BP99, Cannes La Bocca Cedex, France
Grasset, Philippe; Thales Alenia Space, 5 Allée des Gabins BP99, Cannes La Bocca Cedex, France
Dudon, Jean-Paul; Thales Alenia Space, 5 Allée des Gabins BP99, Cannes La Bocca Cedex, France
Fleury-Frenette, Karl ; Université de Liège - ULiège > Centres généraux > CSL (Centre Spatial de Liège)
Language :
English
Title :
Effects of O2 and H2O on TiO2 photocatalytic mass loss self-cleaning efficiency for thin hydrocarbons layers
Publication date :
December 2021
Journal title :
Journal of Photochemistry and Photobiology A: Chemistry
Mills, A., Le Hunte, S., An overview of semiconductor photocatalysis. J. Photochem. Photobiol., A 108 (1997), 1–35.
Hoffmann, M.R., Martin, S.T., Choi, W., Bahnemann, D.W., Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 95 (1995), 69–96.
D.M. Blake, Bibliography of Work on the Heterogeneous Photocatalytic Removal of Hazardous Compounds from Water and Air. (1999).
D.M. Blake, Bibliography of Work on the Heterogeneous Photocatalytic Removal of Hazardous Compounds from Water and Air. (2001).
Bhatkhande, D.S., Pangarkar, V.G., Beenackers, A.A., Photocatalytic degradation for environmental applications - a review. J. Chem. Technol. Biotechnol. 77 (2002), 102–116.
CARP, O., Photoinduced reactivity of titanium dioxide. Prog. Solid State Ch. 32:1-2 (2004), 33–177.
Fujishima, A., Rao, T.N., Tryk, D.A., Titanium dioxide photocatalysis. J. Photoch. Photo. C 1 (2000), 1–21.
Fujishima, A., Zhang, X., Tryk, D., TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63 (2008), 515–582.
Mills, A., Hill, C., Robertson, P.K.J., Overview of the current ISO tests for photocatalytic materials. J. Photochem. Photobiol., A 237 (2012), 7–23.
Herrmann, J.-M., Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today 53:1 (1999), 115–129.
Malato, S., Fernández-Ibáñez, P., Maldonado, M.I., Blanco, J., Gernjak, W., Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catal. Today 147:1 (2009), 1–59.
Zhao, J., Yang, X., Photocatalytic oxidation for indoor air purification: a literature review. Build. Env. 38 (2003), 645–654.
Mamaghani, A.H., Haghighat, F., Lee, C.-S., Photocatalytic oxidation technology for indoor environment air purification: The state-of-the-art. Appl. Catal. B Environ. 203 (2017), 247–269.
Peral, J., Domènech, X., Ollis, D.F., Heterogeneous Photocatalysis for Purification, Decontamination and Deodorization of Air. J. Chem. Technol. Biotechnol. 70 (1997), 117–140.
Huang, Z., et al. Bactericidal mode of titanium dioxide photocatalysis. J. Photochem. Photobiol., A 130 (2000), 163–170.
Fagan, R., McCormack, D.E., Dionysiou, D.D., Pillai, S.C., A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern. Mat. Sci. Semicon. Proc. 42 (2016), 2–14.
Banerjee, S., Dionysiou, D.D., Pillai, S.C., Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl. Catal. B Environ. 176-177 (2015), 396–428.
Mills, A., Hodgen, S., Lee, S.K., Self-cleaning titania films: an overview of direct, lateral and remote photo-oxidation processes. Res. Chem. Intermed. 31 (2005), 295–308.
Zhang, L., Dillert, R., Bahnemann, D., Vormoor, M., Photo-induced hydrophilicity and self-cleaning: models and reality. Energy Environ. Sci., 5, 2012, 7491.
Di Paola, A., García-López, E., Marcì, G., Palmisano, L., A survey of photocatalytic materials for environmental remediation. J. Hazard. Mater. 211-212 (2012), 3–29.
Henderson, M.A., A surface science perspective on TiO2 photocatalysis. Surf. Sci. Rep. 66:6-7 (2011), 185–297.
Gaya, U.I., Abdullah, A.H., Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. J. Photoch. Photo. C 9 (2008), 1–12.
Pelaez, M., et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B Environ. 125 (2012), 331–349.
Etacheri, V., Di Valentin, C., Schneider, J., Bahnemann, D., Pillai, S.C., Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. J. Photoch. Photo. C 25 (2015), 1–29.
Rehman, S., Ullah, R., Butt, A.M., Gohar, N.D., Strategies of making TiO2 and ZnO visible light active. J. Hazard. Mater. 170 (2009), 560–569.
Grätzel, M., Dye-sensitized solar cells. J. Photochem. Photobiol. C: Photochem. Rev. 4:2 (2003), 145–153.
Diebold, U., The surface science of titanium dioxide. Surf. Sci. Rep. 48:5-8 (2003), 53–229.
Xiong, L.-B., Li, J.-L., Yang, B., Yu, Y., Ti3+ in the Surface of Titanium Dioxide: Generation, Properties and Photocatalytic Application. J. Nanomater. 2012 (2012), 1–13.
Hanaor, D.A.H., Sorrell, C.C., Review of the anatase to rutile phase transformation. J. Mater. Sci. 46:4 (2011), 855–874.
Asahi, R., Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science 293 (2001), 269–271.
Schneider, J., et al. Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chem. Rev. 114 (2014), 9919–9986.
Hou, W., Cronin, S.B., A Review of Surface Plasmon Resonance-Enhanced Photocatalysis. Adv. Funct. Mater. 23 (2013), 1612–1619.
Kale, M.J., Avanesian, T., Christopher, P., Direct Photocatalysis by Plasmonic Nanostructures. ACS Catal. 4 (2014), 116–128.
Boerigter, C., Campana, R., Morabito, M., Linic, S., Evidence and implications of direct charge excitation as the dominant mechanism in plasmon-mediated photocatalysis. Nat. Commun., 7, 2016, 10545.
Mills, A., An overview of the methylene blue ISO test for assessing the activities of photocatalytic films. Appl. Catal. B Environ. 128 (2012), 144–149.
Ifang, S., Gallus, M., Liedtke, S., Kurtenbach, R., Wiesen, P., Kleffmann, J., Standardization methods for testing photo-catalytic air remediation materials: Problems and solution. Atmosphere. Environ. 91 (2014), 154–161.
Mills, A., Elouali, S., The nitric oxide ISO photocatalytic reactor system: Measurement of NOx removal activity and capacity. Journal of Photochem. Photobiol. A: Chem. 305 (2015), 29–36.
Mills, A., et al. Characterisation of the photocatalyst Pilkington ActivTM: a reference film photocatalyst?. J. Photochem. Photobiol., A 160 (2003), 213–224.
Henry, T., Martins, P., Eustache, E., Servet, B., Divay, L., Jouanne, P., Grasset, P., Dudon, J.-P., Hugonnot, P., Fleury-Frenette, K., Assessment of atomic layer deposited TiO2 photocatalytic self-cleaning by quartz crystal microbalance. J. Vacuum Sci. Technol. A, 38(4), 2020, 043404, 10.1116/6.0000198.
Nosaka, Y., Nosaka, A.Y., Generation and Detection of Reactive Oxygen Species in Photocatalysis. Chem. Rev. 117 (2017), 11302–11336.
Ohsawa, T., Lyubinetsky, I.V., Henderson, M.A., Chambers, S.A., Hole-Mediated Photodecomposition of Trimethyl Acetate on a TiO2 (001) Anatase Epitaxial Thin Film Surface. J. Phys. Chem. C 112 (2008), 20050–20056.
Tamaki, Y., et al. Direct Observation of Reactive Trapped Holes in TiO2 Undergoing Photocatalytic Oxidation of Adsorbed Alcohols: Evaluation of the Reaction Rates and Yields. J. Am. Chem. Soc. 128 (2006), 416–417.
Henderson, M.A., White, J.M., Uetsuka, H., Onishi, H., Photochemical Charge Transfer and Trapping at the Interface between an Organic Adlayer and an Oxide Semiconductor. J. Am. Chem. Soc. 125 (2003), 14974–14975.
Zhang, L., Moralejo, C., Anderson, W.A., A review of the influence of humidity on photocatalytic decomposition of gaseous pollutants on TiO2 -based catalysts. Can. J. Chem. Eng. 98:1 (2020), 263–273.
Jeong, M.-G., Park, E.J., Seo, H.O., Kim, K.-D., Kim, Y.D., Lim, D.C., Humidity effect on photocatalytic activity of TiO2 and regeneration of deactivated photocatalysts. Appl. Surf. Sci. 271 (2013), 164–170.
Jo, W.-K., Park, K.-H., Heterogeneous photocatalysis of aromatic and chlorinated volatile organic compounds (VOCs) for non-occupational indoor air application. Chemosphere 57:7 (2004), 555–565.
Cedillo-González, E.I., Hernández-López, J.M., Ruiz-Valdés, J.J., Barbieri, V., Siligardi, C., Self-cleaning TiO2 coatings for building materials: The influence of morphology and humidity in the stain removal performance. Constr. Build. Mater., 237, 2020, 117692, 10.1016/j.conbuildmat.2019.117692.
Dundar, I., Krichevskaya, M., Katerski, A., Krunks, M., Oja Acik, I., Photocatalytic Degradation of Different VOCs in the Gas-Phase over TiO2 Thin Films Prepared by Ultrasonic Spray Pyrolysis. Catalysts, 9(11), 2019, 915, 10.3390/catal9110915.
Obee, T.N., Brown, R.T., TiO2 Photocatalysis for Indoor Air Applications: Effects of Humidity and Trace Contaminant Levels on the Oxidation Rates of Formaldehyde, Toluene, and 1,3-Butadiene. Environ. Sci. Technol. 29 (1995), 1223–1231.
Augugliaro, V., Coluccia, S., Loddo, V., Marchese, L., Martra, G., Palmisano, L., Schiavello, M., Photocatalytic oxidation of gaseous toluene on anatase TiO2 catalyst: mechanistic aspects and FT-IR investigation. Appl. Catal. B 20:1 (1999), 15–27.
Ou, H.-H., Lo, S.-L., Photocatalysis of gaseous trichloroethylene (TCE) over TiO2: The effect of oxygen and relative humidity on the generation of dichloroacetyl chloride (DCAC) and phosgene. J. Hazard. Mater. 146:1-2 (2007), 302–308.
Mo, J., Zhang, Y., Xu, Q., Lamson, J.J., Zhao, R., Photocatalytic purification of volatile organic compounds in indoor air: A literature review. Atmos. Environ. 43:14 (2009), 2229–2246.
Liang, H.-C., Li, X.-Z., Yang, Y.-H., Sze, K.-H., Effects of dissolved oxygen, pH, and anions on the 2,3-dichlorophenol degradation by photocatalytic reaction with anodic TiO2 nanotube films. Chemosphere 73:5 (2008), 805–812.
Isaev, A.B., Magomedova, G.A., Zakargaeva, N.A., Adamadzieva, N.K., Influence of oxygen pressure on the photocatalytic oxidation of the azo dye Chrome Yellow with TiO2 as the catalyst. Kinet. Catal. 52:2 (2011), 197–201.
Orudzhev, F.F., Gasanova, F.G., Isaev, A.B., Shabanov, N.S., Influence of Oxygen Pressure to Photocatalytic Oxidation of Phenol on CuO/TiO2. MSF 855 (2016), 139–146.
Zhou, S., Ray, A.K., Kinetic Studies for Photocatalytic Degradation of Eosin B on a Thin Film of Titanium Dioxide. Ind. Eng. Chem. Res. 42 (2003), 6020–6033.
Ngo, S., Betts, L.M., Dappozze, F., Ponczek, M., George, C., Guillard, C., Kinetics and mechanism of the photocatalytic degradation of acetic acid in absence or presence of O2. J. Photochem. Photobiol., A 339 (2017), 80–88.
Boarini, P., Carassiti, V., Maldotti, A., Amadelli, R., Photocatalytic Oxygenation of Cyclohexane on Titanium Dioxide Suspensions: Effect of the Solvent and of Oxygen. Langmuir 14 (1998), 2080–2085.
Galindo, C., Jacques, P., Kalt, A., Photodegradation of the aminoazobenzene acid orange 52 by three advanced oxidation processes: UV/H2O2, UV/TiO2 and VIS/TiO2. J. Photochem. Photobiol., A 130:1 (2000), 35–47.
B. Nghiem et al. Antifouling material and production method thereof. (2011).
Ohsaka, T., Izumi, F., Fujiki, Y., Raman spectrum of anatase, TiO2. J. Raman Spectrosc. 7:6 (1978), 321–324.
Luttrell, T., Halpegamage, S., Tao, J., Kramer, A., Sutter, E., Batzill, M., Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films. Sci. Rep., 4(1), 2015, 10.1038/srep04043.
Eufinger, K., Poelman, D., Poelman, H., De Gryse, R., Marin, G.B., Photocatalytic activity of dc magnetron sputter deposited amorphous TiO2 thin films. Appl. Surf. Sci. 254 (2007), 148–152.
Deng, X.-Q., Zhu, X., Sun, Z.-G., Li, X.-S., Liu, J.-L., Shi, C., Zhu, A.-M., Exceptional activity for photocatalytic mineralization of formaldehyde over amorphous titania nanofilms. Chem. Eng. J. 306 (2016), 1001–1009.
Sabbah, H., Effect of sputtering parameters on the self-cleaning properties of amorphous titanium dioxide thin films. J. Coat. Technol. Res. 14:6 (2017), 1423–1433.
Ohtani, B., Ogawa, Y., Nishimoto, S., Photocatalytic Activity of Amorphous-Anatase Mixture of Titanium(IV) Oxide ParticlesSuspended in Aqueous Solutions. J. Phys. Chem. B 101 (1997), 3746–3752.
Tanaka, K., Capule, M.F.V., Hisanaga, T., Effect of crystallinity of TiO2 on its photocatalytic action. Chem. Phys. Lett. 187:1-2 (1991), 73–76.
Jung, S.-C., Kim, B.-H., Kim, S.-J., Imaishi, N., Cho, Y.-I., Characterization of a TiO2 Photocatalyst Film Deposited by CVD and Its Photocatalytic Activity. Chem. Vap. Deposition 11:3 (2005), 137–141.
Sheng, Q., Sun, J., Wang, Q., Wang, W., Wang, H.S., On the onset of surface condensation: formation and transition mechanisms of condensation mode. Sci. Rep., 6, 2016, 30764.
Ohko, Y., Hashimoto, K., Fujishima, A., Kinetics of Photocatalytic Reactions under Extremely Low-Intensity UV Illumination on Titanium Dioxide Thin Films. J. Phys. Chem. A 101 (1997), 8057–8062.
Kim, S.B., Hong, S.C., Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst. Appl. Catal. B Environ. 35 (2002), 305–315.
Ollis, D.F., Pelizzetti, E., Serpone, N., Photocatalyzed destruction of water contaminants. Environ. Sci. Technol. 25 (1991), 1522–1529.
Egerton, T.A., King, C.J., The influence of light intensity on photoactivity in TiO2 pigmented systems. J. Oil Col. Chem. Assoc. 62 (1979), 386–391.
James, S.L., Robinson, A.J., Arnold, J.C., Worsley, D.A., The effects of humidity on photodegradation of poly(vinyl chloride) and polyethylene as measured by the CO2 evolution rate. Polym. Degrad. Stab. 98:2 (2013), 508–513.
Mehmood, C.T., Qazi, I.A., Baig, M.A., Arshad, M., Quddos, A., Enhanced photodegradation of titania loaded polyethylene films in a humid environment. Int. Biodeterior. Biodegrad. 113 (2016), 287–296.
Jin, C., Christensen, P.A., Egerton, T.A., Lawson, E.J., White, J.R., Rapid measurement of polymer photo-degradation by FTIR spectrometry of evolved carbon dioxide. Polym. Degrad. Stab. 91:5 (2006), 1086–1096.
Berger, T., Sterrer, M., Diwald, O., Knözinger, E., Charge Trapping and Photoadsorption of O2 on Dehydroxylated TiO2 Nanocrystals—An Electron Paramagnetic Resonance Study. ChemPhysChem 6:10 (2005), 2104–2112.
Yamazaki, S., Tanaka, S., Tsukamoto, H., Kinetic studies of oxidation of ethylene over a TiO2 photocatalyst. J. Photochem. Photobiol., A 121:1 (1999), 55–61.
Ohtsu, N., Masahashi, N., Mizukoshi, Y., Wagatsuma, K., Hydrocarbon Decomposition on a Hydrophilic TiO2 Surface by UV Irradiation: Spectral and Quantitative Analysis Using in-Situ XPS Technique. Langmuir 25:19 (2009), 11586–11591.
Liang, W., Luo, Y., Song, S., Dong, X., Yu, X., High photocatalytic degradation activity of polyethylene containing polyacrylamide grafted TiO2. Polym. Degrad. Stab. 98:9 (2013), 1754–1761.
X.u. Zhao, Z. Li, Y. Chen, L. Shi, Y. Zhu, Solid-phase photocatalytic degradation of polyethylene plastic under UV and solar light irradiation J. Mol. Catal. A-Chem. 268 (2007) 101-106.
Thomas, R.T., Nair, V., Sandhyarani, N., TiO2 nanoparticle assisted solid phase photocatalytic degradation of polythene film: A mechanistic investigation. Colloids Surf., A 422 (2013), 1–9.
Li, S., Xu, S., He, L., Xu, F., Wang, Y., Zhang, L., Photocatalytic Degradation of Polyethylene Plastic with Polypyrrole/TiO2 Nanocomposite as Photocatalyst. Polymer-Plast. Technol. Eng. 49:4 (2010), 400–406.