Space and Planetary Science; Geophysics; Ganymede; aurora; Jupiter; Hubble Space Telescope
Abstract :
[en] Variations of Ganymede's auroral footprint locations are presented based on observations by the Hubble Space Telescope in 2007 and 2016. The poleward and equatorward shifts of Ganymede's footprint could be influenced by the mass outflow rate from Io and the solar wind compression, as the internal and external factors respectively. We compare our results with Ganymede's footprint mapping based on the magnetodisc model. The mapped footprint in Jupiter's ionosphere shifts equatorward with increased hot plasma parameter, Kh, which is associated with hot plasma pressure. We analyzed the effect of cold plasma number density (Nc), related to the mass outflow rate and connected to the material produced by Io. The results show that the magnetic footprint is shifted equatorward by 0.37° when the mass outflow rate is increased from 800–2,000 kg s−1. Iogenic plasma has a strong influence on the stretching of the magnetic field lines in Jupiter's middle magnetosphere, causing the equatorward shift of Ganymede's footprint. For external factors, Ganymede's footprint shifted poleward by 0.62° under the influence of solar wind compression while the mass outflow is kept constant at 1,000 kg s−1. We present similar locations of Ganymede's footprint based on the field lines mapped as a result of the compensation between an increase of Kh and the solar wind compression. Overall, the location of Ganymede's auroral footprint corresponds with the mass loading rate from Io and the solar wind dynamic pressure.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Promfu, T. ; Department of Physics and Materials Science Faculty of Science Chiang Mai University Chiang Mai Thailand ; National Astronomical Research Institute of Thailand (Public Organization) Chiang Mai Thailand
Nichols, J. D. ; Department of Physics and Astronomy University of Leicester Leicester UK
Wannawichian, S. ; Department of Physics and Materials Science Faculty of Science Chiang Mai University Chiang Mai Thailand ; National Astronomical Research Institute of Thailand (Public Organization) Chiang Mai Thailand
Clarke, J. T. ; Center for Space Physics Boston University Boston MA USA
Vogt, M. F. ; Center for Space Physics Boston University Boston MA USA
Bonfond, Bertrand ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Language :
English
Title :
Ganymede's Auroral Footprint Latitude: Comparison With Magnetodisc Model
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Adriani, A., Filacchione, G., Di Iorio, T., Turrini, D., Noschese, R., Cicchetti, A., et al. (2017). JIRAM, the Jovian infrared auroral mapper. Space Science Reviews, 213(1–4), 393–446. https://doi.org/10.1007/s11214-014-0094-y
Bagenal, F., & Delamere, P. A. (2011). Flow of mass and energy in the magnetospheres of Jupiter and Saturn. Journal of Geophysical Research, 116(A5), A05209. https://doi.org/10.1029/2010JA016294
Bagenal, F., Dougherty, L. P., Bodisch, K. M., Richardson, J. D., & Belcher, J. M. (2017). Survey of Voyager plasma science ions at Jupiter: 1. Analysis method. Journal of Geophysical Research: Space Physics, 122(8), 8241–8256. https://doi.org/10.1002/2016JA023797
Bodisch, K. M., Dougherty, L. P., & Bagenal, F. (2017). Survey of Voyager plasma science ions at Jupiter: 3. Protons and minor ions. Journal of Geophysical Research: Space Physics, 122(8), 8277–8294. https://doi.org/10.1002/2017JA024148
Bolton, S. J., Thorne, R. M., Gurnett, D. A., Kurth, W. S., & Williams, D. J. (1997). Enhanced whistler-mode emissions: Signatures of interchange motion in the Io torus. Geophysical Research Letters, 24(17), 2123–2126. https://doi.org/10.1029/97GL02020
Bonfond, B. (2010). The 3-D extent of the Io UV footprint on Jupiter. Journal of Geophysical Research, 115(A9). https://doi.org/10.1029/2010JA015475
Bonfond, B., Grodent, D., Gérard, J. C., Radioti, A., Saur, J., & Jacobsen, S. (2008). UV Io footprint leading spot: A key feature for understanding the UV Io footprint multiplicity? Geophysical Research Letters, 35(5), L05107. https://doi.org/10.1029/2007GL032418
Bonfond, B., Grodent, D., Gérard, J. C., Stallard, T., Clarke, J. T., Yoneda, M., et al. (2012). Auroral evidence of Io’s control over the magnetosphere of Jupiter. Geophysical Research Letters, 39(1), L01105. https://doi.org/10.1029/2011GL050253
Bonfond, B., Hess, S., Bagenal, F., Gérard, J.-C., Grodent, D., Radioti, A., et al. (2013a). The multiple spots of the Ganymede auroral footprint. Geophysical Research Letters, 40(19), 4977–4981. https://doi.org/10.1002/grl.50989
Bonfond, B., Hess, S., Gérard, J. C., Grodent, D., Radioti, A., Chantry, V., et al. (2013). Evolution of the Io footprint brightness I: Far-UV observations. Planetary and Space Science, 88, 64–75. https://doi.org/10.1016/j.pss.2013.05.023
Bonfond, B., Saur, J., Grodent, D., Badman, S. V., Bisikalo, D., Shematovich, V., et al. (2017). The tails of the satellite auroral footprints at Jupiter. Journal of Geophysical Research: Space Physics, 122(8), 7985–7996. https://doi.org/10.1002/2017JA024370
Caudal, G. (1986). A self-consistent model of Jupiter’s magnetodisc including the effects of centrifugal force and pressure. Journal of Geophysical Research, 91(A4), 4201–4221. https://doi.org/10.1029/JA091iA04p04201
Clarke, J. T., Ajello, J., Ballester, G., Ben Jaffel, L., Connerney, J., Gérard, J. C., et al. (2002). Ultraviolet emissions from the magnetic footprints of Io, Ganymede and Europa on Jupiter. Nature, 415(6875), 997–1000. https://doi.org/10.1038/415997a
Clarke, J. T., Grodent, D., Cowley, S. W. H., Bunce, E. J., Zarka, P., Connerney, J. E. P., & Satoh, T. (2004). Jupiter’s aurora. In F. Bagenal, T. E. Dowling, & W. B. McKinnon (Eds.), Jupiter: the planet, satellites and magnetosphere (pp. 639–670).
Clarke, J. T., Nichols, J., Gérard, J. C., Grodent, D., Hansen, K. C., Kurth, W., et al. (2009). Response of Jupiter’s and Saturn’s auroral activity to the solar wind. Journal of Geophysical Research, 114(A5), A05210. https://doi.org/10.1029/2008JA013694
Connerney, J. E. P., Acuna, M. H., & Ness, N. F. (1981). Modeling the Jovian current sheet and inner magnetosphere. Journal of Geophysical Research, 86(A10), 8370–8384. https://doi.org/10.1029/JA086iA10p08370
Connerney, J. E. P., Kotsiaros, S., Oliversen, R. J., Espley, J. R., Joergensen, J. L., Joergensen, P. S., et al. (2018). A New model of Jupiter’s magnetic field from Juno’s first nine orbits. Geophysical Research Letters, 45(6), 2590–2596. https://doi.org/10.1002/2018GL077312
Connerney, J. E. P., Timmins, S., Herceg, M., & Joergensen, J. L. (2020). A Jovian magnetodisc model for the Juno era. Journal of Geophysical Research: Space Physics, 125(10), e28138. https://doi.org/10.1029/2020JA028138
Connerney, J. E. P., Timmins, S., Oliversen, R. J., Espley, J. R., Joergensen, J. L., Kotsiaros, S., et al. (2022). A new model of Jupiter’s magnetic field at the completion of Juno’s prime mission. Journal of Geophysical Research: Planets, 127(2), e07055. https://doi.org/10.1029/2021JE007055
Cowley, S. W. H., & Bunce, E. J. (2001). Origin of the main auroral oval in Jupiter’s coupled magnetosphere-ionosphere system. Planetary and Space Science, 49(10–11), 1067–1088. https://doi.org/10.1016/S0032-0633(00)00167-7
Dougherty, L. P., Bodisch, K. M., & Bagenal, F. (2017). Survey of Voyager plasma science ions at Jupiter: 2. Heavy ions. Journal of Geophysical Research: Space Physics, 122(8), 8257–8276. https://doi.org/10.1002/2017JA024053
Drell, S. D., Foley, H. M., & Ruderman, M. A. (1965). Drag and propulsion of large satellites in the ionosphere: An Alfvén propulsion engine in space. Journal of Geophysical Research, 70(13), 3131–3145. https://doi.org/10.1029/JZ070i013p03131
Frank, L. A., & Paterson, W. R. (2002). Galileo observations of electron beams and thermal ions in Jupiter’s magnetosphere and their relationship to the auroras. Journal of Geophysical Research, 107(A12), 1478–SMP35-17. https://doi.org/10.1029/2001JA009150
Gershman, D. J., Connerney, J. E. P., Kotsiaros, S., DiBraccio, G. A., Martos, Y. M., Viñas, A. F., et al. (2019). Alfvénic fluctuations associated with Jupiter’s auroral emissions. Geophysical Research Letters, 46(13), 7157–7165. https://doi.org/10.1029/2019GL082951
Grodent, D., Bonfond, B., Radioti, A., Gérard, J.-C., Jia, X., Nichols, J. D., & Clarke, J. T. (2009). Auroral footprint of Ganymede. Journal of Geophysical Research, 114(A7), A07212. https://doi.org/10.1029/2009JA014289
Grodent, D., GéRard, J.-C., Radioti, A., Bonfond, B., & Saglam, A. (2008). Jupiter’s changing auroral location. Journal of Geophysical Research, 113(A1), A01206. https://doi.org/10.1029/2007JA012601
Gustin, J., Bonfond, B., Grodent, D., & Gérard, J. C. (2012). Conversion from HST ACS and STIS auroral counts into brightness, precipitated power, and radiated power for H2 giant planets. Journal of Geophysical Research, 117(A7), A07316. https://doi.org/10.1029/2012JA017607
Hess, S. L. G., Delamere, P., Dols, V., Bonfond, B., & Swift, D. (2010). Power transmission and particle acceleration along the Io flux tube. Journal of Geophysical Research, 115(A6), A06205. https://doi.org/10.1029/2009JA014928
Hill, T. W. (1979). Inertial limit on corotation. Journal of Geophysical Research, 84(A11), 6554–6558. https://doi.org/10.1029/JA084iA11p06554
Jia, X., Walker, R. J., Kivelson, M. G., Khurana, K. K., & Linker, J. A. (2008). Three-dimensional MHD simulations of Ganymede’s magnetosphere. Journal of Geophysical Research, 113(A6), A06212. https://doi.org/10.1029/2007JA012748
Khurana, K. K., Kivelson, M. G., Vasyliunas, V. M., Krupp, N., Woch, J., Lagg, A., et al. (2004). The configuration of Jupiter’s magnetosphere. In F. Bagenal, T. E. Dowling, & W. B. McKinnon (Eds.), Jupiter: the planet, satellites and magnetosphere (Vol. 1, pp. 593–616).
Khurana, K. K., & Schwarzl, H. K. (2005). Global structure of Jupiter’s magnetospheric current sheet. Journal of Geophysical Research, 110(A7), A07227. https://doi.org/10.1029/2004JA010757
Kita, H., Kimura, T., Tao, C., Tsuchiya, F., Murakami, G., Yamazaki, A., et al. (2019). Jovian UV aurora’s response to the solar wind: Hisaki EXCEED and Juno observations. Journal of Geophysical Research: Space Physics, 124(12), 10209–10218. https://doi.org/10.1029/2019JA026997
Kivelson, M. G., Bagenal, F., Kurth, W. S., Neubauer, F. M., Paranicas, C., & Saur, J. (2004). Magnetospheric interactions with satellites. In F. Bagenal, T. E. Dowling, & W. B. McKinnon (Eds.), (pp. 513–536).
Kivelson, M. G., Khurana, K. K., Coroniti, F. V., Joy, S., Russell, C. T., Walker, R. J., et al. (1997). The magnetic field and magnetosphere of Ganymede. Geophysical Research Letters, 24(17), 2155–2158. https://doi.org/10.1029/97GL02201
Krimigis, S. M., Carbary, J. F., Keath, E. P., Bostrom, C. O., Axford, W. I., Gloeckler, G., et al. (1981). Characteristic of hot plasma in the Jovian magnetosphere: Results from the Voyager spacecraft. Journal of Geophysical Research, 86(A10), 8227–8257. https://doi.org/10.1029/JA086iA10p08227
Krupp, N., Vasyliunas, V. M., Woch, J., Lagg, A., Khurana, K. K., Kivelson, M. G., et al. (2004). Dynamics of the Jovian magnetosphere. In F. Bagenal, T. E. Dowling, & W. B. McKinnon (Eds.) Jupiter: the planet, satellites and magnetosphere (Vol. 1, pp. 617–638).
Lysak, R. L., & Song, Y. (2003). Kinetic theory of the Alfvén wave acceleration of auroral electrons. Journal of Geophysical Research, 108(A4), 8005. https://doi.org/10.1029/2002JA009406
McComas, D. J., Alexander, N., Allegrini, F., Bagenal, F., Beebe, C., Clark, G., et al. (2017). The Jovian auroral distributions experiment (JADE) on the Juno mission to Jupiter. Space Science Reviews, 213(1–4), 547–643. https://doi.org/10.1007/s11214-013-9990-9
McComas, D. J., Szalay, J. R., Allegrini, F., Bagenal, F., Connerney, J., Ebert, R. W., et al. (2017). Plasma environment at the dawn flank of Jupiter’s magnetosphere: Juno arrives at Jupiter. Geophysical Research Letters, 44(10), 4432–4438. https://doi.org/10.1002/2017GL072831
McNutt, R. L., Belcher, J. W., & Bridge, H. S. (1981). Positive ion observations in the middle magnetosphere of Jupiter. Journal of Geophysical Research, 86(A10), 8319–8342. https://doi.org/10.1029/JA086iA10p08319
Moirano, A., Gomez Casajus, L., Zannoni, M., Durante, D., & Tortora, P. (2021). Morphology of the IO plasma torus from Juno radio occultations. Journal of Geophysical Research, 126(10), e29190. https://doi.org/10.1029/2021JA029190
Moirano, A., Mura, A., Adriani, A., Dols, V., Bonfond, B., Waite, J. H., et al. (2021). Morphology of the auroral tail of Io, Europa, and Ganymede from JIRAM L-band imager. Journal of Geophysical Research: Space Physics, 126(9), e2021JA029450. https://doi.org/10.1029/2021JA029450
Mura, A., Adriani, A., Connerney, J. E. P., Bolton, S., Altieri, F., Bagenal, F., et al. (2018). Juno observations of spot structures and a split tail in Io-induced aurorae on Jupiter. Science, 361(6404), 774–777. https://doi.org/10.1126/science.aat1450
Nichols, J. D. (2011). Magnetosphere-ionosphere coupling in Jupiter’s middle magnetosphere: Computations including a self-consistent current sheet magnetic field model. Journal of Geophysical Research, 116(A10), A10232. https://doi.org/10.1029/2011JA016922
Nichols, J. D., Achilleos, N., & Cowley, S. W. H. (2015). A model of force balance in Jupiter’s magnetodisc including hot plasma pressure anisotropy. Journal of Geophysical Research: Space Physics, 120(12), 10185–10206. https://doi.org/10.1002/2015JA021807
Nichols, J. D., Allegrini, F., Bagenal, F., Bunce, E. J., Cowley, S. W. H., Ebert, R. W., et al. (2020). An enhancement of Jupiter’s main auroral emission and magnetospheric currents. Journal of Geophysical Research: Space Physics, 125(8), e27904. https://doi.org/10.1029/2020JA027904
Nichols, J. D., Badman, S. V., Bagenal, F., Bolton, S. J., Bonfond, B., Bunce, E. J., et al. (2017). Response of Jupiter’s auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno. Geophysical Research Letters, 44(15), 7643–7652. https://doi.org/10.1002/2017GL073029
Nichols, J. D., Clarke, J. T., Gérard, J. C., Grodent, D., & Hansen, K. C. (2009). Variation of different components of Jupiter’s auroral emission. Journal of Geophysical Research, 114(A6), A06210. https://doi.org/10.1029/2009JA014051
Paty, C., Paterson, W., & Winglee, R. (2008). Ion energization in Ganymede’s magnetosphere: Using multifluid simulations to interpret ion energy spectrograms. Journal of Geophysical Research, 113(A6), A06211. https://doi.org/10.1029/2007JA012848
Plainaki, C., Lilensten, J., Radioti, A., Andriopoulou, M., Milillo, A., Nordheim, T. A., et al. (2016). Planetary space weather: Scientific aspects and future perspectives. Journal of Space Weather and Space Climate, 6, A31. https://doi.org/10.1051/swsc/2016024
Plainaki, C., Milillo, A., Massetti, S., Mura, A., Jia, X., Orsini, S., et al. (2015). The H2O and O2 exospheres of Ganymede: The result of a complex interaction between the Jovian magnetospheric ions and the icy moon. Icarus, 245, 306–319. https://doi.org/10.1016/j.icarus.2014.09.018
Pontius, D. H. (1997). Radial mass transport and rotational dynamics. Journal of Geophysical Research, 102(A4), 7137–7150. https://doi.org/10.1029/97JA00289
Roth, L., Boissier, J., Moullet, A., Sánchez-Monge, Á., de Kleer, K., Yoneda, M., et al. (2020). An attempt to detect transient changes in Io’s SO2 and NaCl atmosphere. Icarus, 350, 113925. https://doi.org/10.1016/j.icarus.2020.113925
Saur, J., Grambusch, T., Duling, S., Neubauer, F. M., & Simon, S. (2013). Magnetic energy fluxes in sub-Alfvénic planet star and moon planet interactions. A&A, 552, A119. https://doi.org/10.1051/0004-6361/201118179
Saur, J., Neubauer, F. M., Strobel, D. F., & Summers, M. E. (1999). Three-dimensional plasma simulation of Io’s interaction with the Io plasma torus: Asymmetric plasma flow. Journal of Geophysical Research, 104(A11), 25105–25126. https://doi.org/10.1029/1999JA900304
Schlegel, S., & Saur, J. (2022). Alternating emission features in Io’s footprint tail: Magnetohydrodynamical simulations of possible causes. Journal of Geophysical Research: Space Physics, 127(5), e30243. https://doi.org/10.1029/2021JA030243
Spencer, J. R., Stern, S. A., Cheng, A. F., Weaver, H. A., Reuter, D. C., Retherford, K., et al. (2007). Io volcanism seen by new horizons: A major eruption of the Tvashtar volcano. Science, 318(5848), 240–243. https://doi.org/10.1126/science.1147621
Steffl, A. J., Delamere, P. A., & Bagenal, F. (2008). Cassini UVIS observations of the Io plasma torus. IV. Modeling Temporal and Azimuthal Variability, 194(1), 153–165. https://doi.org/10.1016/j.icarus.2007.09.019
Sulaiman, A. H., Hospodarsky, G. B., Elliott, S. S., Kurth, W. S., Gurnett, D. A., Imai, M., et al. (2020). Wave-particle interactions associated with Io’s auroral footprint: Evidence of Alfvén, ion cyclotron, and whistler modes. Geophysical Research Letters, 47(22), e88432. https://doi.org/10.1029/2020GL088432
Szalay, J. R., Allegrini, F., Bagenal, F., Bolton, S. J., Bonfond, B., Clark, G., et al. (2020). Alfvénic acceleration sustains Ganymede’s footprint tail aurora. Geophysical Research Letters, 47(3), e86527. https://doi.org/10.1029/2019GL086527
Tao, C., Badman, S. V., & Fujimoto, M. (2011). UV and IR auroral emission model for the outer planets: Jupiter and Saturn comparison. Icarus, 213(2), 581–592. https://doi.org/10.1016/j.icarus.2011.04.001
Tsuchiya, F., Arakawa, R., Misawa, H., Kagitani, M., Koga, R., Suzuki, F., et al. (2019). Azimuthal variation in the IO plasma torus observed by the Hisaki satellite from 2013 to 2016. Journal of Geophysical Research: Space Physics, 124(5), 3236–3254. https://doi.org/10.1029/2018JA026038
Tsuchiya, F., Yoshioka, K., Kimura, T., Koga, R., Murakami, G., Yamazaki, A., et al. (2018). Enhancement of the Jovian magnetospheric plasma circulation caused by the change in plasma supply from the satellite Io. Journal of Geophysical Research: Space Physics, 123(8), 6514–6532. https://doi.org/10.1029/2018JA025316
Vogt, M. F., Bunce, E. J., Kivelson, M. G., Khurana, K. K., Walker, R. J., Radioti, A., et al. (2015). Magnetosphere-ionosphere mapping at Jupiter: Quantifying the effects of using different internal field models. Journal of Geophysical Research: Space Physics, 120(4), 2584–2599. https://doi.org/10.1002/2014JA020729
Wannawichian, S., Clarke, J. T., & Nichols, J. D. (2010). Ten years of Hubble Space Telescope observations of the variation of the Jovian satellites’ auroral footprint brightness. Journal of Geophysical Research, 115(A2), A02206. https://doi.org/10.1029/2009JA014456
Yoneda, M., Kagitani, M., & Okano, S. (2009). Short-term variability of Jupiter’s extended sodium nebula. Icarus, 204(2), 589–596. https://doi.org/10.1016/j.icarus.2009.07.023
Yoneda, M., Kagitani, M., Tsuchiya, F., Sakanoi, T., & Okano, S. (2015). Brightening event seen in observations of Jupiter’s extended sodium nebula. Icarus, 261, 31–33. https://doi.org/10.1016/j.icarus.2015.07.037
Yoneda, M., Tsuchiya, F., Misawa, H., Bonfond, B., Tao, C., Kagitani, M., & Okano, S. (2013). Io’s volcanism controls Jupiter’s radio emissions. Geophysical Research Letters, 40(4), 671–675. https://doi.org/10.1002/grl.50095
Zieger, B., & Hansen, K. C. (2008). Statistical validation of a solar wind propagation model from 1 to 10 AU. Journal of Geophysical Research, 113(A8), A08107. https://doi.org/10.1029/2008JA013046
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.