Spanos, P.D., Zeldin, B.A., Random Vibration of Systems with Frequency-Dependent Parameters or Fractional Derivatives. J. Eng. Mech. 123:3 (1997), 290–292, 10.1061/(asce)0733-9399(1997)123:3(290).
Mastroddi, F., Calore, P., On the modal decoupling of linear mechanical systems with frequency-dependent viscoelastic behavior. Mech. Syst. Signal Process. 70–71 (2016), 769–787, 10.1016/j.ymssp.2015.09.024.
Kvåle, K.A., Sigbjörnsson, R., Øiseth, O., Modelling the stochastic dynamic behaviour of a pontoon bridge: A case study. Comput. Struct. 165 (2016), 123–135, 10.1016/j.compstruc.2015.12.009.
Adhikari, S., Optimal complex modes and an index of damping non-proportionality. Mech. Syst. Signal Process. 18:1 (2004), 1–27, 10.1016/S0888-3270(03)00048-7.
Rouleau, L., Deü, J.-F., Legay, A., A comparison of model reduction techniques based on modal projection for structures with frequency-dependent damping. Mech. Syst. Signal Process. 90 (2017), 110–125.
Heremans, J., Geuzaine, M., Denoël, V., A Background/Resonant decomposition based method to predict the aeroelastic behavior of 2-dof aeroelastic oscillators. J. Wind Eng. Ind. Aerodyn., 233, 2023, 105290.
Denoël, V., Degée, H., Asymptotic expansion of slightly coupled modal dynamic transfer functions. J. Sound Vib. 328:1–2 (2009), 1–8, 10.1016/j.jsv.2009.08.014.
Morzfeld, M., Ajavakom, N., Ma, F., Diagonal dominance of damping and the decoupling approximation in linear vibratory systems. J. Sound Vib. 320:1–2 (2009), 406–420, 10.1016/j.jsv.2008.07.025.
Berthet, A., Perrey-Debain, E., Chazot, J.D., Germès, S., The balanced proper orthogonal decomposition applied to a class of frequency-dependent damped structures. Mech. Syst. Signal Process., 185(2022), 2023, 10.1016/j.ymssp.2022.109746.
Canor, T., Blaise, N., Denoël, V., Efficient uncoupled stochastic analysis with non-proportional damping. J. Sound Vib. 331:24 (2012), 5283–5291, 10.1016/j.jsv.2012.07.019.
Geuzaine, M., Fenerci, A., Øiseth, O., Denoël, V., Multiple Timescale Spectral Analysis of Floating Structures Subjected to Hydrodynamic Loads. J. Eng. Mech., 149, 2023, 10.1061/JENMDT.EMENG-6654.