Nuclear and High Energy Physics; astro-ph.IM; glitches; gravitational waves; generative adversarial network; GAN; deep learning; LIGO; noise transients
Abstract :
[en] The noise of gravitational-wave (GW) interferometers limits their sensitivity and impacts the data quality, hindering the detection of GW signals from astrophysical sources. For transient searches, the most problematic are transient noise artifacts, known as glitches, that happen at a rate around 1 min-1, and can mimic GW signals. Because of this, there is a need for better modeling and inclusion of glitches in large-scale studies, such as stress testing the pipelines. In this proof-of concept work we employ generative adversarial networks (GAN), a state-of-the-art deep learning algorithm inspired by game theory, to learn the underlying distribution of blip glitches and to generate artificial populations. We reconstruct the glitch in the time domain, providing a smooth input that the GAN can learn. With this methodology, we can create distributions of ∼103 glitches from Hanford and Livingston detectors in less than 1 sec. Furthermore, we employ several metrics to measure the performance of our methodology and the quality of its generations. This investigation will be extended in the future to different glitch classes with the final goal of creating an open-source interface for mock data generation.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Lopez, Melissa ; Institute for Gravitational and Subatomic Physics (GRASP), Department of Physics, Utrecht University, Utrecht, Netherlands ; Nikhef, Amsterdam, Netherlands
Boudart, Vincent ; Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR)
Buijsman, Kerwin ; Randstad, Diemen, Netherlands ; Gravitation and Astroparticle Physics Amsterdam (GRAPPA), Institute for Theoretical Physics Amsterdam, University of Amsterdam, Amsterdam, Netherlands
Reza, Amit; Institute for Gravitational and Subatomic Physics (GRASP), Department of Physics, Utrecht University, Utrecht, Netherlands ; Nikhef, Amsterdam, Netherlands
Caudill, Sarah; Institute for Gravitational and Subatomic Physics (GRASP), Department of Physics, Utrecht University, Utrecht, Netherlands ; Nikhef, Amsterdam, Netherlands
Language :
English
Title :
Simulating transient noise bursts in LIGO with generative adversarial networks
FWB - Fédération Wallonie-Bruxelles NWO - Nederlandse Organisatie voor Wetenschappelijk Onderzoek NSF - National Science Foundation
Funding text :
The authors thank Chris Messenger, Siddharth Soni, Jess McIver, Marco Cavaglia, Alejandro Torres-Forné, and Harsh Narola for their useful comments. V. B. is supported by the Gravitational Wave Science (GWAS) Grant funded by the French Community of Belgium, and M. L., S. C., and A. R are supported by the research program of the Netherlands Organisation for Scientific Research (NWO). The authors are grateful for computational resources provided by the LIGO Laboratory and supported by the National Science Foundation Grants No. PHY-0757058 and No. PHY-0823459. This material is based upon work supported by NSF’s LIGO Laboratory which is a major facility fully funded by the National Science Foundation.
Commentary :
17 pages, 21 figures to be published in Physical Review D
B. P. Abbott (LIGO Scientific and Virgo Collaborations), Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016). PRLTAO 0031-9007 10.1103/PhysRevLett.116.061102
B. P. Abbott (LIGO Scientific and Virgo Collaborations). GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence, Phys. Rev. Lett. 119, 141101 (2017). PRLTAO 0031-9007 10.1103/PhysRevLett.119.141101
B. P. Abbott, GW190425: Observation of a compact binary coalescence with total mass (Equation presented), Astrophys. J. 892, L3 (2020). ASJOAB 0004-637X 10.3847/2041-8213/ab75f5
B. P. Abbott (LIGO Scientific, Virgo Collaborations), GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs, Phys. Rev. X 9, 031040 (2019). PRXHAE 2160-3308 10.1103/PhysRevX.9.031040
R. Abbott (LIGO Scientific, Virgo Collaborationa), GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run, Phys. Rev. X 11, 021053 (2021). PRXHAE 2160-3308 10.1103/PhysRevX.11.021053
R. Abbott (LIGO Scientific, Virgo, KAGRA Collaborationa), GWTC-3: Compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run, arXiv:2111.03606.
D. Reitze, Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO, Bull. Am. Astron. Soc. 51, 035 (2019). AASBAR 0002-7537
P. Amaro-Seoane (LISA Collaboration), Laser interferometer space antenna, arXiv:1702.00786.
M. Punturo, The Einstein Telescope: A third-generation gravitational wave observatory, Classical Quantum Gravity 27, 194002 (2010). CQGRDG 0264-9381 10.1088/0264-9381/27/19/194002
S. Soni, Reducing scattered light in LIGO's third observing run, Classical Quantum Gravity 38, 025016 (2021). CQGRDG 0264-9381 10.1088/1361-6382/abc906
M. Cabero, Blip glitches in Advanced LIGO data, Classical Quantum Gravity 36, 155010 (2019). CQGRDG 0264-9381 10.1088/1361-6382/ab2e14
D. Davis (LIGO Collaboration), LIGO detector characterization in the second and third observing runs, Classical Quantum Gravity 38, 135014 (2021). CQGRDG 0264-9381 10.1088/1361-6382/abfd85
F. Acernese (Virgo Collaboration), Virgo Detector Characterization and Data Quality during the O3 run, arXiv:2205.01555.
I. J. Goodfellow, Generative Adversarial Nets, in Advances in Neural Information Processing Systems, edited by Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Q. Weinberger (Curran Associates, Inc., Red Hook, USA, 2014).
J. Powell, D. Trifirò, E. Cuoco, I. S. Heng, and M. Cavaglià, Classification methods for noise transients in advanced gravitational-wave detectors, Classical Quantum Gravity 32, 215012 (2015). CQGRDG 0264-9381 10.1088/0264-9381/32/21/215012
R. Obaid, S. Mukherjee, and B. Matkarimov, Classification of glitch waveforms in gravitational wave detector characterization, J. Phys. Conf. Ser. 243, 012006 (2010). JPCSDZ 1742-6588 10.1088/1742-6596/243/1/012006
J. Powell, A. Torres-Forné, R. Lynch, D. Trifirò, E. Cuoco, M. Cavaglià, I. S. Heng, and J. A Font, Classification methods for noise transients in advanced gravitational-wave detectors II: Performance tests on Advanced LIGO data, Classical Quantum Gravity 34, 034002 (2017). CQGRDG 0264-9381 10.1088/1361-6382/34/3/034002
B. P. Abbott, Effects of data quality vetoes on a search for compact binary coalescences in advanced LIGO's first observing run, Classical Quantum Gravity 35, 065010 (2018). CQGRDG 0264-9381 10.1088/1361-6382/aaaafa
B. P. Abbott (LIGO Scientific, Virgo Collaborations), Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914, Classical Quantum Gravity 33, 134001 (2016). CQGRDG 0264-9381 10.1088/0264-9381/33/13/134001
Y. Bengio, I. Goodfellow, and A. Courville, Deep Learning (MIT Press, Cambridge, MA, 2016).
D. George and E. A. Huerta, Deep neural networks to enable real-time multimessenger astrophysics, Phys. Rev. D 97, 044039 (2018). PRVDAQ 2470-0010 10.1103/PhysRevD.97.044039
H. Gabbard, M. Williams, F. Hayes, and C. Messenger, Matching Matched Filtering with Deep Networks for Gravitational-Wave Astronomy, Phys. Rev. Lett. 120, 141103 (2018). PRLTAO 0031-9007 10.1103/PhysRevLett.120.141103
A. Menéndez-Vázquez, M. Kolstein, M. Martínez, and Ll. M. Mir, Searches for compact binary coalescence events using neural networks in the LIGO/VIRGO second observation period, Phys. Rev. D 103, 062004 (2021). PRVDAQ 2470-0010 10.1103/PhysRevD.103.062004
P. Krastev, Real-time detection of gravitational waves from binary neutron stars using artificial neural networks, Phys. Lett. B 803, 135330 (2020). PYLBAJ 0370-2693 10.1016/j.physletb.2020.135330
G. Baltus, J. Janquart, M. Lopez, A. Reza, S. Caudill, and J.-R. Cudell, Convolutional neural networks for the detection of the early inspiral of a gravitational-wave signal, Phys. Rev. D 103, 102003 (2021). PRVDAQ 2470-0010 10.1103/PhysRevD.103.102003
H. Yu, R. X. Adhikari, R. Magee, S. Sachdev, and Y. Chen, Early warning of coalescing neutron-star and neutron-star-black-hole binaries from the nonstationary noise background using neural networks, Phys. Rev. D 104, 062004 (2021). PRVDAQ 2470-0010 10.1103/PhysRevD.104.062004
M. López, I. Di Palma, M. Drago, P. Cerdá-Durán, and F. Ricci, Deep learning for core-collapse supernova detection, Phys. Rev. D 103, 063011 (2021). PRVDAQ 2470-0010 10.1103/PhysRevD.103.063011
I. Heng, M. Chan, and C. Messenger, Detection and classification of supernova gravitational waves signals: A deep learning approach, Phys. Rev. D 102, 043022 (2020). PRVDAQ 2470-0010 10.1103/PhysRevD.102.043022
G. Nurbek, S. Mukherjee, and O. Valdez, Study of efficient methods of detection and reconstruction of gravitational waves from nonrotating 3d general relativistic core collapse supernovae explosion using multilayer signal estimation method, Phys. Rev. D 103, 103008 (2021). PRVDAQ 2470-0010 10.1103/PhysRevD.103.103008
M. Razzano and E. Cuoco, Image-based deep learning for classification of noise transients in gravitational wave detectors, Classical Quantum Gravity 35, 095016 (2018). CQGRDG 0264-9381 10.1088/1361-6382/aab793
E. Cuoco, Enhancing gravitational-wave science with machine learning, Mach. Learn. 2, 011002 (2020). MALEEZ 0885-6125 10.1088/2632-2153/abb93a
V. Boudart and M. Fays, A machine learning algorithm for minute-long Burst searches, Phys. Rev. D 105, 083007 (2022). PRVDAQ 2470-0010 10.1103/PhysRevD.105.083007
J. Long, E. Shelhamer, and T. Darrell, Fully convolutional networks for semantic segmentation, IEEE Trans. Pattern Anal. Mach. Intell. 39, 640 (2017). ITPIDJ 0162-8828 10.1109/TPAMI.2016.2572683
J. McGinn, C. Messenger, M. J. Williams, and I. S. Heng, Generalised gravitational wave burst generation with generative adversarial networks, Classical Quantum Gravity 38, 155005 (2021). CQGRDG 0264-9381 10.1088/1361-6382/ac09cc
L. Metz, A. Radford, and S. Chintala, Unsupervised representation learning with deep convolutional generative adversarial networks, (2016).
L. Weng, From gan to wgan, arXiv:abs/1904.08994.
M. Arjovsky, Wasserstein generative adversarial networks (2017).
L. V. Kantorovich, Mathematical methods of organizing and planning production, Manage. Sci. 6, 366 (1960). MSCIAM 0025-1909 10.1287/mnsc.6.4.366
S. Harada, Biosignal generation and latent variable analysis with recurrent generative adversarial networks, IEEE Access 7, 144292-144302 (2019). 10.1109/ACCESS.2019.2934928
T. Karras, Progressive growing of GANs for improved quality, stability, and variation (2018).
T. Salimans, Improved techniques for training GANs, in Advances in Neural Information Processing Systems, edited by D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (Curran Associates, Inc., Red Hook, USA, 2016).
A. Geiger, L. Mescheder, and S. Nowozin, Which training methods for GANs do actually converge?, in Proceedings of 35th International Conference on Machine Learning (ICML 2018), Vol. 80, edited by J. Dy (Curran Associates, Inc., 2018).
X. Wei, Improving the Improved Training of Wasserstein GANS: A Consistency Term and its Dual Effect (2018).
N. Kalchbrenner, A. Van Den Oord, and K. Kavukcuoglu, Pixel recurrent neural networks (2016).
S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, arXiv:abs/1502.03167.
I. Gulrajani, Improved training of Wasserstein GANS, in Proceedings of the 31st International Conference on Neural Information Processing Systems (Curran Associates Inc., Red Hook, USA, 2017).
T. B Littenberg and N. J. Cornish, Bayesian inference for spectral estimation of gravitational wave detector noise, Phys. Rev. D 91, 084034 (2015). PRVDAQ 1550-7998 10.1103/PhysRevD.91.084034
N. J. Cornish and T. B. Littenberg, Bayeswave: Bayesian inference for gravitational wave bursts and instrument glitches, Classical Quantum Gravity 32, 135012 (2015). CQGRDG 0264-9381 10.1088/0264-9381/32/13/135012
J. P. Green, Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, Biometrika 82, 711 (1995). BIOKAX 0006-3444 10.1093/biomet/82.4.711
A. Torres, A. Marquina, J. A. Font, and J. M. Ibáñez, Total-variation-based methods for gravitational wave denoising, Phys. Rev. D 90, 084029 (2014). PRVDAQ 1550-7998 10.1103/PhysRevD.90.084029
N. Kodali, How to train your dragan, arXiv:abs/1705.07215.
T. Tieleman, Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude, COURSERA 4, 26 (2012).
Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama, Optuna: A next-generation hyperparameter optimization framework, Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (Association for Computing Machinery, New York, 2019).
F. Robinet, N. Arnaud, N. Leroy, A. Lundgren, D. Macleod, and J. McIver, Omicron: A tool to characterize transient noise in gravitational-wave detectors, SoftwareX 12, 100620 (2020). 2352-7110 10.1016/j.softx.2020.100620
B. Allen, W. G. Anderson, P. R. Brady, D. A. Brown, and J. D. E. Creighton, Findchirp: An algorithm for detection of gravitational waves from inspiraling compact binaries, Phys. Rev. D 85, 122006 (2012). PRVDAQ 1550-7998 10.1103/PhysRevD.85.122006
A. Nitz, gwastro/pycbc (2021), 10.5281/zenodo.5347736.
S. A. Sengupta, S. Roy, and P. Ajith, Effectual template banks for upcoming compact binary searches in advanced-ligo and virgo data, Phys. Rev. D 99, 024048 (2019). PRVDAQ 2470-0010 10.1103/PhysRevD.99.024048
R. E. Walpole, Probability and Statistics for Engineers and Scientists (Pearson Education, Boston, 2007).
T. Karras, Training generative adversarial networks with limited data, arXiv:abs/2006.06676.
G. Ashton, Parameterised population models of transient non-Gaussian noise in the LIGO gravitational-wave detectors, arXiv:2110.02689.
I. Jolliffe and J. Cadima, Principal component analysis: A review and recent developments, Phil. Trans. R. Soc. A 374, 20150202 (2016). PTRMAD 1364-503X 10.1098/rsta.2015.0202
F. Pedregosa, scikit-learn: Machine learning in python, J. Mach. Learn. Res. 12, 2825 (2011). 1532-4435
D. Reynolds, Gaussian mixture models, in Encyclopedia of Biometrics, edited by Stan Z. Li and Anil Jain (Springer US, Boston, MA, 2009) pp. 659-663.
Y. Shen, Interpreting the latent space of GANS for semantic face editing, Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE Computer Society, Los Alamitos, 2020), 9240-9249.
B. Allen, W. G. Anderson, P. R. Brady, D. A. Brown, and J. D. E. Creighton, Findchirp: An algorithm for detection of gravitational waves from inspiraling compact binaries, Phys. Rev. D 85, 122006 (2012). PRVDAQ 1550-7998 10.1103/PhysRevD.85.122006
K. Cannon, g st lal: A software framework for gravitational wave discovery, SoftwareX 14, 100680 (2021). 2352-7110 10.1016/j.softx.2021.100680
C. Hanna, Fast evaluation of multidetector consistency for real-time gravitational wave searches, Phys. Rev. D 101, 022003 (2020). PRVDAQ 2470-0010 10.1103/PhysRevD.101.022003
G. H. Golub and C. F. Van Loan, Matrix computations (Johns Hopkins University Press, Baltimore, 1996).
K. Cannon, A. Chapman, C. Hanna, D. Keppel, A. C. Searle, and A. J. Weinstein, Singular value decomposition applied to compact binary coalescence gravitational-wave signals, Phys. Rev. D 82, 044025 (2010). PRVDAQ 1550-7998 10.1103/PhysRevD.82.044025
S. Kulkarni, K. S. Phukon, A. Reza, S. Bose, A. Dasgupta, D. Krishnaswamy, and A. S. Sengupta, Random projections in gravitational wave searches of compact binaries, Phys. Rev. D 99, 101503 (2019). PRVDAQ 2470-0010 10.1103/PhysRevD.99.101503
A. Reza, Random projections in gravitational-wave searches from compact binaries II: Efficient reconstruction of the detection statistic, arXiv:2101.03226.