Kolh, Philippe ; Centre Hospitalier Universitaire de Liège - CHU > > Service des informations médico économiques (SIME) ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biochimie et physiologie générales, humaines et pathologiques ; Université de Liège - ULiège > GIGA
Schanzer, A., Steppacher, R., Eslami, M., Arous, E., Messina, L., Belkin, M., Vascular surgery training trends from 2001–2007: a substantial increase in total procedure volume is driven by escalating endovascular procedure volume and stable open procedure volume. J Vasc Surg 49 (2009), 1339–1344.
Beck, A.W., Sedrakyan, A., Mao, J., Venermo, M., Faizer, R., Debus, S., et al. Variations in abdominal aortic aneurysm care: a report from the International Consortium of Vascular Registries. Circulation 134 (2016), 1948–1958.
Suckow, B.D., Goodney, P.P., Columbo, J.A., Kang, R., Stone, D.H., Sedrakyan, A., et al. National trends in open surgical, endovascular, and branched-fenestrated endovascular aortic aneurysm repair in Medicare patients. J Vasc Surg, 67, 2018 1690–7.
Behrendt, C.A., Sigvant, B., Kuchenbecker, J., Grima, M.J., Schermerhorn, M., Thomson, I.A., et al. Editor's Choice - International variations and sex disparities in the treatment of peripheral arterial occlusive disease: a report from VASCUNET and the International Consortium of Vascular Registries. Eur J Vasc Endovasc Surg 60 (2020), 873–880.
El-Sayed, T., Patel, A.S., Cho, J.S., Kelly, J.A., Ludwinski, F.E., Saha, P., et al. Radiation-induced DNA damage in operators performing endovascular aortic repair. Circulation 136 (2017), 2406–2416.
Mohapatra, A., Greenberg, R.K., Mastracci, T.M., Eagleton, M.J., Thornsberry, B., Radiation exposure to operating room personnel and patients during endovascular procedures. J Vasc Surg 58 (2013), 702–709.
Council Directive 2013/59/EURATOM of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. Official Journal of the European Union https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2014:013:0001:0073:EN:PDF.
ICRP. Occupational radiological protection in interventional procedures. ICRP Publication 139 Ann ICRP 47 (2018), 1–118.
ICRP. Radiological Protection in Fluoroscopically Guided Procedures outside the Imaging Department. ICRP Publication 117 Ann ICRP 40 (2010), 1–102.
ICRP. Avoidance of Radiation Injuries from Medical Interventional Procedures. ICRP Publication 85 Ann ICRP 30 (2000), 7–67.
Fletcher, D.W., Miller, D.L., Balter, S., Taylor, M.A., Comparison of four techniques to estimate radiation dose to skin during angiographic and interventional radiology procedures. J Vasc Interv Radiol 13 (2002), 391–397.
Miller, D.L., Balter, S., Cole, P.E., Lu, H.T., Schueler, B.A., Geisinger, M., et al. Radiation doses in interventional radiology procedures: the RAD-IR study: part I: overall measures of dose. J Vasc Interv Radiol 14 (2003), 711–727.
Miller, D.L., Balter, S., Wagner, L.K., Cardella, J., Clark, T.W., Neithamer, C.D.J., et al. Quality improvement guidelines for recording patient radiation dose in the medical record. J Vasc Interv Radiol 15 (2004), 423–429.
National Council on Radiation Protection and Measurements. Radiation dose management for fluoroscopically-guided interventional medical procedures. NCRP Report No. 168, 2010.
Chait, J., Davis, N., Ostrozhynskyy, Y., Rajaee, S., Marks, N., Hingorani, A., et al. Radiation exposure during non-thrombotic iliac vein stenting. Vascular 27 (2019), 617–622.
Barbati, M.E., Gombert, A., Schleimer, K., Kotelis, D., Wittens, C.H.A., Bruners, P., et al. Assessing radiation exposure to patients during endovascular treatment of chronic venous obstruction. J Vasc Surg Venous Lymphat Disord 7 (2019), 392–398.
Baccellieri, D., Apruzzi, L., Ardita, V., Bilman, V., De Cobelli, F., Melissano, G., et al. Intraoperative completion cone-beam computed tomography for the assessment of residual lesions after primary treatment of proximal venous outflow obstructions. Phlebology 37 (2022), 55–62.
Tuthill, E., O'Hora, L., O'Donohoe, M., Panci, S., Gilligan, P., Campion, D., et al. Investigation of reference levels and radiation dose associated with abdominal EVAR (endovascular aneurysm repair) procedures across several European Centres. Eur Radiol 27 (2017), 4846–4856.
Farah, J., Gonzalez-Mendez, L.A., Dufay, F., Amir, S., Royer, B., Gabriel, H., et al. Patient exposure and diagnostic reference levels in operating rooms: a multi-centric retrospective study in over 150 private and public French clinics. J Radiol Prot, 2020, 10.1088/1361-6498/abac4f [Epub ahead of print].
Vassileva, J., Rehani, M., Diagnostic reference levels. AJR Am J Roentgenol 204 (2015), W1–W3.
ICRP. Diagnostic reference levels in medical imaging. ICRP Publication 135 Ann ICRP 46 (2017), 1–144.
Rial, R., Vañó, E., Río-Solá, M.L.D., Fernández, J.M., Sánchez, R.M., Santervás, L.A.C., et al. National diagnostic reference levels for endovascular aneurysm repair and optimisation strategies. Eur J Vasc Endovasc Surg 60 (2020), 837–842.
Koenig, T.R., Wolff, D., Mettler, F.A., Wagner, L.K., Skin injuries from fluoroscopically guided procedures: part 1, characteristics of radiation injury. AJR Am J Roentgenol 177 (2001), 3–11.
Koenig, T.R., Mettler, F.A., Wagner, L.K., Skin injuries from fluoroscopically guided procedures: part 2, review of 73 cases and recommendations for minimizing dose delivered to patient. AJR Am J Roentgenol 177 (2001), 13–20.
DiCarlo, A.L., Bandremer, A.C., Hollingsworth, B.A., Kasim, S., Laniyonu, A., Todd, N.F., et al. Cutaneous radiation injuries: models, assessment and treatments. Radiat Res 194 (2020), 315–344.
ICRP. ICRP statement on tissue reactions / early and late effects of radiation in normal tissues and organs – threshold doses for tissue reactions in a radiation protection context. ICRP Publication 118 Ann ICRP 41 (2012), 1–322.
Ozasa, K., Grant, E.J., Kodama, K., Japanese legacy cohorts: the Life Span Study atomic bomb survivor cohort and survivors' offspring. J Epidemiol 28 (2018), 162–169.
National Research Council. Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2. 2006, The National Academies Press, Washington, DC, 422.
Calabrese, E.J., Hormesis: path and progression to significance. Int J Mol Sci, 19, 2018, 2871.
Boice, J.D., The linear nonthreshold (LNT) model as used in radiation protection: an NCRP update. Int J Radiat Biol 93 (2017), 1079–1092.
ICRP. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103 Ann ICRP 36 (2007), 2–4.
Tapiovaara, M., Siiskonen, T., PCXMC: A Monte Carlo Program for Calculating Patient Doses in Medical X-Ray Examinations. 2008, STUK - Radiation and Nuclear Safety Authority, Helsinki, Finland.
Borrego, D., Lowe, E.M., Kitahara, C.M., Lee, C., Assessment of PCXMC for patients with different body size in chest and abdominal x ray examinations: a Monte Carlo simulation study. Phys Med Biol, 63, 2018, 065015.
Harbron, R.W., Abdelhalim, M., Ainsbury, E.A., Eakins, J.S., Alam, A., Lee, C., et al. Patient radiation dose from x-ray guided endovascular aneurysm repair: a Monte Carlo approach using voxel phantoms and detailed exposure information. J Radiol Prot 40 (2020), 704–726.
Mathews, J.D., Forsythe, A.V., Brady, Z., Butler, M.W., Goergen, S.K., Byrnes, G.B., et al. Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ, 346, 2013, f2360.
Vano, E., Gonzalez, L., Fernandez, J.M., Guibelalde, E., Patient dose values in interventional radiology. Br J Radiol 68 (1995), 1215–1220.
Sanchez, R., Vano, E., Fernandez, J.M., Machado, A., Roas, N., Visual and numerical methods to measure patient skin doses in interventional procedures using radiochromic XR-RV2 films. Radiat Prot Dosimetry 147 (2011), 94–98.
Ding, G.X., Malcolm, A.W., An optically stimulated luminescence dosimeter for measuring patient exposure from imaging guidance procedures. Phys Med Biol 58 (2013), 5885–5897.
Struelens, L., Bacher, K., Bosmans, H., Bleeser, F., Hoornaert, M.T., Malchair, F., et al. Establishment of trigger levels to steer the follow-up of radiation effects in patients undergoing fluoroscopically-guided interventional procedures in Belgium. Phys Med 30 (2014), 934–940.
den Boer, A., de Feijter, P.J., Serruys, P.W., Roelandt, J.R., Real-time quantification and display of skin radiation during coronary angiography and intervention. Circulation 104 (2001), 1779–1784.
Khodadadegan, Y., Zhang, M., Pavlicek, W., Paden, R.G., Chong, B., Schueler, B.A., et al. Automatic monitoring of localized skin dose with fluoroscopic and interventional procedures. J Digit Imaging 24 (2011), 626–639.
Rana, V.K., Rudin, S., Bednarek, D.R., A tracking system to calculate patient skin dose in real-time during neurointerventional procedures using a biplane x-ray imaging system. Med Phys, 43, 2016, 5131.
Sanchez, R.M., Vano, E., Fernandez, J.M., Escaned, J., Evaluation of a real-time display for skin dose map in cardiac catheterisation procedures. Radiat Prot Dosimetry 165 (2015), 240–243.
Sanchez, R.M., Vano, E., Fernandez, J.M., Ten, J.I., Mendez Montero, J.V., Armijo, J., et al. Experience with a real time patient skin dose distribution estimator for interventional radiology. 2017, European Congress of Radiology Poster Number: C-0774.
Stecker, M.S., Balter, S., Towbin, R.B., Miller, D.L., Vañó, E., Bartal, G., et al. Guidelines for patient radiation dose management. J Vasc Interv Radiol 20 (2009), S263–S273.
Lee, W.H., Nguyen, P.K., Fleischmann, D., Wu, J.C., DNA damage-associated biomarkers in studying individual sensitivity to low-dose radiation from cardiovascular imaging. Eur Heart J 37 (2016), 3075–3080.
Beels, L., Bacher, K., De Wolf, D., Werbrouck, J., Thierens, H., gamma-H2AX foci as a biomarker for patient X-ray exposure in pediatric cardiac catheterization: are we underestimating radiation risks?. Circulation 120 (2009), 1903–1909.
Sari-Minodier, I., Orsière, T., Auquier, P., Martin, F., Botta, A., Cytogenetic monitoring by use of the micronucleus assay among hospital workers exposed to low doses of ionizing radiation. Mutat Res 629 (2007), 111–121.
Zakeri, F., Hirobe, T., A cytogenetic approach to the effects of low levels of ionizing radiations on occupationally exposed individuals. Eur J Radiol 73 (2010), 191–195.
Nguyen, P.K., Lee, W.H., Li, Y.F., Hong, W.X., Hu, S., Chan, C., et al. Assessment of the radiation effects of cardiac CT angiography using protein and genetic biomarkers. JACC Cardiovasc Imaging 8 (2015), 873–884.
Borghini, A., Vecoli, C., Mercuri, A., Carpeggiani, C., Piccaluga, E., Guagliumi, G., et al. Low-dose exposure to ionizing radiation deregulates the brain-specific microRNA-134 in interventional cardiologists. Circulation 136 (2017), 2516–2518.
Hall, J., Jeggo, P.A., West, C., Gomolka, M., Quintens, R., Badie, C., et al. Ionizing radiation biomarkers in epidemiological studies - An update. Mutat Res Rev Mutat Res 771 (2017), 59–84.
Patel, R., Sweeting, M.J., Powell, J.T., Greenhalgh, R.M., EVAR trial investigators. Endovascular versus open repair of abdominal aortic aneurysm in 15-years' follow-up of the UK endovascular aneurysm repair trial 1 (EVAR trial 1): a randomised controlled trial. Lancet 388 (2016), 2366–2374.
Markar, S.R., Vidal-Diez, A., Sounderajah, V., Mackenzie, H., Hanna, G.B., Thompson, M., et al. A population-based cohort study examining the risk of abdominal cancer after endovascular abdominal aortic aneurysm repair. J Vasc Surg 69 (2019), 1776–1785.
Zoli, S., Trabattoni, P., Dainese, L., Annoni, A., Saccu, C., Fumagalli, M., et al. Cumulative radiation exposure during thoracic endovascular aneurysm repair and subsequent follow-up. Eur J Cardiothorac Surg 42 (2012), 254–259 discussion 259–60.
Balter, S., Hopewell, J.W., Miller, D.L., Wagner, L.K., Zelefsky, M.J., Fluoroscopically guided interventional procedures: a review of radiation effects on patients' skin and hair. Radiology 254 (2010), 326–341.
Zielinski, J.M., Garner, M.J., Band, P.R., Krewski, D., Shilnikova, N.S., Jiang, H., et al. Health outcomes of low-dose ionizing radiation exposure among medical workers: a cohort study of the Canadian national dose registry of radiation workers. Int J Occup Med Environ Health 22 (2009), 149–156.
Preston, D.L., Kitahara, C.M., Freedman, D.M., Sigurdson, A.J., Simon, S.L., Little, M.P., et al. Breast cancer risk and protracted low-to-moderate dose occupational radiation exposure in the US Radiologic Technologists Cohort, 1983–2008. Br J Cancer 115 (2016), 1105–1112.
Rajaraman, P., Doody, M.M., Yu, C.L., Preston, D.L., Miller, J.S., Sigurdson, A.J., et al. Cancer risks in U.S. radiologic technologists working with fluoroscopically guided interventional procedures, 1994–2008. AJR Am J Roentgenol 206 (2016), 1101–1108.
Yoshinaga, S., Hauptmann, M., Sigurdson, A.J., Doody, M.M., Freedman, D.M., Alexander, B.H., et al. Nonmelanoma skin cancer in relation to ionizing radiation exposure among U.S. radiologic technologists. Int J Cancer 115 (2005), 828–834.
Leuraud, K., Richardson, D.B., Cardis, E., Daniels, R.D., Gillies, M., O'Hagan, J.A., et al. Ionising radiation and risk of death from leukaemia and lymphoma in radiation-monitored workers (INWORKS): an international cohort study. Lancet Haematol 2 (2015), e276–e281.
Andreassi, M.G., Piccaluga, E., Guagliumi, G., Del Greco, M., Gaita, F., Picano, E., Occupational health risks in cardiac catheterization laboratory workers. Circ Cardiovasc Interv, 9, 2016, e003273.
Wang, J.X., Zhang, L.A., Li, B.X., Zhao, Y.C., Wang, Z.Q., Zhang, J.Y., et al. Cancer incidence and risk estimation among medical x-ray workers in China, 1950–1995. Health Phys 82 (2002), 455–466.
Berrington, A., Darby, S.C., Weiss, H.A., Doll, R., 100 years of observation on British radiologists: mortality from cancer and other causes 1897–1997. Br J Radiol 74 (2001), 507–519.
Reeves, R.R., Ang, L., Bahadorani, J., Naghi, J., Dominguez, A., Palakodeti, V., et al. Invasive cardiologists are exposed to greater left sided cranial radiation: the BRAIN Study (Brain Radiation Exposure and Attenuation During Invasive Cardiology Procedures). JACC Cardiovasc Interv 8 (2015), 1197–1206.
Roguin, A., Goldstein, J., Bar, O., Goldstein, J.A., Brain and neck tumors among physicians performing interventional procedures. Am J Cardiol 111 (2013), 1368–1372.
Kitahara, C.M., Linet, M.S., Balter, S., Miller, D.L., Rajaraman, P., Cahoon, E.K., et al. Occupational radiation exposure and deaths from malignant intracranial neoplasms of the brain and CNS in U.S. radiologic technologists, 1983–2012. AJR Am J Roentgenol 208 (2017), 1278–1284.
Kleiman, N.J., Radiation cataract. Ann ICRP 41 (2012), 80–97.
Klein, L.W., Miller, D.L., Balter, S., Laskey, W., Haines, D., Norbash, A., et al. Occupational health hazards in the interventional laboratory: time for a safer environment. Radiology 250 (2009), 538–544.
Worgul, B.V., Kundiyev, Y.I., Sergiyenko, N.M., Chumak, V.V., Vitte, P.M., Medvedovsky, C., et al. Cataracts among Chernobyl clean-up workers: implications regarding permissible eye exposures. Radiat Res 167 (2007), 233–243.
Jungi, S., Ante, M., Geisbusch, P., Hoedlmoser, H., Kleinau, P., Bockler, D., Protected and unprotected radiation exposure to the eye lens during endovascular procedures in hybrid operating rooms. Eur J Vasc Endovasc Surg, 2022, 10.1016/j.ejvs.2022.06.016 [Epub ahead of print].
Chodick, G., Bekiroglu, N., Hauptmann, M., Alexander, B.H., Freedman, D.M., Doody, M.M., et al. Risk of cataract after exposure to low doses of ionizing radiation: a 20-year prospective cohort study among US radiologic technologists. Am J Epidemiol 168 (2008), 620–631.
Elmaraezy, A., Ebraheem Morra, M., Tarek Mohammed, A., Al-Habaa, A., Elgebaly, A., Abdelmotaleb Ghazy, A., et al. Risk of cataract among interventional cardiologists and catheterization lab staff: a systematic review and meta-analysis. Catheter Cardiovasc Interv 90 (2017), 1–9.
Karatasakis, A., Brilakis, H.S., Danek, B.A., Karacsonyi, J., Martinez-Parachini, J.R., Nguyen-Trong, P.J., et al. Radiation-associated lens changes in the cardiac catheterization laboratory: Results from the IC-CATARACT (CATaracts Attributed to RAdiation in the CaTh lab) study. Catheter Cardiovasc Interv 91 (2018), 647–654.
Bhatti, P., Sigurdson, A.J., Mabuchi, K., Can low-dose radiation increase risk of cardiovascular disease?. Lancet 372 (2008), 697–699.
Little, M.P., Tawn, E.J., Tzoulaki, I., Wakeford, R., Hildebrandt, G., Paris, F., et al. A systematic review of epidemiological associations between low and moderate doses of ionizing radiation and late cardiovascular effects, and their possible mechanisms. Radiat Res 169 (2008), 99–109.
Galper, S.L., Yu, J.B., Mauch, P.M., Strasser, J.F., Silver, B., Lacasce, A., et al. Clinically significant cardiac disease in patients with Hodgkin lymphoma treated with mediastinal irradiation. Blood 117 (2011), 412–418.
Liu, J.J., Freedman, D.M., Little, M.P., Doody, M.M., Alexander, B.H., Kitahara, C.M., et al. Work history and mortality risks in 90,268 US radiological technologists. Occup Environ Med 71 (2014), 819–835.
European Commission. Directorate-General for Energy Directorate D — Nuclear Safety & Fuel Cycle Unit D.3 — Radiation Protection. European Guidelines on Medical Physics Expert. Radiation Protection No. 174, 2014 Available at: https://ec.europa.eu/energy/sites/ener/files/documents/174.pdf. (Accessed 9 January 2020)
Casar, B., Lopes Mdo, C., Drljevic, A., Gershkevitsh, E., Pesznyak, C., Medical physics in Europe following recommendations of the International Atomic Energy Agency. Radiol Oncol 50 (2016), 64–72.
National Council on Radiation Protection and Measurements. Medical Radiation Exposure of Patients in the United States. NCRP Report No. 184, 2019.
Mettler, F.A. Jr., Mahesh, M., Bhargavan-Chatfield, M., Chambers, C.E., Elee, J.G., Frush, D.P., et al. Patient exposure from radiologic and nuclear medicine procedures in the United States: procedure volume and effective dose for the period 2006–2016. Radiology 295 (2020), 418–427.
National Council on Radiation Protection and Measurements. Preconception and Prenatal Radiation Exposure: Health Effects and Protective Guidance. NCRP Report No. 174, 2013.
Oatway, W., Jones, A., Holmes, S., Watson, S., Cabianca, T., Ionising Radiation Exposure of the UK Population: 2010 Review. PHE Report Series PHE-CRCE-026, 2016 Available at: https://www.phe-protectionservices.org.uk/cms/assets/gfx/content/resource_3595csc0e8517b1f.pdf. (Accessed 20 November 2020)
Stahl, C.M., Meisinger, Q.C., Andre, M.P., Kinney, T.B., Newton, I.G., Radiation risk to the fluoroscopy operator and staff. AJR Am J Roentgenol 207 (2016), 737–744.
Weiss, S., Van Herzeele, I., Radiation protection training for vascular surgeons in twenty-one European countries. Eur J Vasc Endovasc Surg 59 (2020), 512–513.
Shaw, P.M., Vouyouka, A., Reed, A., Time for radiation safety program guidelines for pregnant trainees and vascular surgeons. J Vasc Surg 55 (2012), 862–868.
Kamiya, K., Ozasa, K., Akiba, S., Niwa, O., Kodama, K., Takamura, N., et al. Long-term effects of radiation exposure on health. Lancet 386 (2015), 469–478.
Grant, E.J., Furukawa, K., Sakata, R., Sugiyama, H., Sadakane, A., Takahashi, I., et al. Risk of death among children of atomic bomb survivors after 62 years of follow-up: a cohort study. Lancet Oncol 16 (2015), 1316–1323.
Dockerty, J., Jolly, J., Kumar, A., Larsen, T., McBride, D., McGill, S., et al. The New Zealand nuclear veteran and families study, exploring the options to assess heritable health outcomes. N Z Med J 133 (2020), 70–78.
Vu, C.T., Elder, D.H., Pregnancy and the working interventional radiologist. Semin Intervent Radiol 30 (2013), 403–407.
Chandra, V., Dorsey, C., Reed, A.B., Shaw, P., Banghart, D., Zhou, W., Monitoring of fetal radiation exposure during pregnancy. J Vasc Surg 58 (2013), 710–714.
Dauer, L.T., Thornton, R.H., Miller, D.L., Damilakis, J., Dixon, R.G., Marx, M.V., et al. Radiation management for interventions using fluoroscopic or computed tomographic guidance during pregnancy: a joint guideline of the Society of Interventional Radiology and the Cardiovascular and Interventional Radiological Society of Europe with Endorsement by the Canadian Interventional Radiology Association. J Vasc Interv Radiol 23 (2012), 19–32.
Suarez, R.C., Berard, P., Harrison, J.D., Melo, D.R., Nosske, D., Stabin, M., et al. Review of standards of protection for pregnant workers and their offspring. Radiat Prot Dosimetry 127 (2007), 19–22.
Chu, B., Miodownik, D., Williamson, M.J., Gao, Y., St Germain, J., Dauer, L.T., Radiological protection for pregnant women at a large academic medical Cancer Center. Phys Med 43 (2017), 186–189.
Dauer, L.T., Miller, D.L., Schueler, B., Silberzweig, J., Balter, S., Bartal, G., et al. Occupational radiation protection of pregnant or potentially pregnant workers in IR: a joint guideline of the Society of Interventional Radiology and the Cardiovascular and Interventional Radiological Society of Europe. J Vasc Interv Radiol 26 (2015), 171–181.
Sarkozy, A., De Potter, T., Heidbuchel, H., Ernst, S., Kosiuk, J., Vano, E., et al. Occupational radiation exposure in the electrophysiology laboratory with a focus on personnel with reproductive potential and during pregnancy: a European Heart Rhythm Association (EHRA) consensus document endorsed by the Heart Rhythm Society (HRS). Europace 19 (2017), 1909–1922.
Delichas, M., Psarrakos, K., Molyvda-Athanassopoulou, E., Giannoglou, G., Sioundas, A., Hatziioannou, K., et al. Radiation exposure to cardiologists performing interventional cardiology procedures. Eur J Radiol 48 (2003), 268–273.
Bartal, G., Roguin, A., Paulo, G., Call for implementing a radiation protection culture in fluoroscopically guided interventional procedures. AJR Am J Roentgenol 206 (2016), 1110–1111.
Attigah, N., Oikonomou, K., Hinz, U., Knoch, T., Demirel, S., Verhoeven, E., et al. Radiation exposure to eye lens and operator hands during endovascular procedures in hybrid operating rooms. J Vasc Surg 63 (2016), 198–203.
Chodick, G., Bekiroglu, N., Hauptmann, M., Alexander, B.H., Freedman, D.M., Doody, M.M., et al. Risk of cataract after exposure to low doses of ionizing radiation: a 20-year prospective cohort study among US radiologic technologists. Am J Epidemiol 168 (2008), 620–631.
Vano, E., Kleiman, N.J., Duran, A., Romano-Miller, M., Rehani, M.M., Radiation-associated lens opacities in catheterization personnel: results of a survey and direct assessments. J Vasc Interv Radiol 24 (2013), 197–204.
Monastiriotis, S., Comito, M., Labropoulos, N., Radiation exposure in endovascular repair of abdominal and thoracic aortic aneurysms. J Vasc Surg 62 (2015), 753–761.
Panuccio, G., Greenberg, R.K., Wunderle, K., Mastracci, T.M., Eagleton, M.G., Davros, W., Comparison of indirect radiation dose estimates with directly measured radiation dose for patients and operators during complex endovascular procedures. J Vasc Surg 53 (2011), 885–894 e1.
Bacchim Neto, F.A., Alves, A.F., Mascarenhas, Y.M., Nicolucci, P., Pina, D.R., Occupational radiation exposure in vascular interventional radiology: a complete evaluation of different body regions. Phys Med 32 (2016), 1019–1024.
National Council on Radiation Protection and Measurements. Use of personal monitors to estimate effective dose equivalent and effective dose to workers for external exposure to low-LET radiation. NCRP Report No. 122, 1995.
Bordy, J.M., Gualdrini, G., Daures, J., Mariotti, F., Principles for the design and calibration of radiation protection dosemeters for operational and protection quantities for eye lens dosimetry. Radiat Prot Dosimetry 144 (2011), 257–261.
Carinou, E., Ferrari, P., Bjelac, O.C., Gingaume, M., Merce, M.S., O'Connor, U., Eye lens monitoring for interventional radiology personnel: dosemeters, calibration and practical aspects of H p (3) monitoring. A 2015 review. J Radiol Prot 35 (2015), R17–R34.
Andrade, G., Khoury, H.J., Garzon, W.J., Dubourcq, F., Bredow, M.F., Monsignore, L.M., et al. Radiation exposure of patients and interventional radiologists during prostatic artery embolization: a prospective single-operator study. J Vasc Interv Radiol 28 (2017), 517–521.
Anderson, N.E., King, S.H., Miller, K.L., Variations in dose to the extremities of vascular/interventional radiologists. Health Phys 76 (1999), S39–S40.
Albayati, M.A., Kelly, S., Gallagher, D., Dourado, R., Patel, A.S., Saha, P., et al. Editor's choice–Angulation of the C-arm during complex endovascular aortic procedures increases radiation exposure to the head. Eur J Vasc Endovasc Surg 49 (2015), 396–402.
European Commission. Directorate-General for Energy and Transport Directorate H — Nuclear Energy Unit H.4 — Radiation Protection. Technical Recommendations for Monitoring Individuals Occupationally Exposed to External Radiation. Radiation Protection No. 160, 2009 Available at: https://ec.europa.eu/energy/sites/ener/files/documents/160.pdf.
Miller, D.L., Balter, S., Cole, P.E., Lu, H.T., Berenstein, A., Albert, R., et al. Radiation doses in interventional radiology procedures: the RAD-IR study: part II: skin dose. J Vasc Interv Radiol 14 (2003), 977–990.
Komemushi, A., Suzuki, S., Sano, A., Kanno, S., Kariya, S., Nakatani, M., et al. Radiation dose of nurses during IR procedures: a controlled trial evaluating operator alerts before nursing tasks. J Vasc Interv Radiol 25 (2014), 1195–1199.
Cameron, J., Radiation dosimetry. Environ Health Perspect 91 (1991), 45–48.
Poudel, S., Weir, L., Dowling, D., Medich, D.C., Changes in occupational radiation exposures after incorporation of a real-time dosimetry system in the interventional radiology suite. Health Phys 111 (2016), S166–S171.
Miljanic, S., Knezevic, Z., Stuhec, M., Ranogajec-Komor, M., Krpan, K., Vekic, B., Energy dependence of new thermoluminescent detectors in terms of HP(10) values. Radiat Prot Dosimetry 106 (2003), 253–256.
Ito, H., Kobayashi, I., Watanabe, K., Ochi, S., Yanagawa, N., Evaluation of scattered radiation from fluoroscopy using small OSL dosimeters. Radiol Phys Technol 12 (2019), 393–400.
Chida, K., Kato, M., Inaba, Y., Kobayashi, R., Nakamura, M., Abe, Y., et al. Real-time patient radiation dosimeter for use in interventional radiology. Phys Med 32 (2016), 1475–1478.
Inaba, Y., Nakamura, M., Chida, K., Zuguchi, M., Effectiveness of a novel real-time dosimeter in interventional radiology: a comparison of new and old radiation sensors. Radiol Phys Technol 11 (2018), 445–450.
Baptista, M., Figueira, C., Teles, P., Cardoso, G., Zankl, M., Vaz, P., Assessment of the occupational exposure in real time during interventional cardiology procedures. Radiat Prot Dosimetry 165 (2015), 304–309.
Baumann, F., Katzen, B.T., Carelsen, B., Diehm, N., Benenati, J.F., Pena, C.S., The effect of realtime monitoring on dose exposure to staff within an interventional radiology setting. Cardiovasc Intervent Radiol 38 (2015), 1105–1111.
Muller, M.C., Welle, K., Strauss, A., Naehle, P.C., Pennekamp, P.H., Weber, O., et al. Real-time dosimetry reduces radiation exposure of orthopaedic surgeons. Orthop Traumatol Surg Res 100 (2014), 947–951.
Bogaert, E., Bacher, K., Thierens, H., A large-scale multicentre study in Belgium of dose area product values and effective doses in interventional cardiology using contemporary X-ray equipment. Radiat Prot Dosimetry 128 (2008), 312–323.
Sailer, A.M., Vergoossen, L., Paulis, L., van Zwam, W.H., Das, M., Wildberger, J.E., et al. Personalized feedback on staff dose in fluoroscopy-guided interventions: a new era in radiation dose monitoring. Cardiovasc Intervent Radiol 40 (2017), 1756–1762.
Borrego, D., Kitahara, C.M., Balter, S., Yoder, C., Occupational doses to medical staff performing or assisting with fluoroscopically guided interventional procedures. Radiology 294 (2020), 353–359.
National Council on Radiation Protection and Measurements. Uncertainties in the Measurement and Dosimetry of External Radiation: Recommendations of the National Council on Radiation Protection and Measurements. NCRP Report No. 158, 2007.
ICRP. Radiological Protection in Medicine. ICRP Publication 105 Ann ICRP 37 (2007), 1–63.
Hertault, A., Maurel, B., Midulla, M., Bordier, C., Desponds, L., Saeed Kilani, M., et al. Editor's Choice - Minimizing radiation exposure during endovascular procedures: basic knowledge, literature review, and reporting standards. Eur J Vasc Endovasc Surg 50 (2015), 21–36.
Resch, T.A., Törnqvist, P., Sonesson, B., Dias, N.V., Techniques to reduce radiation for patients and operators during aortic endografting. J Cardiovasc Surg (Torino) 57 (2016), 178–184.
Maurel, B., Hertault, A., Mont, LSd, Cazaban, S., Rinckenbach, S., A multicenter survey of endovascular theatre equipment and radiation exposure in France during iliac procedures. Ann Vasc Surg 40 (2017), 50–56.
Stangenberg, L., Shuja, F., van der Bom, I.M.J., van Alfen, M.H.G., Hamdan, A.D., Wyers, M.C., et al. Modern fixed imaging systems reduce radiation exposure to patients and providers. Vasc Endovascular Surg 52 (2018), 52–58.
Doyen, B., Maurel, B., Hertault, A., Vlerick, P., Mastracci, T., Herzeele, I.V., et al. Radiation safety performance is more than simply measuring doses! development of a radiation safety rating scale. Cardiovasc Intervent Radiol 43 (2020), 1331–1341.
Dawson, J., Haulon, S., Radiation Stewardship: Radiation Exposure, Protection and Safety in Contemporary Endovascular Practice. Fitridge, R., (eds.) Mechanisms of Vascular Disease - A Reference Book for Vascular Specialists, 2nd edn, 2020, Springer Nature.
Machan, L., The eyes have it. Tech Vasc Interv Radiol 21 (2018), 21–25.
Pitton, M.B., Kloeckner, R., Schneider, J., Ruckes, C., Bersch, A., Düber, C., Radiation exposure in vascular angiographic procedures. J Vasc Interv Radiol 23 (2012), 1487–1495.
Kim, K.P., Miller, D.L., Balter, S., Kleinerman, R.A., Linet, M.S., Kwon, D., et al. Occupational radiation doses to operators performing cardiac catheterization procedures. Health Phys 94 (2008), 211–227.
Bicknell, C.D., Occupational radiation exposure and the vascular interventionalist. Eur J Vasc Endovasc Surg, 46, 2013, 431.
Lederman, H.M., Khademian, Z.P., Felice, M., Hurh, P.J., Dose reduction fluoroscopy in pediatrics. Pediatr Radiol 32 (2002), 844–848.
Sanchez, R.M., Vano, E., Salinas, P., Gonzalo, N., Escaned, J., Fernández, J.M., High filtration in interventional practices reduces patient radiation doses but not always scatter radiation doses. Br J Radiol, 94, 2021, 20200774.
de Ruiter, Q.M., Gijsberts, C.M., Hazenberg, C.E., Moll, F.L., van Herwaarden, J.A., Radiation awareness for endovascular abdominal aortic aneurysm repair in the hybrid operating room. An instant patient risk chart for daily practice. J Endovasc Ther 24 (2017), 425–434.
Gentric, J.C., Jannin, P., Trelhu, B., Riffaud, L., Raoult, H., Ferré, J.C., et al. Effects of low-dose protocols in endovascular treatment of intracranial aneurysms: development of workflow task analysis during cerebral endovascular procedures. AJR Am J Roentgenol 201 (2013), W322–W325.
Baumann, F., Peña, C., Kloeckner, R., Katzen, B.T., Gandhi, R., Benenati, J.B., The effect of a new angiographic imaging technology on radiation dose in visceral embolization procedures. Vasc Endovascular Surg 51 (2017), 183–187.
Ahmed, T.A.N., Taha, S., Radiation exposure, the forgotten enemy: Toward implementation of national safety program. Egypt Heart J 69 (2017), 55–62.
Read, P., Meyer, M.-P., Restoration of Motion Picture Film. Chapter 2 Light, Sound And Audiovisual Perception, 1st edn, 2000, Butterworth Heinemann.
Rolls, A.E., Rosen, S., Constantinou, J., Davis, M., Cole, J., Desai, M., et al. Introduction of a team based approach to radiation dose reduction in the enhancement of the overall radiation safety profile of FEVAR. Eur J Vasc Endovasc Surg 52 (2016), 451–457.
Hirshfeld, J.W., Ferrari, V.A., Bengel, F.M., Bergersen, L., Chambers, C.E., Einstein, A.J., et al. 2018 ACC/HRS/NASCI/SCAI/SCCT Expert consensus document on optimal use of ionizing radiation in cardiovascular imaging: best practices for safety and effectiveness: a report of the American College of Cardiology Task Force on Expert Consensus Decision Pathways. J Am Coll Cardiol 71 (2018), e283–e351.
Patel, A.P., Gallacher, D., Dourado, R., Lyons, O., Smith, A., Zayed, H., et al. Occupational radiation exposure during endovascular aortic procedures. Eur J Vasc Endovasc Surg 46 (2013), 424–430.
Layton, K.F., Kallmes, D.F., Cloft, H.J., Schueler, B.A., Sturchio, G.M., Radiation exposure to the primary operator during endovascular surgical neuroradiology procedures. AJNR Am J Neuroradiol 27 (2006), 742–743.
Usai, M.V., Schafers, J., Wunderle, K., Torsello, G.F., Panuccio, G., Radiation dose distribution in endovascular aneurysm repair in the hybrid operating room according to the specific phases of the procedure. Eur J Vasc Endovasc Surg 56 (2018), e17–e18.
Zhou, W., Radiation exposure of vascular surgery patients beyond endovascular procedures. J Vasc Surg 53 (2011), 39S–43S.
Sharafuddin, M.J., Marjan, A.E., Current status of carbon dioxide angiography. J Vasc Surg 66 (2017), 618–637.
Young, M., Mohan, J., Carbon Dioxide Angiography. [Updated 2021 Jul 9] StatPearls [Internet], 2021 Jan, StatPearls Publishing, Treasure Island (FL) Available at: https://www.ncbi.nlm.nih.gov/books/NBK534244/.
Haqqani, O.P., Agarwal, P.K., Halin, N.M., Iafrati, M.D., Defining the radiation scatter cloud in the interventional suite. J Vasc Surg 58 (2013), 1339–1345.
Miller, D.L., Make radiation protection a habit. Tech Vasc Interv Radiol 21 (2018), 37–42.
Lindsay, B.D., Eichung, J.O., Ambos, H.D., Cain, M.E., Radiation exposure to patients and medical personnel during radiofrequency catheter ablation for supraventricular tachycardia. Am J Cardiol 70 (1992), 218–223.
Balter, S., Always on my mind. Tech Vasc Interv Radiol 21 (2018), 26–31.
Gould, R., McFadden, S.L., Sands, A.J., McCrossan, B.A., Horn, S., Prise, K.M., et al. Removal of scatter radiation in paediatric cardiac catheterisation: a randomised controlled clinical trial. J Radiol Prot 37 (2017), 742–760.
Bang, V.V., Levy, M.S., Radiation safety with dose reduction technology: the buck stops at zero dose. Catheter Cardiovasc Interv 91 (2018), 1200–1201.
Kirkwood, M.L., Guild, J.B., Arbique, G.M., Tsai, S., Modrall, J.G., Anderson, J.A., et al. New image-processing and noise-reduction software reduces radiation dose during complex endovascular procedures. J Vasc Surg 64 (2016), 1357–1365.
van Strijen, M.J., Grünhagen, T., Mauti, M., Zähringer, M., Gaines, P.A., Robinson, G.J., et al. Evaluation of a noise reduction imaging technology in iliac digital subtraction angiography: noninferior clinical image quality with lower patient and scatter dose. J Vasc Interv Radiol 26 (2015), 642–650.
Miller, C., Kendrick, D., Shevitz, A., Kim, A., Baele, H., Jordan, D., et al. Evaluating strategies for reducing scattered radiation in fixed-imaging hybrid operating suites. J Vasc Surg 67 (2018), 1227–1233.
Stansfield, T., Parker, R., Masson, N., Lewis, D., The endovascular preprocedural run through and brief: a simple intervention to reduce radiation dose and contrast load in endovascular aneurysm repair. Vasc Endovascular Surg 50 (2016), 241–246.
Kakkos, S.K., Tsolakis, I.A., Commentary on “Pre-operative simulation of the appropriate C-arm position using computed tomography post-processing software reduces radiation and contrast medium exposure during EVAR procedures”. Eur J Vasc Endovasc Surg, 53, 2017, 275.
Stahlberg, E., Planert, M., Panagiotopoulos, N., Horn, M., Wiedner, M., Kleemann, M., et al. Pre-operative simulation of the appropriate C-arm position using computed tomography post-processing software reduces radiation and contrast medium exposure during EVAR procedures. Eur J Vasc Endovasc Surg 53 (2017), 269–274.
Molinari, G.J., Guillaumon, A.T., Dalbem, A.M., Efficacy analysis of a script-based guide for EVAR execution: is it possible to reduce patient exposure to contrast, operative time and blood loss even when advanced technologies are not available?. Braz J Cardiovasc Surg 30 (2015), 650–656.
Molinari, G.P., About image manipulation of the CTA on software to simulate the appropriate intra-operative C-arm position. Eur J Vasc Endovasc Surg 55 (2018), 902–903.
Hua, L., Doan, K., Bajic, N., Fitridge, R., Dawson, J., Procedural benefits of three-dimensional image fusion angiography during EVAR are associated with improved postoperative outcomes. J Vasc Surg 62 (2015), 536–537.
Maurel, B., Martin-Gonzalez, T., Chong, D., Irwin, A., Guimbretière, G., Davis, M., et al. A prospective observational trial of fusion imaging in infrarenal aneurysms. J Vasc Surg 68 (2018), 1706–1713.
Dias, N.V., Billberg, H., Sonesson, B., Törnqvist, P., Resch, T., Kristmundsson, T., The effects of combining fusion imaging, low-frequency pulsed fluoroscopy, and low-concentration contrast agent during endovascular aneurysm repair. J Vasc Surg 63 (2016), 1147–1155.
McNally, M.M., Scali, S.T., Feezor, R.J., Neal, D., Huber, T.S., Beck, A.W., Three-dimensional fusion computed tomography decreases radiation exposure, procedure time, and contrast use during fenestrated endovascular aortic repair. J Vasc Surg 61 (2015), 309–316.
Ahmad, W., Obeidi, Y., Majd, P., Brunkwall, J.S., The 2D-3D registration method in image fusion is accurate and helps to reduce the used contrast medium, radiation, and procedural time in standard EVAR procedures. Ann Vasc Surg 51 (2018), 177–186.
Goudeketting, S.R., Heinen, S.G.H., Ünlü, Ç., van den Heuvel, D.A.F., de Vries, J.-P.P.M., van Strijen, M.J., et al. Pros and cons of 3D image fusion in endovascular aortic repair: a systematic review and meta-analysis. J Endovasc Ther 24 (2017), 595–603.
Edsfeldt, A., Sonesson, B., Rosén, H., Petri, M.H., Hongku, K., Resch, T., et al. Validation of a new method for 2D fusion imaging registration in a system prepared only for 3D. J Endovasc Ther 27 (2020), 468–472.
Carrell, T.W.G., Modarai, B., Brown, J.R.I., Penney, G.P., Feasibility and limitations of an automated 2D-3D rigid image registration system for complex endovascular aortic procedures. J Endovasc Ther 17 (2010), 527–533.
Southerland, K.W., Nag, U., Turner, M., Gilmore, B., McCann, R., Long, C., et al. IF09. Image-based three-dimensional fusion computed tomography decreases radiation exposure, fluoroscopy time, and procedure time during endovascular aortic aneurysm repair. J Vasc Surg, 67, 2018, e61.
de Ruiter, Q.M., Reitsma, J.B., Moll, F.L., van Herwaarden, J.A., Meta-analysis of cumulative radiation duration and dose during EVAR using mobile, fixed, or fixed/3D fusion C-arms. J Endovasc Ther 23 (2016), 944–956.
Mougin, J., Louis, N., Maupas, E., Goueffic, Y., Fabre, D., Haulon, S., Fusion imaging guidance for endovascular recanalization of peripheral occlusive disease. J Vasc Surg 75 (2022), 610–617.
Livingstone, R.S., Chase, D., Varghese, A., George, P.V., George, O.K., Transition from image intensifier to flat panel detector in interventional cardiology: impact of radiation dose. J Med Phys 40 (2015), 24–28.
Bokou, C., Schreiner-Karoussou, A., Breisch, R., Beissel, J., Changing from image intensifier to flat detector technology for interventional cardiology procedures: a practical point of view. Radiat Prot Dosimetry 129 (2008), 83–86.
Prieto, C., Vano, E., Fernandez, J.M., Martinez, D., Sanchez, R., Increases in patient doses need to be avoided when upgrading interventional cardiology systems to flat detectors. Radiat Prot Dosimetry 147 (2011), 83–85.
Tsapaki, V., Kottou, S., Kollaros, N., Dafnomili, P., Koutelou, M., Vano, E., et al. Comparison of a conventional and a flat-panel digital system in interventional cardiology procedures. Br J Radiol 77 (2004), 562–567.
Wiesinger, B., Kirchner, S., Blumenstock, G., Herz, K., Schmehl, J., Claussen, C.D., et al. Difference in dose area product between analog image intensifier and digital flat panel detector in peripheral angiography and the effect of BMI. Rofo 185 (2013), 153–159.
Wiesinger, B., Stütz, A., Schmehl, J., Claussen, C.D., Wiskirchen, J., Comparison of digital flat-panel detector and conventional angiography machines: evaluation of stent detection rates, visibility scores, and dose-area products. AJR Am J Roentgenol 198 (2012), 946–954.
Spira, D., Kirchner, S., Blumenstock, G., Herz, K., Ketelsen, D., Wiskirchen, J., et al. Therapeutic angiographic procedures: differences in dose area product between analog image intensifier and digital flat panel detector. Acta Radiol 57 (2015), 587–594.
Kuon, E., Weitmann, K., Hoffmann, W., Dorr, M., Reffelmann, T., Hummel, A., et al. Efficacy of a minicourse in radiation-reducing techniques in invasive cardiology: a multicenter field study. JACC Cardiovasc Interv 7 (2014), 382–390.
Suzuki, S., Furui, S., Kobayashi, I., Yamauchi, T., Kohtake, H., Takeshita, K., et al. Radiation dose to patients and radiologists during transcatheter arterial embolization: comparison of a digital flat-panel system and conventional unit. AJR Am J Roentgenol 185 (2005), 855–859.
Chida, K., Inaba, Y., Saito, H., Ishibashi, T., Takahashi, S., Kohzuki, M., et al. Radiation dose of interventional radiology system using a flat-panel detector. AJR Am J Roentgenol 193 (2009), 1680–1685.
Dragusin, O., Breisch, R., Bokou, C., Beissel, J., Does a flat panel detector reduce the patient radiation dose in interventional cardiology?. Radiat Prot Dosimetry 139 (2010), 266–270.
Wang, J., Blackburn, T.J., The AAPM/RSNA Physics Tutorial for Residents: X-ray image intensifiers for fluoroscopy. Radiographics 20 (2000), 1471–1477.
SUNY Upstate Medical University, Syracruse, NY. Radiology. The Image Intensifier (II). Available at: http://www.upstate.edu/radiology/education/rsna/fluoro/iisize.php [Accessed 13 December 2020].
Hasegawa, K., Umemoto, N., Inoue, S., Iio, Y., Shibata, N., Mizutani, T., et al. Digital zoom is a useful, simple, and cost-effective method of reducing radiation exposure in percutaneous coronary intervention. Cardiovasc Interv Ther 35 (2020), 353–360.
Kato, M., Chida, K., Yoshida, K., Sasaki, F., Sasaki, M., Oosaka, H., et al. Reduction method of patients’ radiation dose considering the size of field of view with a digital cine X-ray system loading a flat-panel detector. Japan J Radiolog Technol 67 (2011), 1443–1447.
Chapple, C.-L., Bradley, A., Murray, M., Orr, P., Reay, J., Riley, P., et al. Radiation safety culture in the UK medical sector: a top to bottom strategy. Radiat Prot Dosimetry 173 (2016), 80–86.
Beathard, G.A., Urbanes, A., Litchfield, T., Radiation dose associated with dialysis vascular access interventional procedures in the interventional nephrology facility. Semin Dial 26 (2013), 503–510.
Hertault, A., Rhee, R., Antoniou, G.A., Adam, D., Tonda, H., Rousseau, H., et al. Radiation dose reduction during EVAR: results from a prospective multicentre study (the REVAR Study). Eur J Vasc Endovasc Surg 56 (2018), 426–433.
Domingos, L.F., García, E.M.S.N., Castillo, D.G., Ruiz, C.F., Fernández, I.E., Puerta, C.V., Radioprotection measures during the learning curve with hybrid operating rooms. Ann Vasc Surg 50 (2018), 253–258.
Maurel, B., Sobocinski, J., Perini, P., Guillou, M., Midulla, M., Azzaoui, R., et al. Evaluation of radiation during EVAR performed on a mobile C-arm. Eur J Vasc Endovasc Surg 43 (2012), 16–21.
Bruschi, A., Michelagnoli, S., Chisci, E., Mazzocchi, S., Panci, S., Didona, A., et al. A comparison study of radiation exposure to patients during EVAR and Dyna CT in an angiosuite vs. an operating theatre. Radiat Prot Dosimetry 163 (2015), 491–498.
Varu, V.N., Greenberg, J.I., Lee, J.T., Improved efficiency and safety for EVAR with utilization of a hybrid room. Eur J Vasc Endovasc Surg 46 (2013), 675–679.
Fossaceca, R., Brambilla, M., Guzzardi, G., Cerini, P., Renghi, A., Valzano, S., et al. The impact of radiological equipment on patient radiation exposure during endovascular aortic aneurysm repair. Eur Radiol 22 (2012), 2424–2431.
Kendrick, D.E., Miller, C.P., Moorehead, P.A., Kim, A.H., Baele, H.R., Wong, V.L., et al. Comparative occupational radiation exposure between fixed and mobile imaging systems. J Vasc Surg 63 (2016), 190–197.
Rehman, Z.U., Choksy, S., Howard, A., Carter, J., Kyriakidis, K., Elizabeth, D., et al. Comparison of patient radiation dose and contrast use during EVAR in a dedicated hybrid vascular OR and mobile imaging. Ann Vasc Surg 61 (2019), 278–283.
Hertault, A., Bianchini, A., Amiot, S., Chenorhokian, H., Laurent-Daniel, F., Chakfé, N., et al. Comprehensive literature review of radiation levels during endovascular aortic repair in cathlabs and operating theatres. Eur J Vasc Endovasc Surg 60 (2020), 374–385.
Guillou, M., Maurel, B., Necib, H., Vent, P.-A., Costargent, A., Chaillou, P., et al. Comparison of radiation exposure during endovascular treatment of peripheral arterial disease with flat-panel detectors on mobile C-arm versus fixed systems. Ann Vasc Surg 47 (2018), 104–113.
McAnelly, S.-L., Kelleher, D., Ibrahim, R., Antoniou, G.A., Does the use of a hybrid theatre in vascular surgery result in improved clinical outcomes and radiation protection?. Int Angiol 36 (2017), 289–292.
Kaplan, D.J., Patel, J.N., Liporace, F.A., Yoon, R.S., Intraoperative radiation safety in orthopaedics: a review of the ALARA (As low as reasonably achievable) principle. Patient Saf Surg, 10, 2016, 27.
Yeo, C.H., Gordon, R., Nusem, I., Improving operating theatre communication between the orthopaedics surgeon and radiographer. ANZ J Surg 84 (2014), 316–319.
Agarwal, S., Parashar, A., Bajaj, N.S., Khan, I., Ahmad, I., Heupler, F.A., et al. Relationship of beam angulation and radiation exposure in the cardiac catheterization laboratory. JACC Cardiovasc Interv 7 (2014), 558–566.
Oi, I., Remote contrast injector in ERCP for protection from X-ray exposure. Endoscopy 14 (1982), 180–181.
Goss, J.E., Ramo, B.W., Raff, G.L., Maddoux, G.L., Heuser, R.R., Shadoff, N., et al. Power injection of contrast media during percutaneous transluminal coronary artery angioplasty. Cathet Cardiovasc Diagn 16 (1989), 195–198.
Santen, B.C., Kan, K., Velthuyse, H.J.M., Julius, H.W., Kan, C., Exposure of the radiologist to scattered radiation during angiography. Radiology 115 (1975), 447–450.
Marque, N., Jégou, A., Varenne, O., Salengro, E., Allouch, P., Margot, O., et al. Impact of an extension tube on operator radiation exposure during coronary procedures performed through the radial approach. Arch Cardiovasc Dis 102 (2009), 749–754.
Larsen, A.S., Osteras, B.H., Step back from the patient: reduction of radiation dose to the operator by the systematic use of an automatic power injector for contrast media in an interventional angiography suite. Acta Radiol 53 (2012), 330–334.
Meghzifene, A., Vano, E., Le Heron, J., Cheung, K.Y., Roles and responsibilities of medical physicists in radiation protection. Eur J Radiol 76 (2010), 24–27.
Badawy, M.K., Deb, P., Chan, R., Farouque, O., A review of radiation protection solutions for the staff in the cardiac catheterisation laboratory. Heart Lung Circ 25 (2016), 961–967.
International Atomic Energy Agency. Available at: https://www.iaea.org.
Mori, H., Koshida, K., Ishigamori, O., Matsubara, K., Evaluation of the effectiveness of X-ray protective aprons in experimental and practical fields. Radiol Phys Technol 7 (2014), 158–166.
Chou, L.B., Chandran, S., Harris, A.H., Tung, J., Butler, L.M., Increased breast cancer prevalence among female orthopedic surgeons. J Womens Health (Larchmt) 21 (2012), 683–689.
Valone, L.C., Chambers, M., Lattanza, L., James, M.A., Breast radiation exposure in female orthopaedic surgeons. J Bone Joint Surg Am 98 (2016), 1808–1813.
Van Nortwick, S.S., Leonard, D.A., Finlay, A.K., Chou, L., Valone, L.C., Methods for reducing intraoperative breast radiation exposure of orthopaedic surgeons. J Bone Joint Surg Am 103 (2021), 1646–1651.
Livingstone, R.S., Varghese, A., Keshava, S.N., A study on the use of radiation-protective apron among interventionists in radiology. J Clin Imaging Sci, 8, 2018, 34.
Klein, L.W., Miller, D.L., Balter, S., Laskey, W., Haines, D., Norbash, A., et al. Occupational health hazards in the interventional laboratory: time for a safer environment. J Vasc Interv Radiol 20 (2009), 147–152.
Livingstone, R.S., Varghese, A., A simple quality control tool for assessing integrity of lead equivalent aprons. Indian J Radiol Imaging 28 (2018), 258–262.
Tayebi, M., Shooli, F.S., Saeedi-Moghadam, M., Evaluation of the scattered radiations of lead and lead-free aprons in diagnostic radiology by MCNPX. Technol Health Care 25 (2017), 513–520.
Johansen, S., Hauge, I.H.R., Hogg, P., England, A., Lanca, L., Gunn, C., et al. Are antimony-bismuth aprons as efficient as lead rubber aprons in providing shielding against scattered radiation?. J Med Imaging Radiat Sci 49 (2018), 201–206.
Kazempour, M., Saeedimoghadam, M., Shekoohi Shooli, F., Shokrpour, N., Assessment of the radiation attenuation properties of several lead free composites by Monte Carlo simulation. J Biomed Phys Eng 5 (2015), 67–76.
Finnerty, M., Brennan, P.C., Protective aprons in imaging departments: manufacturer stated lead equivalence values require validation. Eur Radiol 15 (2005), 1477–1484.
Fakhoury, E., Provencher, J.A., Subramaniam, R., Finlay, D.J., Not all lightweight lead aprons and thyroid shields are alike. J Vasc Surg 70 (2019), 246–250.
Lu, H., Boyd, C., Dawson, J., Lightweight lead aprons: the emperor's new clothes in the angiography suite?. Eur J Vasc Endovasc Surg 57 (2019), 730–739.
Pichler, T., Schopf, T., Ennemoser, O., Radiation protection clothing in X-ray diagnostics - comparison of attenuation equivalents in narrow beam and inverse broad-beam geometry. Rofo 183 (2011), 470–476.
Eder, H., Panzer, W., Schofer, H., Is the lead-equivalent suited for rating protection properties of lead-free radiation protective clothing?. Rofo 177 (2005), 399–404.
Matsuda, M., Suzuki, T., Evaluation of lead aprons and their maintenance and management at our hospital. J Anesth 30 (2016), 518–521.
Stam, W., Pillay, M., Inspection of lead aprons: a practical rejection model. Health Phys 95:Suppl 2 (2008), S133–S136.
Oyar, O., Kislalioglu, A., How protective are the lead aprons we use against ionizing radiation?. Diagn Interv Radiol 18 (2012), 147–152.
Lambert, K., McKeon, T., Inspection of lead aprons: criteria for rejection. Health Phys 80 (2001), S67–S69.
Burns, K.M., Shoag, J.M., Kahlon, S.S., Parsons, P.J., Bijur, P.E., Taragin, B.H., et al. Lead aprons are a lead exposure hazard. J Am Coll Radiol 14 (2017), 641–647.
Ron, E., Lubin, J.H., Shore, R.E., Mabuchi, K., Modan, B., Pottern, L.M., et al. Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies. Radiat Res 141 (1995), 259–277.
Whitby, M., Martin, C.J., Radiation doses to the legs of radiologists performing interventional procedures: are they a cause for concern?. Br J Radiol 76 (2003), 321–327.
Hammer, G.P., Scheidemann-Wesp, U., Samkange-Zeeb, F., Wicke, H., Neriishi, K., Blettner, M., Occupational exposure to low doses of ionizing radiation and cataract development: a systematic literature review and perspectives on future studies. Radiat Environ Biophys 52 (2013), 303–319.
Coppeta, L., Pietroiusti, A., Neri, A., Spataro, A., De Angelis, E., Perrone, S., et al. Risk of radiation-induced lens opacities among surgeons and interventional medical staff. Radiol Phys Technol 12 (2019), 26–29.
Thome, C., Chambers, D.B., Hooker, A.M., Thompson, J.W., Boreham, D.R., Deterministic effects to the lens of the eye following ionizing radiation exposure: is there evidence to support a reduction in threshold dose?. Health Phys 114 (2018), 328–343.
Seals, K.F., Lee, E.W., Cagnon, C.H., Al-Hakim, R.A., Kee, S.T., Radiation-induced cataractogenesis: a critical literature review for the interventional radiologist. Cardiovasc Intervent Radiol 39 (2016), 151–160.
Hamada, N., Fujimichi, Y., Role of carcinogenesis related mechanisms in cataractogenesis and its implications for ionizing radiation cataractogenesis. Cancer Lett 368 (2015), 262–274.
Matsubara, K., Takei, Y., Mori, H., Kobayashi, I., Noto, K., Igarashi, T., et al. A multicenter study of radiation doses to the eye lenses of medical staff performing non-vascular imaging and interventional radiology procedures in Japan. Phys Med 74 (2020), 83–91.
Bitarafan Rajabi, A., Noohi, F., Hashemi, H., Haghjoo, M., Miraftab, M., Yaghoobi, N., et al. Ionizing radiation-induced cataract in interventional cardiology staff. Res Cardiovasc Med, 4, 2015, e25148.
Maeder, M., Brunner-La Rocca, H.P., Wolber, T., Ammann, P., Roelli, H., Rohner, F., et al. Impact of a lead glass screen on scatter radiation to eyes and hands in interventional cardiologists. Catheter Cardiovasc Interv 67 (2006), 18–23.
Kirkwood, M.L., Klein, A., Guild, J., Arbique, G., Xi, Y., Tsai, S., et al. Novel modification to leaded eyewear results in significant operator eye radiation dose reduction. J Vasc Surg 72 (2020), 2139–2144.
Cousin, A.J., Lawdahl, R.B., Chakraborty, D.P., Koehler, R.E., The case for radioprotective eyewear/facewear. Practical implications and suggestions. Invest Radiol 22 (1987), 688–692.
Vano, E., Gonzalez, L., Guibelalde, E., Fernandez, J.M., Ten, J.I., Radiation exposure to medical staff in interventional and cardiac radiology. Br J Radiol 71 (1998), 954–960.
Wagner, L.K., Mulhern, O.R., Radiation-attenuating surgical gloves: effects of scatter and secondary electron production. Radiology 200 (1996), 45–48.
Kamusella, P., Scheer, F., Ludtke, C.W., Wiggermann, P., Wissgott, C., Andresen, R., Interventional angiography: radiation protection for the examiner by using lead-free gloves. J Clin Diagn Res 11 (2017), TC26–TC29.
Slattery, M.M., Goh, G.S., Power, S., Given, M.F., McGrath, F.P., Lee, M.J., Comparison of ultrasound-guided and fluoroscopy-assisted antegrade common femoral artery puncture techniques. Cardiovasc Intervent Radiol 38 (2015), 579–582.
Sobolev, M., Slovut, D.P., Lee Chang, A., Shiloh, A.L., Eisen, L.A., Ultrasound-guided catheterization of the femoral artery: a systematic review and meta-analysis of randomized controlled trials. J Invasive Cardiol 27 (2015), 318–323.
Stone, P., Campbell, J., Thompson, S., Walker, J., A prospective, randomized study comparing ultrasound versus fluoroscopic guided femoral arterial access in noncardiac vascular patients. J Vasc Surg 72 (2020), 259–267.
Finkelstein, M.M., Is brain cancer an occupational disease of cardiologists?. Can J Cardiol 14 (1998), 1385–1388.
Hardell, L., Mild, K.H., Påhlson, A., Hallquist, A., Ionizing radiation, cellular telephones and the risk for brain tumours. Eur J Cancer Prev 10 (2001), 523–529.
Kuon, E., Birkel, J., Schmitt, M., Dahm, J.B., Radiation exposure benefit of a lead cap in invasive cardiology. Heart 89 (2003), 1205–1210.
Karadag, B., Ikitimur, B., Durmaz, E., Avci, B.K., Cakmak, H.A., Cosansu, K., et al. Effectiveness of a lead cap in radiation protection of the head in the cardiac catheterisation laboratory. EuroIntervention 9 (2013), 754–756.
Uthoff, H., Pena, C., West, J., Contreras, F., Benenati, J.F., Katzen, B.T., Evaluation of novel disposable, light-weight radiation protection devices in an interventional radiology setting: a randomized controlled trial. AJR Am J Roentgenol 200 (2013), 915–920.
Uthoff, H., Quesada, R., Roberts, J.S., Baumann, F., Schernthaner, M., Zaremski, L., et al. Radioprotective lightweight caps in the interventional cardiology setting: a randomised controlled trial (PROTECT). EuroIntervention 11 (2015), 53–59.
Chohan, M.O., Sandoval, D., Buchan, A., Murray-Krezan, C., Taylor, C.L., Cranial radiation exposure during cerebral catheter angiography. J Neurointerv Surg 6 (2014), 633–636.
Alazzoni, A., Gordon, C.L., Syed, J., Natarajan, M.K., Rokoss, M., Schwalm, J.D., et al. Randomized controlled trial of radiation protection with a patient lead shield and a novel, nonlead surgical cap for operators performing coronary angiography or intervention. Circ Cardiovasc Interv, 8, 2015, e002384.
Mayr, N.P., Wiesner, G., Kretschmer, A., Bronner, J., Hoedlmoser, H., Husser, O., et al. Assessing the level of radiation experienced by anesthesiologists during transfemoral transcatheter aortic valve implantation and protection by a lead cap. PLoS One, 14, 2019, e0210872.
Fetterly, K., Schueler, B., Grams, M., Sturchio, G., Bell, M., Gulati, R., Head and neck radiation dose and radiation safety for interventional physicians. JACC Cardiovasc Interv 10 (2017), 520–528.
Sans Merce, M., Korchi, A.M., Kobzeva, L., Damet, J., Erceg, G., Marcos Gonzalez, A., et al. The value of protective head cap and glasses in neurointerventional radiology. J Neurointerv Surg 8 (2016), 736–740.
Kirkwood, M.L., Arbique, G.M., Guild, J.B., Zeng, K., Xi, Y., Rectenwald, J., et al. Radiation brain dose to vascular surgeons during fluoroscopically guided interventions is not effectively reduced by wearing lead equivalent surgical caps. J Vasc Surg 68 (2018), 567–571.
Fetterly, K.A., Magnuson, D.J., Tannahill, G.M., Hindal, M.D., Mathew, V., Effective use of radiation shields to minimize operator dose during invasive cardiology procedures. JACC Cardiovasc Interv 4 (2011), 1133–1139.
Marichal, D.A., Anwar, T., Kirsch, D., Clements, J., Carlson, L., Savage, C., et al. Comparison of a suspended radiation protection system versus standard lead apron for radiation exposure of a simulated interventionalist. J Vasc Interv Radiol 22 (2011), 437–442.
Savage, C., Seale, I.V.T., Shaw, C., Angela, B., Marichal, D., Rees, C., Evaluation of a suspended personal radiation protection system vs. conventional apron and shields in clinical interventional procedures. Open J Radiol 3 (2013), 143–151.
Haussen, D.C., Van Der Bom, I.M., Nogueira, R.G., A prospective case control comparison of the ZeroGravity system versus a standard lead apron as radiation protection strategy in neuroendovascular procedures. J Neurointerv Surg 8 (2016), 1052–1055.
Pierno, J., Hamilton, C., SU-E-I-35: experience with the Zero Gravity Suit. Med Phys, 39, 2012, 3633.
Madder, R.D., VanOosterhout, S., Mulder, A., Elmore, M., Campbell, J., Borgman, A., et al. Impact of robotics and a suspended lead suit on physician radiation exposure during percutaneous coronary intervention. Cardiovasc Revasc Med 18 (2017), 190–196.
Salcido-Rios, J., McNamara, D.A., VanOosterhout, S., VanLoo, L., Redmond, M., Parker, J.L., et al. Suspended lead suit and physician radiation doses during coronary angiography. Catheter Cardiovasc Interv 99 (2022), 981–988.
Thornton, R.H., Dauer, L.T., Altamirano, J.P., Alvarado, K.J., St Germain, J., Solomon, S.B., Comparing strategies for operator eye protection in the interventional radiology suite. J Vasc Interv Radiol 21 (2010), 1703–1707.
Vano, E., Rm, S.C., Jm, F.S., Helping to know if you are properly protected while working in interventional cardiology. J Radiol Prot, 2020, 40.
Sukupova, L., Hlavacek, O., Vedlich, D., Impact of the ceiling-mounted radiation shielding position on the physician's dose from scatter radiation during interventional procedures. Radiol Res Pract, 2018, 2018, 4287973.
Eder, H., Seidenbusch, M.C., Treitl, M., Gilligan, P., A new design of a lead-acrylic shield for staff dose reduction in radial and femoral access coronary catheterization. Rofo 187 (2015), 915–923.
Sciahbasi, A., Sarandrea, A., Rigattieri, S., Patrizi, R., Cera, M., Di Russo, C., et al. Extended protective shield under table to reduce operator radiation dose in percutaneous coronary procedures. Circ Cardiovasc Interv, 12, 2019, e007586.
Jia, Q., Chen, Z., Jiang, X., Zhao, Z., Huang, M., Li, J., et al. Operator radiation and the efficacy of ceiling-suspended lead screen shielding during coronary angiography: an anthropomorphic phantom study using real-time dosimeters. Sci Rep, 7, 2017, 42077.
Madder, R.D., LaCombe, A., VanOosterhout, S., Mulder, A., Elmore, M., Parker, J.L., et al. Radiation exposure among scrub technologists and nurse circulators during cardiac catheterization: the impact of accessory lead shields. JACC Cardiovasc Interv 11 (2018), 206–212.
Marcusohn, E., Postnikov, M., Musallam, A., Yalonetsky, S., Mishra, S., Kerner, A., et al. Usefulness of pelvic radiation protection shields during transfemoral procedures-operator and patient considerations. Am J Cardiol 122 (2018), 1098–1103.
King, J.N., Champlin, A.M., Kelsey, C.A., Tripp, D.A., Using a sterile disposable protective surgical drape for reduction of radiation exposure to interventionalists. AJR Am J Roentgenol 178 (2002), 153–157.
Power, S., Mirza, M., Thakorlal, A., Ganai, B., Gavagan, L.D., Given, M.F., et al. Efficacy of a radiation absorbing shield in reducing dose to the interventionalist during peripheral endovascular procedures: a single centre pilot study. Cardiovasc Intervent Radiol 38 (2015), 573–578.
Vlastra, W., Delewi, R., Sjauw, K.D., Beijk, M.A., Claessen, B.E., Streekstra, G.J., et al. Efficacy of the RADPAD protection drape in reducing operators' radiation exposure in the catheterization laboratory: a sham-controlled randomized trial. Circ Cardiovasc Interv, 10, 2017, e006058.
Ordiales, J.M., Nogales, J.M., Vano, E., Lopez-Minguez, J.R., Alvarez, F.J., Ramos, J., et al. Occupational dose reduction in cardiac catheterisation laboratory: a randomised trial using a shield drape placed on the patient. Radiat Prot Dosimetry 174 (2017), 255–261.
Politi, L., Biondi-Zoccai, G., Nocetti, L., Costi, T., Monopoli, D., Rossi, R., et al. Reduction of scatter radiation during transradial percutaneous coronary angiography: a randomized trial using a lead-free radiation shield. Catheter Cardiovasc Interv 79 (2012), 97–102.
Simons, G.R., Orrison, W.W. Jr., Use of a sterile, disposable, radiation-absorbing shield reduces occupational exposure to scatter radiation during pectoral device implantation. Pacing Clin Electrophysiol 27 (2004), 726–729.
Kloeze, C., Klompenhouwer, E.G., Brands, P.J., van Sambeek, M.R., Cuypers, P.W., Teijink, J.A., Editor's choice–Use of disposable radiation-absorbing surgical drapes results in significant dose reduction during EVAR procedures. Eur J Vasc Endovasc Surg 47 (2014), 268–272.
Fattal, P., Goldstein, J.A., A novel complete radiation protection system eliminates physician radiation exposure and leaded aprons. Catheter Cardiovasc Interv 82 (2013), 11–16.
Iqtidar, A.F., Jeon, C., Rothman, R., Snead, R., Pyne, C.T., Reduction in operator radiation exposure during transradial catheterization and intervention using a simple lead drape. Am Heart J 165 (2013), 293–298.
Musallam, A., Volis, I., Dadaev, S., Abergel, E., Soni, A., Yalonetsky, S., et al. A randomized study comparing the use of a pelvic lead shield during trans-radial interventions: Threefold decrease in radiation to the operator but double exposure to the patient. Catheter Cardiovasc Interv 85 (2015), 1164–1170.
Kim, C., Vasaiwala, S., Haque, F., Pratap, K., Vidovich, M.I., Radiation safety among cardiology fellows. Am J Cardiol 106 (2010), 125–128.
Harris, A.M., Loomis, J., Hopkins, M., Bylund, J., Assessment of radiation safety knowledge among urology residents in the United States. J Endourol 33 (2019), 492–497.
Nugent, M., Carmody, O., Dudeney, S., Radiation safety knowledge and practices among Irish orthopaedic trainees. Ir J Med Sci 184 (2015), 369–373.
Khan, F., Ul-Abadin, Z., Rauf, S., Javed, A., Awareness and attitudes amongst basic surgical trainees regarding radiation in orthopaedic trauma surgery. Biomed Imaging Interv J, 6, 2010, e25.
Bhinder, J., Fakhoury, E., O'Brien-Irr, M., Reilly, B., Dryjski, M., Dosluoglu, H., et al. National survey of vascular surgery residents and fellows on radiation exposure and safety practices. J Vasc Surg 76 (2022), 274–279.
Vlastra, W., Claessen, B.E., Beijk, M.A., Sjauw, K.D., Streekstra, G.J., Wykrzykowska, J.J., et al. Cardiology fellows-in-training are exposed to relatively high levels of radiation in the cath lab compared with staff interventional cardiologists-insights from the RECAP trial. Neth Heart J 27 (2019), 330–333.
Fetterly, K.A., Lennon, R.J., Bell, M.R., Holmes, D.R. Jr., Rihal, C.S., Clinical determinants of radiation dose in percutaneous coronary interventional procedures: influence of patient size, procedure complexity, and performing physician. JACC Cardiovasc Interv 4 (2011), 336–343.
Bernardi, G., Padovani, R., Trianni, A., Morocutti, G., Spedicato, L., Zanuttini, D., et al. The effect of fellows' training in invasive cardiology on radiological exposure of patients. Radiat Prot Dosimetry 128 (2008), 72–76.
Malik, A.T., Rai, H.H., Lakdawala, R.H., Noordin, S., Does surgeon experience influence the amount of radiation exposure during orthopedic procedures? A systematic review. Orthop Rev (Pavia), 11, 2019, 7667.
Pradella, M., Trumm, C., Stieltjes, B., Boll, D.T., Zech, C.J., Huegli, R.W., Impact factors for safety, success, duration and radiation exposure in CT-guided interventions. Br J Radiol, 92, 2019, 20180937.
Nayahangan, L.J., Van Herzeele, I., Konge, L., Koncar, I., Cieri, E., Mansilha, A., et al. Achieving consensus to define curricular content for simulation based education in vascular surgery: a Europe wide needs assessment initiative. Eur J Vasc Endovasc Surg 58 (2019), 284–291.
Vassileva, J., Applegate, K., Paulo, G., Vano, E., Holmberg, O., Strengthening radiation protection education and training of health professionals: conclusions from an IAEA meeting. J Radiol Prot, 2022, 42.
Vano, E., Mandatory radiation safety training for interventionalists: the European perspective. Tech Vasc Interv Radiol 13 (2010), 200–203.
Bartal, G., Vano, E., Paulo, G., Miller, D.L., Management of patient and staff radiation dose in interventional radiology: current concepts. Cardiovasc Intervent Radiol 37 (2014), 289–298.
Vano, E., Rosenstein, M., Liniecki, J., Rehani, M.M., Martin, C.J., Vetter, R.J., ICRP Publication 113. Education and training in radiological protection for diagnostic and interventional procedures. Ann ICRP 39 (2009), 7–68.
ICRP. Education and Training in Radiological Protection for Diagnostic and Interventional Procedures. ICRP Publication 113 Ann ICRP 39 (2009), 7–68.
Autti, T., Autti, H., Vehmas, T., Laitalainen, V., Kivisaari, L., E-learning is a well-accepted tool in supplementary training among medical doctors: an experience of obligatory radiation protection training in healthcare. Acta Radiol 48 (2007), 508–513.
Blackmon, K.N., Huda, W., Lewis, M.C., Tipnis, S., Mah, E., Frey, D.G., A web based Foundations of Radiological Physics for diagnostic radiology residents. Acad Radiol 20 (2013), 338–344.
van Puyvelde, L., Clarijs, T., Belmans, N., Coeck, M., Comparing the effectiveness of learning formats in radiation protection. J Radiol Prot, 2021, 41.
Kuon, E., Empen, K., Robinson, D.M., Pfahlberg, A., Gefeller, O., Dahm, J.B., Efficiency of a minicourse in radiation reducing techniques: a pilot initiative to encourage less irradiating cardiological interventional techniques (ELICIT). Heart 91 (2005), 1221–1222.
Kuon, E., Weitmann, K., Hoffmann, W., Dorr, M., Hummel, A., Riad, A., et al. Multicenter long-term validation of a minicourse in radiation-reducing techniques in the catheterization laboratory. Am J Cardiol 115 (2015), 367–373.
Azpiri-Lopez, J.R., Assad-Morell, J.L., Gonzalez-Gonzalez, J.G., Elizondo-Riojas, G., Davila-Bortoni, A., Garcia-Martinez, R., et al. Effect of physician training on the X-ray dose delivered during coronary angioplasty. J Invasive Cardiol 25 (2013), 109–113.
Alahmari, M.A.S., Sun, Z.H., A systematic review of the efficiency of radiation protection training in raising awareness of medical staff working in catheterisation laboratory. Curr Med Imaging Rev 11 (2015), 200–206.
Fetterly, K.A., Mathew, V., Lennon, R., Bell, M.R., Holmes, D.R. Jr., Rihal, C.S., Radiation dose reduction in the invasive cardiovascular laboratory: implementing a culture and philosophy of radiation safety. JACC Cardiovasc Interv 5 (2012), 866–873.
Hirshfeld, J.W. Jr., Ferrari, V.A., Bengel, F.M., Bergersen, L., Chambers, C.E., Einstein, A.J., et al. 2018 ACC/HRS/NASCI/SCAI/SCCT Expert Consensus Document on optimal use of ionizing radiation in cardiovascular imaging-best practices for safety and effectiveness, part 2: radiological equipment operation, dose-sparing methodologies, patient and medical personnel protection: a report of the American College of Cardiology Task Force on Expert Consensus Decision Pathways. J Am Coll Cardiol 71 (2018), 2829–2855.
Fernandez Soto, J.M., Vano, E., Guibelalde, E., Spanish experience in education and training in radiation protection in medicine. Radiat Prot Dosimetry 147 (2011), 338–342.
Katz, A., Shtub, A., Solomonica, A., Poliakov, A., Roguin, A., Simulator training to minimize ionizing radiation exposure in the catheterization laboratory. Int J Cardiovasc Imaging 33 (2017), 303–310.
Patel, A.D., Gallagher, A.G., Nicholson, W.J., Cates, C.U., Learning curves and reliability measures for virtual reality simulation in the performance assessment of carotid angiography. J Am Coll Cardiol 47 (2006), 1796–1802.
Kim, A.H., Kendrick, D.E., Moorehead, P.A., Nagavalli, A., Miller, C.P., Liu, N.T., et al. Endovascular aneurysm repair simulation can lead to decreased fluoroscopy time and accurately delineate the proximal seal zone. J Vasc Surg 64 (2016), 251–258.
Vento, V., Cercenelli, L., Mascoli, C., Gallitto, E., Ancetti, S., Faggioli, G., et al. The role of simulation in boosting the learning curve in EVAR procedures. J Surg Educ 75 (2018), 534–540.
Kreiser, K., Gehling, K.G., Ströber, L., Zimmer, C., Kirschke, J.S., Simulation training in neuroangiography: transfer to reality. Cardiovasc Intervent Radiol 43 (2020), 1184–1191.
Rader, S.B., Jorgensen, E., Bech, B., Lonn, L., Ringsted, C.V., Use of performance curves in estimating number of procedures required to achieve proficiency in coronary angiography. Catheter Cardiovasc Interv 78 (2011), 387–393.
Ramjeeawon, A., Sharrock, A.E., Morbi, A., Martin, G., Riga, C., Bicknell, C., Using fully-immersive simulation training with structured debrief to improve nontechnical skills in emergency endovascular surgery. J Surg Educ 77 (2020), 1300–1311.
Papatsoris, A.G., Shaikh, T., Patel, D., Bourdoumis, A., Bach, C., Buchholz, N., et al. Use of a virtual reality simulator to improve percutaneous renal access skills: a prospective study in urology trainees. Urol Int 89 (2012), 185–190.
Bott, O.J., Dresing, K., Wagner, M., Raab, B.W., Teistler, M., Informatics in radiology: use of a C-arm fluoroscopy simulator to support training in intraoperative radiography. Radiographics 31 (2011), E65–E75.
Choi, M.H., Jung, S.E., Oh, S.N., Byun, J.Y., Educational effects of radiation reduction during fluoroscopic examination of the adult gastrointestinal tract. Acad Radiol 25 (2018), 202–208.
Prenner, S.B., Wayne, D.B., Sweis, R.N., Cohen, E.R., Feinglass, J.M., Schimmel, D.R., Simulation-based education leads to decreased use of fluoroscopy in diagnostic coronary angiography. Catheter Cardiovasc Interv 91 (2018), 1054–1059.
De Ponti, R., Marazzi, R., Doni, L.A., Tamborini, C., Ghiringhelli, S., Salerno-Uriarte, J.A., Simulator training reduces radiation exposure and improves trainees' performance in placing electrophysiologic catheters during patient-based procedures. Heart Rhythm 9 (2012), 1280–1285.
Popovic, B., Pinelli, S., Albuisson, E., Metzdorf, P.A., Mourer, B., Tran, N., et al. The simulation training in coronary angiography and its impact on real life conduct in the catheterization laboratory. Am J Cardiol 123 (2019), 1208–1213.
Chaer, R.A., Derubertis, B.G., Lin, S.C., Bush, H.L., Karwowski, J.K., Birk, D., et al. Simulation improves resident performance in catheter-based intervention: results of a randomized, controlled study. Ann Surg 244 (2006), 343–352.
Maertens, H., Aggarwal, R., Moreels, N., Vermassen, F., Van Herzeele, I., A Proficiency Based Stepwise Endovascular Curricular Training (PROSPECT) program enhances operative performance in real life: a randomised controlled trial. Eur J Vasc Endovasc Surg 54 (2017), 387–396.
Desender, L.M., Van Herzeele, I., Lachat, M.L., Rancic, Z., Duchateau, J., Rudarakanchana, N., et al. Patient-specific rehearsal before EVAR: influence on technical and nontechnical operative performance. A randomized controlled trial. Ann Surg 264 (2016), 703–709.
Tam, M.D., Latham, T.R., Lewis, M., Khanna, K., Zaman, A., Parker, M., et al. A pilot study assessing the impact of 3-D printed models of aortic aneurysms on management decisions in EVAR planning. Vasc Endovascular Surg 50 (2016), 4–9.
Nielsen, C.A., Lonn, L., Konge, L., Taudorf, M., Simulation-based virtual-reality patient-specific rehearsal prior to endovascular procedures: a systematic review. Diagnostics (Basel), 10, 2020, 500.
WHO/IAEA. Bonn Call for Action 2012. 10 actions to improve radiation protection in medicine in the next decade. 2014, WHO Available at: https://www.who.int/publications/m/item/bonn-call-for-action.
Smith, I.R., Foster, K.A., Brighouse, R.D., Cameron, J., Rivers, J.T., The role of quantitative feedback in coronary angiography radiation reduction. Int J Qual Health Care 23 (2011), 342–348.
de Ruiter, Q.M., Moll, F.L., van Herwaarden, J.A., Current state in tracking and robotic navigation systems for application in endovascular aortic aneurysm repair. J Vasc Surg 61 (2015), 256–264.
Tystad Lund, K., Tangen, G.A., Manstad-Hulaas, F., Electromagnetic navigation versus fluoroscopy in aortic endovascular procedures: a phantom study. Int J Comput Assist Radiol Surg 12 (2017), 51–57.
Condino, S., Calabro, E.M., Alberti, A., Parrini, S., Cioni, R., Berchiolli, R.N., et al. Simultaneous tracking of catheters and guidewires: comparison to standard fluoroscopic guidance for arterial cannulation. Eur J Vasc Endovasc Surg 47 (2014), 53–60.
Jansen, M., Khandige, A., Kobeiter, H., Vonken, E.J., Hazenberg, C., van Herwaarden, J., Three dimensional visualisation of endovascular guidewires and catheters based on laser light instead of fluoroscopy with Fiber Optic RealShape technology: preclinical results. Eur J Vasc Endovasc Surg 60 (2020), 135–143.
West, K., Al-Nimer, S., Goel, V.R., Yanof, J.H., Hanlon, A.T., Weunski, C.J., et al. Three-dimensional holographic guidance, navigation, and control (3D-GNC) for endograft positioning in porcine aorta: feasibility comparison with 2-dimensional x-ray fluoroscopy. J Endovasc Ther 28 (2021), 796–803.
Schwein, A., Kramer, B., Chinnadurai, P., Virmani, N., Walker, S., O'Malley, M., et al. Electromagnetic tracking of flexible robotic catheters enables “assisted navigation” and brings automation to endovascular navigation in an in vitro study. J Vasc Surg 67 (2018), 1274–1281.
van Herwaarden, J.A., Jansen, M.M., Vonken, E.P.A., Bloemert-Tuin, T., Bullens, R.W.M., de Borst, G.J., et al. First in human clinical feasibility study of endovascular navigation with Fiber Optic RealShape (FORS) technology. Eur J Vasc Endovasc Surg 61 (2021), 317–325.
Panuccio, G., Torrealba, J., Rohlffs, F., Heidemann, F., Wessels, B., Kolbel, T., Fiber Optic RealShape (FORS) technology for endovascular navigation in severe tortuous vessels. J Endovasc Ther, 2022, 10.1177/15266028211070969 [Epub ahead of print].
Riga, C.V., Cheshire, N.J., Hamady, M.S., Bicknell, C.D., The role of robotic endovascular catheters in fenestrated stent grafting. J Vasc Surg 51 (2010), 810–819.
Cochennec, F., Kobeiter, H., Gohel, M., Marzelle, J., Desgranges, P., Allaire, E., et al. Feasibility and safety of renal and visceral target vessel cannulation using robotically steerable catheters during complex endovascular aortic procedures. J Endovasc Ther 22 (2015), 187–193.
Ambrosini, P., Ruijters, D., Niessen, W.J., Moelker, A., van Walsum, T., Fully automatic and real-time catheter segmentation in X-ray fluoroscopy. Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D., Duchesne, S., (eds.) Medical Image Computing and Computer-Assisted Intervention − MICCAI 2017. Lecture Notes in Computer Science vol. 10434, 2017, Springer, Cham, 577–585.
Zhou, Y.J., Xie, X.L., Zhou, X.H., Liu, S.Q., Bian, G.B., Hou, Z.G., Pyramid attention recurrent networks for real-time guidewire segmentation and tracking in intraoperative X-ray fluoroscopy. Comput Med Imaging Graph, 83, 2020, 101734.
Bang, J.Y., Hough, M., Hawes, R.H., Varadarajulu, S., Use of artificial intelligence to reduce radiation exposure at fluoroscopy-guided endoscopic procedures. Am J Gastroenterol 115 (2020), 555–561.
Abdelhalim, M.A., Patel, A., Moquet, J., Saha, P., Smith, A., Badie, C., et al. Higher incidence of chromosomal aberrations in operators performing a large volume of endovascular procedures. Circulation 145 (2022), 1808–1810.