CO2 capture and utilisation; Life cycle assessment; Mineral carbonation; Stainless steel slag; CO2 capture; Conventional concrete; Environmental assessment; Environmental benefits; Life Cycle Assessment (LCA); Policy recommendations; Sustainable construction; Pollution; Energy (all); Management, Monitoring, Policy and Law; Industrial and Manufacturing Engineering; General Energy
Abstract :
[en] Mineral carbonation is a carbon utilisation technology in which an alkaline material reacts with carbon dioxide forming stable carbonates that can have different further uses, for instance as construction material. The alkaline material can be a residue from industrial activities (e.g. metallurgic slags) while CO2 can be recovered from industrial flue gasses. Mineral carbonation presents several potential environmental advantages: (i) industrial residues valorisation, (ii) CO2 sequestration and (iii) substitution of conventional concrete based on Portland cement (PC). However, both the carbonation and the CO2 recovery processes require energy. To understand the trade-off between the environmental benefits and drawbacks of CO2 recovery and mineral carbonation, this study presents a life cycle assessment (LCA) of carbonated construction blocks from mineral carbonation of stainless steel slags. The carbonated blocks are compared to traditional PC-based concrete blocks with similar properties. The results of the LCA analysis show that the carbonated blocks present lower environmental impacts in most of the analysed impact categories. The key finding is that the carbonated blocks present a negative carbon footprint. Nonetheless, the energy required represents the main environmental hotspot. An increase in the energy efficiency of the mineral carbonation process and a CO2 valorisation network are among the suggestions to further lower the environmental impacts of carbonated blocks production. Finally, the LCA results can promote the development of policy recommendations to support the implementation of mineral carbonation technology. Further research should enable the use of mineral carbonation on a broader range and large volume of alkaline residues.
Disciplines :
Materials science & engineering
Author, co-author :
Di Maria, Andrea ; Université de Liège - ULiège > TERRA Research Centre > Biosystems Dynamics and Exchanges (BIODYNE) ; Sustainability Assessment of Material Life Cycle, Katholieke Universiteit Leuven (KUL), Leuven, Belgium
Snellings, Ruben; Sustainable Materials Unit, Vlaamse Instelling voor Technologisch Onderzoek (VITO), Mol, Belgium
Alaert, Luc; Sustainability Assessment of Material Life Cycle, Katholieke Universiteit Leuven (KUL), Leuven, Belgium
Quaghebeur, Mieke; Sustainable Materials Unit, Vlaamse Instelling voor Technologisch Onderzoek (VITO), Mol, Belgium
Van Acker, Karel; Sustainability Assessment of Material Life Cycle, Katholieke Universiteit Leuven (KUL), Leuven, Belgium ; Center for Economics and Corporate Sustainability (CEDON), KU Leuven, Brussels, Belgium
Language :
English
Title :
Environmental assessment of CO2 mineralisation for sustainable construction materials
Flemish administration via the Steunpunt Circulaire Economie
Funding text :
All authors are very grateful for financial support received from the Flemish administration via the Steunpunt Circulaire Economie (Policy Research Centre Circular Economy). This publication contains the opinions of the authors, not that of the Flemish administration. The Flemish administration will not carry any liability with respect to the use that can be made of the produced data or conclusions.All authors are very grateful for financial support received from the Flemish administration via the Steunpunt Circulaire Economie (Policy Research Centre Circular Economy) . This publication contains the opinions of the authors, not that of the Flemish administration. The Flemish administration will not carry any liability with respect to the use that can be made of the produced data or conclusions.
Althaus, H.J., Hischier, R., Osses, M., Primas, A., Jungbluth, N., Chudacoff, M., Life Cycle Inventories of Chemicals. Final Report Ecoinvent Data v.2.0, No. 8, Ecoinvent Report N. 8., 2007, EMPA, Swiss Centre for Life Cycle Inventories, Dübendorf.
Ardente, F., Cellura, M., Economic allocation in life cycle assessment. J. Ind. Ecol. 16 (2012), 387–398 10.1111/j.1530-9290.2011.00434.x.
Baciocchi, R., Costa, G., Di Bartolomeo, E., Polettini, A., Pomi, R., Carbonation of stainless steel slag as a process for CO2 storage and slag valorization. Waste Biomass Valoriz. 1 (2010), 467–477 10.1007/s12649-010-9047-1.
Balucan, R.D., Dlugogorski, B.Z., Kennedy, E.M., Belova, I.V., Murch, G.E., Energy cost of heat activating serpentinites for CO2 storage by mineralisation. Int. J. Greenh. Gas Control 17 (2013), 225–239 10.1016/J.IJGGC.2013.05.004.
Benetto, E., Rousseaux, P., Blondin, J., Life cycle assessment of coal by-products based electric power production scenarios. Fuel 83 (2004), 957–970 10.1016/S0016-2361(03)00258-8.
Bodénan, F., Bourgeois, F., Petiot, C., Augé, T., Bonfils, B., Julcour-Lebigue, C., Guyot, F., Boukary, A., Tremosa, J., Lassin, A., Gaucher, E.C., Chiquet, P., Ex situ mineral carbonation for CO2 mitigation: evaluation of mining waste resources, aqueous carbonation processability and life cycle assessment (Carmex project). Miner. Eng. 59 (2014), 52–63 10.1016/J.MINENG.2014.01.011.
Capobianco, O., Costa, G., Thuy, L., Magliocco, E., Hartog, N., Baciocchi, R., Carbonation of stainless steel slag in the context of in situ Brownfield remediation. Miner. Eng. 59 (2014), 91–100 10.1016/J.MINENG.2013.11.005.
Chang, E.E., Pan, S.-Y., Chen, Y.-H., Chu, H.-W., Wang, C.-F., Chiang, P.-C., CO2 sequestration by carbonation of steelmaking slags in an autoclave reactor. J. Hazard. Mater. 195 (2011), 107–114 10.1016/j.jhazmat.2011.08.006.
Clodic, D., Bill, A., Casier, F., Hitti, R.El., Younes, M., CO2 capture by anti-sublimation Thermo-economic process evaluation. 4th Annual Conference on Carbon Capture & Sequestration, Alexandria, VA, USA, 2005.
Cuéllar-Franca, R.M., Azapagic, A., Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts. J. CO2 Util. 9 (2015), 82–102 10.1016/J.JCOU.2014.12.001.
Cuéllar-Franca, R.M., Azapagic, A., Environmental impacts of the UK residential sector: life cycle assessment of houses. Build. Environ. 54 (2012), 86–99 10.1016/j.buildenv.2012.02.005.
Di Maria, A., Salman, M., Dubois, M., Van Acker, K., Life cycle assessment to evaluate the environmental performance of new construction material from stainless steel slag. Int. J. Life Cycle Assess, 2018, 1–19 10.1007/s11367-018-1440-1.
Giannoulakis, S., Volkart, K., Bauer, C., Life cycle and cost assessment of mineral carbonation for carbon capture and storage in European power generation. Int. J. Greenh. Gas Control 21 (2014), 140–157 10.1016/j.ijggc.2013.12.002.
Goedkoop, M., Heijungs, R., Huijbregts, M.A.J., De Schryver, A.M., Struijs, J., van Zelm, J.R., ReCiPe 2008 – A Life Cycle Impact Assessment Method Which Comprises Harmonised Category Indicators at the Midpoint and the Endpoint Level. 2012.
Hampel, C.A., The Encyclopedia of the Chemical Elements. 1968, Reinhold Book Corporation.
IPCC, Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change., 2018.
IPCC, Special Report on CO2 Capture and Storage., 2005, Intergovernmental Panel on Climate Change 10.1002/anie.201000431.
ISO, ISO 14040. Environmental Management – Life Cycle Assessment – Principles and Frameworks. 2006, Int. Organ. Stand.
JRC, ILCD Handbook: Recommendations for Life Cycle Assessment in the European Context. 2011, Publication Office of the European Union 10.278/33030.
Kägi, T., Dinkel, F., Frischknecht, R., Humbert, S., Lindberg, J., De Mester, S., Ponsioen, T., Sala, S., Urs, Schenker, W., Conference Session Report: SETAC Europe 25th Annual Meeting Session “Midpoint, Endpoint or Single Score for Decision-Making?”, 2015 10.1007/s11367-015-0998-0.
Kelly, K.E., Silcox, G.D., Sarofim, A.F., Pershing, D.W., An evaluation of ex situ, industrial-scale, aqueous CO2 mineralization. Int. J. Greenh. Gas Control 5 (2011), 1587–1595 10.1016/J.IJGGC.2011.09.005.
Khoo, H.H., Bu, J., Wong, R.L., Kuan, S.Y., Sharratt, P.N., Carbon capture and utilization: preliminary life cycle CO2, energy, and cost results of potential mineral carbonation. Energy Procedia 4 (2011), 2494–2501 10.1016/J.EGYPRO.2011.02.145.
Khoo, H.H., Sharratt, P.N., Bu, J., Yeo, T.Y., Borgna, A., Highfield, J.G., Björklöf, T.G., Zevenhoven, R., Carbon capture and mineralization in Singapore: preliminary environmental impacts and costs via LCA. Ind. Eng. Chem. Res. 50 (2011), 11350–11357 10.1021/ie200592h.
Khoo, H.H., Tan, R.B.H., Life cycle investigation of CO2 recovery and sequestration. Environ. Sci. Technol. 40 (2006), 4016–4024 10.1021/es051882a.
Kirchofer, A., Brandt, A., Krevor, S., Prigiobbe, V., Becker, A., Wilcox, J., Assessing the potential of mineral carbonation with industrial alkalinity sources in the U.S. Energy Procedia 37 (2013), 5858–5869 10.1016/J.EGYPRO.2013.06.510.
Marvuglia, A., Benetto, E., Rege, S., Jury, C., Modelling approaches for consequential life-cycle assessment (C-LCA) of bioenergy: critical review and proposed framework for biogas production. Renew. Sustain. Energy Rev. 25 (2013), 768–781 10.1016/j.rser.2013.04.031.
Mattila, H.P., Hudd, H., Zevenhoven, R., Cradle-to-gate life cycle assessment of precipitated calcium carbonate production from steel converter slag. J. Clean. Prod. 84 (2014), 611–618 10.1016/j.jclepro.2014.05.064.
Mikunda, T., Neele, F., Wilschut, F., Hanegraaf, M., A Secure and Affordable CO2 Supply for the Dutch Greenhouse Sector. 2015.
Mo, L., Zhang, F., Deng, M., Jin, F., Al-Tabbaa, A., Wang, A., Accelerated carbonation and performance of concrete made with steel slag as binding materials and aggregates. Cem. Concr. Compos. 83 (2017), 138–145 10.1016/J.CEMCONCOMP.2017.07.018.
Olajire, A.A., A review of mineral carbonation technology in sequestration of CO2. J. Pet. Sci. Eng. 109 (2013), 364–392 10.1016/J.PETROL.2013.03.013.
Pennington, D.W., Potting, J., Finnveden, G., Lindeijer, E., Jolliet, O., Rydberg, T., Rebitzer, G., Life cycle assessment. Part 2: Current impact assessment practice. Environ. Int. 30 (2004), 721–739 10.1016/j.envint.2003.12.009.
Quaghebeur, M., Nielsen, P., Horckmans, L., Van Mechelen, D., Accelerated carbonation of steel slag compacts: development of high-strength construction materials. Front. Energy Res., 3, 2015, 52 10.3389/fenrg.2015.00052.
Rebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris, G., Rydberg, T., Schmidt, W.-P., Suh, S., Weidema, B.P., Pennington, D.W., Life cycle assessment: Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environ. Int. 30 (2004), 701–720 10.1016/j.envint.2003.11.005.
Renforth, P., The negative emission potential of alkaline materials. Nat. Commun., 10, 2019, 1401 10.1038/s41467-019-09475-5.
Salman, M., Cizer, Ö., Pontikes, Y., Santos, R.M., Snellings, R., Vandewalle, L., Blanpain, B., Van Balen, K., Effect of accelerated carbonation on AOD stainless steel slag for its valorisation as a CO2-sequestering construction material. Chem. Eng. J. 246 (2014), 39–52 10.1016/j.cej.2014.02.051.
Salman, M., Dubois, M., Di Maria, A., Van Acker, K., Van Balen, K., Construction materials from stainless steel slags: technical aspects, environmental benefits, and economic opportunities. J. Ind. Ecol. 20 (2016), 854–866 10.1111/jiec.12314.
Salman, Cizer, Ö., Pontikes, Y., Vandewalle, L., Blanpain, B., Van Balen, K., Carbonation Potential of Continuous Casting Stainless Steel Slag. 2013, KU Leuven, 319–329.
Sanjuán, M., Andrade, C., Cheyrezy, M., Concrete carbonation test in natural and accelerated conditions. Study of durability for concrete in Marine Atmosphere View project Radioacitivity in Spain View project. Adv. Cem. Res., 15, 2003 10.1680/adcr.2003.15.4.171.
Santos, R.M., Van Bouwel, J., Vandevelde, E., Mertens, G., Elsen, J., Van Gerven, T., Accelerated mineral carbonation of stainless steel slags for CO2 storage and waste valorization: effect of process parameters on geochemical properties. Int. J. Greenh. Gas Control 17 (2013), 32–45 10.1016/j.ijggc.2013.04.004.
Shibasaki, M., Warburg, W., Eyerer, P., Upscaling Effect and Life Cycle Assessment. 2006.
Slotte, M., Two Process Case Studies on Energy Efficiency, Life Cycle Assessment and Process Scale-up. 2017, Abo Akademi University.
Styring, P., Jansen, D., de Coninck, H., Armstrong, K., Carbon Capture and Utilisation in the Green Economy. 2011.
Tuinier, M.J., van Sint Annaland, M., Kramer, G.J., Kuipers, J.A.M., Cryogenic CO2 capture using dynamically operated packed beds. Chem. Eng. Sci. 65 (2010), 114–119 10.1016/J.CES.2009.01.055.
Vázquez-Rowe, I., Marvuglia, A., Rege, S., Benetto, E., Applying consequential LCA to support energy policy: land use change effects of bioenergy production. Sci. Total Environ. 472 (2014), 78–89 10.1016/j.scitotenv.2013.10.097.
Zhang, Y., Sunarso, J., Liu, S., Wang, R., Current status and development of membranes for CO2/CH4 separation: a review. Int. J. Greenh. Gas Control 12 (2013), 84–107 10.1016/J.IJGGC.2012.10.009.