Click addition; mechanophore; polymer mechanochemistry; single-molecule force spectroscopy; spirothiopyran; Cycloreversion; Maleimides; Mechano-chemistry; Ring opening; Self reinforcing; Single molecule force spectroscopy; Single molecule level; Single-molecule observation; Atomic and Molecular Physics, and Optics; Materials Science (all); Condensed Matter Physics; Electrical and Electronic Engineering; General Materials Science
Abstract :
[en] Spirothiopyran (STP) is particularly attractive when used as a mechanophore to endow polymers with both damage-signaling and self-reinforcing capacity. It is, however, not clear the actual force required to induce the cycloreversion of STP into ring-opened thiomerocyanine (TMC), which reacts spontaneously with activated C-C bonds. Here, we used atomic force microscopy (AFM)-based single molecule force spectroscopy (SMFS) to study the mechanochemistry of STP mechanophore. It is found that the ring-opening of STP at room temperature requires forces of ∼ 200–400 pN, depending on the pulling speed. In addition, the reversibility of STP to TMC isomerization is demonstrated. Finally, mechanochemically induced intermolecular Click addition is achieved in single molecule level by pulling STP in the presence of maleimide. [Figure not available: see fulltext.]
Disciplines :
Chemistry
Author, co-author :
Yao, Ruixiang; State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
Li, Xun ; State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China ; Molecular Systems Research Unit, University of Liège, Liège, Belgium
Xiao, Nan; Department of Chemistry, College of Chemistry and Engineering, Xiamen University, Xiamen, China
Weng, Wengui; Department of Chemistry, College of Chemistry and Engineering, Xiamen University, Xiamen, China
Zhang, Wenke; State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
Language :
English
Title :
Single-molecule observation of mechanical isomerization of spirothiopyran and subsequent Click addition
Gossweiler, G. R.; Hewage, G. B.; Soriano, G.; Wang, Q. M.; Welshofer, G. W.; Zhao, X. H.; Craig, S. L. Mechanochemical activation of covalent bonds in polymers with full and repeatable macroscopic shape recovery. ACS Macro Lett. 2014, 3, 216–219.
Black, A. L.; Lenhardt, J. M.; Craig, S. L. From molecular mechanochemistry to stress-responsive materials. J. Mater. Chem. 2011, 21, 1655–1663.
Church, D. C.; Peterson, G. I.; Boydston, A. J. Comparison of mechanochemical chain scission rates for linear versus three-arm star polymers in strong acoustic fields. ACS Macro Lett. 2014, 3, 648–651.
Caruso, M. M.; Davis, D. A.; Shen, Q. L.; Odom, S. A.; Sottos, N. R.; White, S. R.; Moore, J. S. Mechanically-induced chemical changes in polymeric materials. Chem. Rev. 2009, 109, 5755–5798.
Kean, Z. S.; Craig, S. L. Mechanochemical remodeling of synthetic polymers. Polymer 2012, 53, 1035–1048.
Lenhardt, J. M.; Black, A. L.; Beiermann, B. A.; Steinberg, B. D.; Rahman, F.; Samborski, T.; Elsakr, J.; Moore, J. S.; Sottos, N. R.; Craig, S. L. Characterizing the mechanochemically active domains in gem-dihalocyclopropanated polybutadiene under compression and tension. J. Mater. Chem. 2011, 21, 8454–8459.
Lenhardt, J. M.; Black, A. L.; Craig, S. L. gem-Dichlorocyclopropanes as abundant and efficient mechanophores in polybutadiene copolymers under mechanical stress. J. Am. Chem. Soc. 2009, 131, 10818–10819.
Bowser, B. H.; Craig, S. L. Empowering mechanochemistry with multimechanophore polymer architectures. Polym. Chem. 2018, 9, 3583–3593.
Brown, C. L.; Craig, S. L. Molecular engineering of mechanophore activity for stress-responsive polymeric materials. Chem. Sci. 2015, 6, 2158–2165.
Li, J.; Nagamani, C.; Moore, J. S. Polymer mechanochemistry: From destructive to productive. Acc. Chem. Res. 2015, 48, 2181–2190.
Patrick, J. F.; Robb, M. J.; Sottos, N. R.; Moore, J. S.; White, S. R. Polymers with autonomous life-cycle control. Nature 2016, 540, 363–370.
May, P. A.; Moore, J. S. Polymer mechanochemistry: Techniques to generate molecular force via elongational flows. Chem. Soc. Rev. 2013, 42, 7497–7506.
Wang, Z. J.; Ma, Z. Y.; Wang, Y.; Xu, Z. J.; Luo, Y. Y.; Wei, Y.; Jia, X. R. A novel mechanochromic and photochromic polymer film: When rhodamine joins polyurethane. Adv. Mater. 2015, 27, 6469–6474.
Groote, R.; Jakobs, R. T. M.; Sijbesma, R. P. Mechanocatalysis: Forcing latent catalysts into action. Polym. Chem. 2013, 4, 4846–4859.
Larsen, M. B.; Boydston, A. J. “Flex-activated” mechanophores: Using polymer mechanochemistry to direct bond bending activation. J. Am. Chem. Soc. 2013, 135, 8189–8192.
Ramirez, A. L. B.; Kean, Z. S.; Orlicki, J. A.; Champhekar, M.; Elsakr, S. M.; Krause, W. E.; Craig, S. L. Mechanochemical strengthening of a synthetic polymer in response to typically destructive shear forces. Nat. Chem. 2013, 5, 757–761.
Chen, Y. L.; Spiering, A. J. H.; Karthikeyan, S.; Peters, G. W. M.; Meijer, E. W.; Sijbesma, R. P. Mechanically induced chemiluminescence from polymers incorporating a 1, 2-dioxetane unit in the main chain. Nat. Chem. 2012, 4, 559–562.
Zhang, H.; Gao, F.; Cao, X. D.; Li, Y. Q.; Xu, Y. Z.; Weng, W. G.; Boulatov, R. Mechanochromism and mechanical-force-triggered cross-linking from a single reactive moiety incorporated into polymer chains. Angew. Chem., Int. Ed. 2016, 55, 3040–3044.
Wang, J. P.; Kouznetsova, T. B.; Boulatov, R.; Craig, S. L. Mechanical gating of a mechanochemical reaction cascade. Nat. Commun. 2016, 7, 13433.
Grandbois, M.; Beyer, M.; Rief, M.; Clausen-Schaumann, H.; Gaub, H. E. How strong is a covalent bond? Science 1999, 283, 1727–1730.
Rief, M.; Gautel, M.; Oesterhelt, F.; Fernandez, J. M.; Gaub, H. E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 1997, 276, 1109–1112.
He, C. Z.; Hu, C. G.; Hu, X. D.; Hu, X. T.; Xiao, A.; Perkins, T. T.; Li, H. B. Direct observation of the reversible two-state unfolding and refolding of an α/β protein by single-molecule atomic force microscopy. Angew. Chem., Int. Ed. 2015, 54, 9921–9925.
Xue, Y. R.; Li, X.; Li, H. B.; Zhang, W. K. Quantifying thiol-gold interactions towards the efficient strength control. Nat. Commun. 2014, 5, 4348.
Huang, W. M.; Zhu, Z. S.; Wen, J.; Wang, X.; Qin, M.; Cao, Y.; Ma, H. B.; Wang, W. Single molecule study of force-induced rotation of carbon-carbon double bonds in polymers. ACS Nano 2017, 11, 194–203.
Sluysmans, D.; Hubert, S.; Bruns, C. J.; Zhu, Z. X.; Stoddart, J. F.; Duwez, A. S. Synthetic oligorotaxanes exert high forces when folding under mechanical load. Nat. Nanotechnol. 2018, 13, 209–213.
Cui, S. X.; Liu, C. J.; Zhang, X. Simple method to isolate single polymer chains for the direct measurement of the desorption force. Nano Lett. 2003, 3, 245–248.
Zheng, P.; Takayama, S. I. J.; Mauk, A. G.; Li, H. B. Hydrogen bond strength modulates the mechanical strength of ferric-thiolate bonds in rubredoxin. J. Am. Chem. Soc. 2012, 134, 4124–4131.
Zhang, W. K.; Zhang, X. Single molecule mechanochemistry of macromolecules. Prog. Polym. Sci. 2003, 28, 1271–1295.
Cai, W. H.; Xiao, C.; Qian, L. M.; Cui, S. X. Detecting van der Waals forces between a single polymer repeating unit and a solid surface in high vacuum. Nano Res. 2019, 12, 57–61.
Xia, J. H.; Li, H. B.; Xu, H. P. Measuring the strength of S/Se based dynamic covalent bonds. Acta Polym. Sin. 2020, 51, 205–213.
Huang, W. M.; Wu, X.; Gao, X.; Yu, Y. F.; Lei, H.; Zhu, Z. S.; Shi, Y.; Chen, Y. L.; Qin, M.; Wang, W. et al. Maleimide-thiol adducts stabilized through stretching. Nat. Chem. 2019, 11, 310–319.
Li, Z. D.; Song, Y.; Li, A. S.; Xu, W. Q.; Zhang, W. K. Direct observation of the wrapping/unwrapping of ssDNA around/from a SWCNT at the single-molecule level: Towards tuning the binding mode and strength. Nanoscale 2018, 10, 18586–18596.
Lü, X. J.; Song, Y.; Zhang, W. K. Single molecule force spectroscopy study on the apparent nanomechanical properties of polyethylene single crystals. Chem. J. Chin. Univ. 2018, 39, 166–171.
Naranjo, T.; Lemishko, K. M.; de Lorenzo, S.; Somoza, Á.; Ritort, F.; Pérez, E. M.; Ibarra, B. Dynamics of individual molecular shuttles under mechanical force. Nat. Commun. 2018, 9, 4512.
Li, X.; Xue, Y. R.; Song, Y.; Zhang, W. K. Coordinate interaction between monosulfide and Au surfaces. Chem. J. Chin. Univ. 2018, 39, 2774–2780.
Klukovich, H. M.; Kouznetsova, T. B.; Kean, Z. S.; Lenhardt, J. M.; Craig, S. L. A backbone lever-arm effect enhances polymer mechanochemistry. Nat. Chem. 2013, 5, 110–114.
Wang, J. P.; Kouznetsova, T. B.; Niu, Z. B.; Ong, M. T.; Klukovich, H. M.; Rheingold, A. L.; Martinez, T. J.; Craig, S. L. Inducing and quantifying forbidden reactivity with single-molecule polymer mechanochemistry. Nat. Chem. 2015, 7, 323–327.
Gossweiler, G. R.; Kouznetsova, T. B.; Craig, S. L. Force-rate characterization of two spiropyran-based molecular force probes. J. Am. Chem. Soc. 2015, 137, 6148–6151.
Barbee, M. H.; Kouznetsova, T.; Barrett, S. L.; Gossweiler, G. R.; Lin, Y. J.; Rastogi, S. K.; Brittain, W. J.; Craig, S. L. Substituent effects and mechanism in a mechanochemical reaction. J. Am. Chem. Soc. 2018, 140, 12746–12750.
Zhang, H.; Li, X.; Lin, Y. J.; Gao, F.; Tang, Z.; Su, P. F.; Zhang, W. K.; Xu, Y. Z.; Weng, W. G.; Boulatov, R. Multi-modal mechanophores based on cinnamate dimers. Nat. Commun. 2017, 8, 1147.
Chung, J.; Kushner, A. M.; Weisman, A. C.; Guan, Z. B. Direct correlation of single-molecule properties with bulk mechanical performance for the biomimetic design of polymers. Nat. Mater. 2014, 13, 1055–1062.
Davis, D. A.; Hamilton, A.; Yang, J. L.; Cremar, L. D.; Van Gough, D.; Potisek, S. L.; Ong, M. T.; Braun, P. V.; Martínez, T. J.; White, S. R. et al. Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. Nature 2009, 459, 68–72.