Article (Scientific journals)
Analysis of the arm-like structure in the outer disk of PDS 70. Spiral density wave or vortex?
Juillard, Sandrine; Christiaens, Valentin; Absil, Olivier
2022In Astronomy and Astrophysics, 668, p. 125
Peer Reviewed verified by ORBi
 

Files


Full Text
Juillard22_PDS70_arm_like_structure_spiral_or_vortex.pdf
Author postprint (5.82 MB) Creative Commons License - Attribution
Copyright ESO 2022, published by EDP Sciences - https://www.aanda.org/articles/aa/full_html/2022/12/aa44402-22/aa44402-22.html
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
protoplanetary disks; planet-disk interactions; stars: individual:; PDS 70; techniques: image processing
Abstract :
[en] Context. Observing dynamical interactions between planets and disks is key to understanding their formation and evolution. Two protoplanets have recently been discovered within the PDS 70 protoplanetary disk, along with an arm-like structure toward the northwest of the star. <BR /> Aims: Our aim is to constrain the morphology and origin of this arm-like structure, and to assess whether it could trace a spiral density wave caused by the dynamical interaction between the planet PDS 70c and the disk. <BR /> Methods: We analyzed polarized and angular differential imaging (PDI and ADI) data taken with VLT/SPHERE, spanning six years of observations. The PDI data sets were reduced using the irdap polarimetric data reduction pipeline, while the ADI data sets were processed using mustard, a novel algorithm based on an inverse problem approach to tackle the geometrical biases spoiling the images previously used for the analysis of this disk. <BR /> Results: We confirm the presence of the arm-like structure in all PDI and ADI data sets, and extract its trace by identifying local radial maxima in azimuthal slices of the disk in each data set. We do not observe a southeast symmetric arm with respect to the disk minor axis, which seems to disfavor the previous hypothesis that the arm is the footprint of a double-ring structure. If the structure traces a spiral density wave following the motion of PDS 70c, we would expect 11°.28<SUB>−0°.86</SUB><SUP>+2°.20</SUP> rotation for the spiral in six years. However, we do not measure any significant movement of the structure. <BR /> Conclusions: If the arm-like structure is a planet-driven spiral arm, the observed lack of rotation would suggest that the assumption of rigid-body rotation may be inappropriate for spirals induced by planets. We suggest that the arm-like structure may instead trace a vortex appearing as a one-armed spiral in scattered light due to projection effects. The vortex hypothesis accounts for both the lack of observed rotation and the presence of a nearby sub-millimeter continuum asymmetry detected with ALMA. Additional follow-up observations and dedicated hydrodynamical simulations could confirm this hypothesis.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Juillard, Sandrine ;  Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Planetary & Stellar systems Imaging Laboratory
Christiaens, Valentin  ;  Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR)
Absil, Olivier  ;  Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO)
Language :
English
Title :
Analysis of the arm-like structure in the outer disk of PDS 70. Spiral density wave or vortex?
Publication date :
15 December 2022
Journal title :
Astronomy and Astrophysics
ISSN :
0004-6361
eISSN :
1432-0746
Publisher :
EDP Sciences, Les Ulis, Fr
Volume :
668
Pages :
A125
Peer reviewed :
Peer Reviewed verified by ORBi
European Projects :
H2020 - 819155 - EPIC - Earth-like Planet Imaging with Cognitive computing
Funders :
ERC - European Research Council
F.R.S.-FNRS - Fonds de la Recherche Scientifique
EU - European Union
Available on ORBi :
since 06 January 2023

Statistics


Number of views
42 (4 by ULiège)
Number of downloads
16 (0 by ULiège)

Scopus citations®
 
11
Scopus citations®
without self-citations
8
OpenCitations
 
0
OpenAlex citations
 
13

Bibliography


Similar publications



Contact ORBi