microbial carbon use efficiency; microbial community; nitrogen; no-tillage; soil organic carbon; Carbon use efficiencies; Conventional tillage; Microbial carbon use efficiency; Microbial carbons; Microbial communities; No tillage; Soil microbial; Soil microbial diversity; Soil organic carbon; Tillage practices; Environmental Chemistry; Development; Environmental Science (all); Soil Science; General Environmental Science
Abstract :
[en] Tillage practices can influence soil microbial carbon use efficiency (CUE), which is critical for carbon cycling in terrestrial ecosystems. The effect of tillage practices could also be regulated by nitrogen (N) addition. However, the soil microbial mechanism relating to N fertilizer effect on microbial CUE under no-tillage (zero-tillage) is still unclear. We investigated how N fertilizer regulates the effect of tillage management on microbial CUE through changing microbial properties and further assessed the impact of microbial CUE on particulate (POC) and mineral-associated organic matter carbon (MAOC). For this we used a 16-year field experiment with no-tillage (NT) and conventional tillage (CT), both of which combined with 105 (N1), 180 (N2), and 210 kg N ha−1 (N3) N application. We found that microbial CUE increased with increasing N application rate. NT increased microbial CUE compared with CT in the 0–10 cm. The bacterial and fungal diversities of NT were higher than CT and N application decreased their diversities in 0–10 cm. The partial least squares path model showed that bacterial and fungal diversity had a significant influence on microbial CUE. Furthermore, POC and MAOC under NT were higher than CT and they also increased with increasing N application rate. It suggested that increasing microbial CUE induced by N application had the potential to increase POC and MAOC. Overall, this study highlights that N addition can alter the effect of soil microbial diversity on CUE, which further improves our understanding to explain and predict the fractions of SOC (i.e., POC and MAOC) in tillage systems.
Disciplines :
Agriculture & agronomy
Author, co-author :
Zhang, Mengni ; Université de Liège - ULiège > TERRA Research Centre ; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
Li, Shengping ; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
Wu, Xueping ; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China ; Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in the Loess Plateau, Taigu, China
Zheng, Fengjun; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
Song, Xiaojun; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
Lu, Jinjing ; Université de Liège - ULiège > Université de Liège - ULiège ; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
Liu, Xiaotong ; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
Wang, Bisheng; College of Agronomy, Qingdao Agricultural University, Qingdao, China
Abdelrhmana, Ahmed Ali ; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
Degré, Aurore ; Université de Liège - ULiège > TERRA Research Centre > Echanges Eau - Sol - Plantes
Language :
English
Title :
Nitrogen addition mediates the effect of soil microbial diversity on microbial carbon use efficiency under long-term tillage practices
National Key Research and Development Program of China
Funding text :
Ministerial and Provincial Co‐Innovation Centre for Endemic Crops Production with High‐quality and Efficiency in the Loess Plateau, Taigu 030801, China, Grant/Award Number: SBGJXTZXKF‐02; National Key Research and Development Program of China, Grant/Award Numbers: 2018YFD0200408, 2018YFE0112300 Funding informationThis research was supported by the Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in the Loess Plateau, Taigu 030801, China (SBGJXTZXKF-02), the National Key Research and Development Program of China (2018YFE0112300 and 2018YFD0200408). We wish to thank the editors and reviewers for their constructive comments.This research was supported by the Ministerial and Provincial Co‐Innovation Centre for Endemic Crops Production with High‐quality and Efficiency in the Loess Plateau, Taigu 030801, China (SBGJXTZXKF‐02), the National Key Research and Development Program of China (2018YFE0112300 and 2018YFD0200408). We wish to thank the editors and reviewers for their constructive comments.
Abramoff, R., Xu, X., Hartman, M., O'Brien, S., Feng, W., Davidson, E., Finzi, A., Moorhead, D., Schimel, J., Torn, M., & Mayes, M. A. (2018). The Millennial model: In search of measurable pools and transformations for modeling soil carbon in the new century. Biogeochemistry, 137, 51–71. https://doi.org/10.1007/s10533-017-0409-7
Adu, J. K., & Oades, J. M. (1978). Utilization of organic materials in soil aggregates by bacteria and fungi. Soil Biology and Biochemistry, 10, 117–122. https://doi.org/10.1016/0038-0717(78)90081-0
Ai, C., Zhang, S., Zhang, X., Guo, D., Zhou, W., & Huang, S. (2018). Distinct responses of soil bacterial and fungal communities to changes in fertilization regime and crop rotation. Geoderma, 319, 156–166. https://doi.org/10.1016/j.geoderma.2018.01.010
Álvaro-Fuentes, J., Morell, F. J., Madejón, E., Lampurlanés, J., Arrúe, J. L., & Cantero-Martínez, C. (2013). Soil biochemical properties in a semiarid Mediterranean agroecosystem as affected by long-term tillage and N fertilization. Soil and Tillage Research, 129, 69–74. https://doi.org/10.1016/j.still.2013.01.005
Apple, J. K., Del Giorgio, P. A., & Kemp, W. M. (2006). Temperature regulation of bacterial production, respiration, and growth efficiency in a temperate salt-marsh estuary. Aquatic Microbial Ecology, 43, 243–254. https://doi.org/10.3354/ame043243
Averill, C., & Waring, B. (2018). Nitrogen limitation of decomposition and decay: How can it occur? Global Change Biology, 24, 1417–1427. https://doi.org/10.1111/gcb.13980
Bärlocher, F., & Boddy, L. (2016). Aquatic fungal ecology - How does it differ from terrestrial? Fungal Ecology, 19, 5–13. https://doi.org/10.1016/j.funeco.2015.09.001
Börjesson, G., Sundh, I., Tunlid, A., & Svensson, B. H. (1998). Methane oxidation in landfill cover soils, as revealed by potential oxidation measurements and phospholipid fatty acid analyses. Soil Biology and Biochemistry, 30, 1423–1433. https://doi.org/10.1016/S0038-0717(97)00257-5
Bradford, M. A., Keiser, A. D., Davies, C. A., Mersmann, C. A., & Strickland, M. S. (2013). Empirical evidence that soil carbon formation from plant inputs is positively related to microbial growth. Biogeochemistry, 113, 271–281. https://doi.org/10.1007/s10533-012-9822-0
Brockett, B. F. T., Prescott, C. E., & Grayston, S. J. (2012). Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biology and Biochemistry, 44, 9–20. https://doi.org/10.1016/j.soilbio.2011.09.003
Ceja-Navarro, J. A., Rivera-Orduña, F. N., Patiño-Zúñiga, L., Vila-Sanjurjo, A., Crossa, J., Govaerts, B., & Dendooven, L. (2010). Phylogenetic and multivariate analyses to determine the effects of different tillage and residue management practices on soil bacterial communities. Applied and Environmental Microbiology, 76, 3685–3691. https://doi.org/10.1128/AEM.02726-09
Chen, H., Li, D., Feng, W., Niu, S., Plante, A., Luo, Y., & Wang, K. (2018). Different responses of soil organic carbon fractions to additions of nitrogen. European Journal of Soil Science, 69, 1098–1104. https://doi.org/10.1111/ejss.12716
Chen, J., Ji, C., Fang, J., He, H., & Zhu, B. (2020a). Dynamics of microbial residues control the responses of mineral-associated soil organic carbon to N addition in two temperate forests. Science of the Total Environment, 748, 141318. https://doi.org/10.1016/j.scitotenv.2020.141318
Chen, J., Xiao, W., Zheng, C., & Zhu, B. (2020b). Nitrogen addition has contrasting effects on particulate and mineral-associated soil organic carbon in a subtropical forest. Soil Biology and Biochemistry, 142, 107708. https://doi.org/10.1016/j.soilbio.2020.107708
Chen, S., Wang, W., Xu, W., Wang, Y., Wan, H., Chen, D., & Tang, Z. (2017). Plant diversity enhances productivity and soil carbon storage. Proceedings of the National Academy of Sciences of the United States of America, 115, 4027–4032. https://doi.org/10.1073/pnas.1700298114
Chen, Y., Liu, X., Hou, Y., Zhou, S., & Zhu, B. (2019). Particulate organic carbon is more vulnerable to nitrogen addition than mineral-associated organic carbon in soil of an alpine meadow. Plant and Soil, 458, 93–103. https://doi.org/10.1007/s11104-019-04279-4
Chowdhury, T. R., & Dick, R. P. (2012). Standardizing methylation method during phospholipid fatty acid analysis to profile soil microbial communities. Journal of Microbiological Methods, 88, 285–291. https://doi.org/10.1016/j.mimet.2011.12.008
Cleveland, C. C., & Liptzin, D. (2007). C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry, 85, 235–252. https://doi.org/10.1007/s10533-007-9132-0
Curtin, D., Beare, M. H., Qiu, W., & Sharp, J. (2019). Does particulate organic matter fraction meet the criteria for a model soil organic matter Pool? Pedosphere, 29, 195–203. https://doi.org/10.1016/S1002-0160(18)60049-9
Dai, Z., Su, W., Chen, H., Barberán, A., Zhao, H., Yu, M., Yu, L., Brookes, P. C., Schadt, C. W., Chang, S. X., & Xu, J. (2018). Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro-ecosystems across the globe. Global Change Biology, 24, 3452–3461. https://doi.org/10.1111/gcb.14163
De Valença, A. W., Vanek, S. J., Meza, K., Ccanto, R., & Olivera, E. (2017). Land use as a driver of soil fertility and biodiversity across agricultural landscape in the Central Peruvian Andes. Ecological Applications, 27, 1138–1154. https://doi.org/10.1002/eap.1508
Domeignoz-Horta, L. A., Pold, G., Liu, X. J. A., Frey, S. D., Melillo, J. M., & DeAngelis, K. M. (2020). Microbial diversity drives carbon use efficiency in a model soil. Nature Communications, 11, 1–10. https://doi.org/10.1038/s41467-020-17502-z
Fang, Y., Singh, B. P., Cowie, A., Wang, W., Arachchi, M. H., Wang, H., & Tavakkoli, E. (2019). Balancing nutrient stoichiometry facilitates the fate of wheat residue-carbon in physically defined soil organic matter fractions. Geoderma, 354, 113883. https://doi.org/10.1016/j.geoderma.2019.113883
Fierer, N., Schimel, J. P., & Holden, P. A. (2003). Variations in microbial community composition through two soil depth profiles. Soil Biology and Biochemistry, 35, 167–176. https://doi.org/10.1016/S0038-0717(02)00251-1
Fiorini, A., Boselli, R., Maris, S. C., Santelli, S., Ardenti, F., Capra, F., & Tabaglio, V. (2020). May conservation tillage enhance soil C and N accumulation without decreasing yield in intensive irrigated croplands? Results from an eight-year maize monoculture. Agriculture, Ecosystems and Environment, 296, 106926. https://doi.org/10.1016/j.agee.2020.106926
Frostegård, A., & Bååth, E. (1996). The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology and Fertility of Soils, 22, 59–65. https://doi.org/10.1007/s003740050076
Gentile, R., Vanlauwe, B., Chivenge, P., & Six, J. (2011). Trade-offs between the short- and long-term effects of residue quality on soil C and N dynamics. Plant and Soil, 338, 159–169. https://doi.org/10.1007/s11104-010-0360-z
Geyer, K. M., Dijkstra, P., Sinsabaugh, R., & Frey, S. D. (2019). Clarifying the interpretation of carbon use efficiency in soil through methods comparison. Soil Biology and Biochemistry, 128, 79–88. https://doi.org/10.1016/j.soilbio.2018.09.036
Haddix, M. L., Paul, E. A., & Cotrufo, M. F. (2016). Dual, differential isotope labeling shows the preferential movement of labile plant constituents into mineral-bonded soil organic matter. Global Change Biology, 22, 2301–2312. https://doi.org/10.1111/gcb.13237
Herath, H. M. S. K., Camps-Arbestain, M., Hedley, M., Van Hale, R., & Kaal, J. (2014). Fate of biochar in chemically- and physically-defined soil organic carbon pools. Organic Geochemistry, 73, 35–46. https://doi.org/10.1016/j.orggeochem.2014.05.001
Huang, R., Zhang, Z., Xiao, X., Zhang, N., Wang, X., Yang, Z., Xu, K., & Liang, Y. (2019). Structural changes of soil organic matter and the linkage to rhizosphere bacterial communities with biochar amendment in manure fertilized soils. Science of the Total Environment, 692, 333–343. https://doi.org/10.1016/j.scitotenv.2019.07.262
Jenkinson, D. S., Brookes, P. C., & Powlson, D. S. (2004). Measuring soil microbial biomass. Soil Biology and Biochemistry, 36, 5–7. https://doi.org/10.1016/j.soilbio.2003.10.002
Jha, P., Hati, K. M., Dalal, R. C., Dang, Y. P., Kopittke, P. M., & Menzies, N. W. (2020). Soil carbon and nitrogen dynamics in a Vertisol following 50 years of no-tillage, crop stubble retention and nitrogen fertilization. Geoderma, 358, 113996. https://doi.org/10.1016/j.geoderma.2019.113996
Jumpponen, A., Jones, K. L., & Blair, J. (2010). Vertical distribution of fungal communities in tallgrass prairie soil. Mycologia, 102, 1027–1041. https://doi.org/10.3852/09-316
Kallenbach, C. M., Wallenstein, M. D., Schipanksi, M. E., & Stuart, G. A. (2019). Managing agroecosystems for soil microbial carbon use efficiency: Ecological unknowns, potential outcomes, and a path forward. Frontiers in Microbiology, 10, 1146. https://doi.org/10.3389/fmicb.2019.01146
Keiblinger, K. M., Hall, E. K., Wanek, W., Szukics, U., Hämmerle, I., Ellersdorfer, G., Böck, S., Strauss, J., Sterflinger, K., Richter, A., & Zechmeister-Boltenstern, S. (2010). The effect of resource quantity and resource stoichiometry on microbial carbon-use-efficiency. FEMS Microbiology Ecology, 73, 430–440. https://doi.org/10.1111/j.1574-6941.2010.00912.x
Keszthelyi, A., Hamari, Z., Pfeiffer, I., Vágvölgyi, C., & Kucsera, J. (2008). Comparison of killer toxin-producing and non-producing strains of Filobasidium capsuligenum: Proposal for two varieties. Microbiological Research, 163, 267–276. https://doi.org/10.1016/j.micres.2008.01.002
Lee, S. H., Malone, C., & Kemp, P. F. (1993). Use of multiple 16S rRNA-targeted fluorescent probes to increase signal strength and measure cellular RNA from natural planktonic bacteria. Marine Ecology Progress Series, 101, 193–202. https://doi.org/10.3354/meps101193
Lee, Z. M., & Schmidt, T. M. (2014). Bacterial growth efficiency varies in soils under different land management practices. Soil Biology and Biochemistry, 69, 282–290. https://doi.org/10.1016/j.soilbio.2013.11.012
Li, J., Wang, G., Allison, S. D., & Mayes, M. A. (2014). Soil carbon sensitivity to temperature and carbon use efficiency compared across microbial-ecosystem models of varying complexity. Biogeochemistry, 119, 67–84. https://doi.org/10.1007/s10533-013-9948-8
Li, J., Wang, G., Mayes, M. A., Allison, S. D., Frey, S. D., Shi, Z., Hu, X. M., Luo, Y., & Melillo, J. M. (2019). Reduced carbon use efficiency and increased microbial turnover with soil warming. Global Change Biology, 25, 900–910. https://doi.org/10.1111/gcb.14517
Li, S., Lu, J., Liang, G., Plougonven, E., Wang, Y., Ali, A., Xiaojun, A., Xiaotong, S., & Gao, L. (2020a). Factors governing soil water repellency under tillage management: The role of pore structure and hydrophobic substances. Land Degradation & Development, 32, 1046–1059. https://doi.org/10.1002/ldr.3779
Li, S., Tan, D., Wu, X., Degr, A., Zhang, S., Lu, J., Gao, L., Zheng, F., Liu, X., & Liang, G. (2021). Negative pressure irrigation increases vegetable water productivity and nitrogen use efficiency by improving soil water and NO-3-N distributions. Agricultural Water Management, 251, 106853. https://doi.org/10.1016/j.agwat.2021.106853
Li, S., Wu, X., Liang, G., Gao, L., Wang, B., Lu, J., Abdelrhman, A. A., Song, X., Zhang, M., Zheng, F., & Degré, A. (2020b). Is least limiting water range a useful indicator of the impact of tillage management on maize yield? Soil and Tillage Research, 199, 104602. https://doi.org/10.1016/j.still.2020.104602
Li, Y., Nie, C., Liu, Y., Du, W., & He, P. (2019). Soil microbial community composition closely associates with specific enzyme activities and soil carbon chemistry in a long-term nitrogen fertilized grassland. Science of the Total Environment, 654, 264–274. https://doi.org/10.1016/j.scitotenv.2018.11.031
Li, Y., Song, D., Liang, S., Dang, P., Qin, X., Liao, Y., & Siddique, K. H. M. (2020c). Effect of no-tillage on soil bacterial and fungal community diversity: A meta-analysis. Soil and Tillage Research, 204, 104721. https://doi.org/10.1016/j.still.2020.104721
Li, Z., Liu, M., Wu, X., Han, F., & Zhang, T. (2010). Effects of long-term chemical fertilization and organic amendments on dynamics of soil organic C and total N in paddy soil derived from barren land in subtropical China. Soil and Tillage Research, 106, 268–274. https://doi.org/10.1016/j.still.2009.12.008
Liu, W., Qiao, C., Yang, S., Bai, W., & Liu, L. (2018). Microbial carbon use efficiency and priming effect regulate soil carbon storage under nitrogen deposition by slowing soil organic matter decomposition. Geoderma, 332, 37–44. https://doi.org/10.1016/j.geoderma.2018.07.008
Liu, X., Wu, X., Liang, G., Zheng, F., Zhang, M., & Li, S. (2021). A global meta-analysis of the impacts of no-tillage on soil aggregation and aggregate-associated organic carbon. Land Degradation & Development. 32, 5292–5305. https://doi.org/10.1002/ldr.4109
Luan, C., Xie, L., Yang, X., Miao, H., Lv, N., Zhang, R., Xiao, X., Hu, Y., Liu, Y., Wu, N., Zhu, Y., & Zhu, B. (2015). Dysbiosis of fungal microbiota in the intestinal mucosa of patients with colorectal adenomas. Scientific Reports, 5, 1–9. https://doi.org/10.1038/srep07980
Manzoni, S., Taylor, P., Richter, A., Porporato, A., & Ågren, G. I. (2012). Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytologist, 196, 79–91. https://doi.org/10.1111/j.1469-8137.2012.04225.x
Mathew, R. P., Feng, Y., Githinji, L., Ankumah, R., & Balkcom, K. S. (2012). Impact of no-tillage and conventional tillage systems on soil microbial. Communities, 2012, 1–10. https://doi.org/10.1155/2012/548620
Mo, F., Zhang, Y. Y., Liu, Y., & Liao, Y. C. (2021). Microbial carbon-use efficiency and straw-induced priming effect within soil aggregates are regulated by tillage history and balanced nutrient supply. Biology and Fertility of Soils, 57, 409–420. https://doi.org/10.1007/s00374-021-01540-w
Morriën, E., Hannula, S. E., Snoek, L. B., Helmsing, N. R., Zweers, H., De Hollander, M., Soto, R. L., Bouffaud, M. L., Buée, M., Dimmers, W., Duyts, H., Geisen, S., Girlanda, M., Griffiths, R. I., Jørgensen, H. B., Jensen, J., Plassart, P., Redecker, D., Schmelz, R. M., … Van Der Putten, W. H. (2017). Soil networks become more connected and take up more carbon as nature restoration progresses. Nature Communications, 8, 1–10. https://doi.org/10.1038/ncomms14349
Novara, A., Gristina, L., Sala, G., Galati, A., Crescimanno, M., Cerdà, A., Badalamenti, E., & La, T. (2017). Science of the Total environment agricultural land abandonment in Mediterranean environment provides ecosystem services via soil carbon sequestration. Science of the Total Environment, 576, 420–429. https://doi.org/10.1016/j.scitotenv.2016.10.123
Nunes, M. R., Karlen, D. L., Veum, K. S., Moorman, T. B., & Cambardella, C. A. (2020). Biological soil health indicators respond to tillage intensity: A US meta-analysis. Geoderma, 369, 114335. https://doi.org/10.1016/j.geoderma.2020.114335
Omar, S. A., & Ismail, M. A. (1999). Microbial populations, ammonification and nitrification in soil treated with urea and inorganic salts. Folia Microbiologica, 44, 205–212. https://doi.org/10.1007/BF02816244
Piazza, G., Ercoli, L., Nuti, M., & Pellegrino, E. (2019). Interaction between conservation tillage and nitrogen fertilization shapes prokaryotic and fungal diversity at different soil depths: Evidence from a 23-year field experiment in the Mediterranean area. Frontiers in Microbiology, 10, 1–20. https://doi.org/10.3389/fmicb.2019.02047
Qiao, Y., Wang, J., Liang, G., Du, Z., Zhou, J., & Zhu, C. (2019). Global variation of soil microbial carbon-use efficiency in relation to growth temperature and substrate supply. Scientific Reports, 9, 5621. https://doi.org/10.1038/s41598-019-42145-6
Saiya-Cork, K. R., Sinsabaugh, R. L., & Zak, D. R. (2002). The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology and Biochemistry, 34, 1309–1315. https://doi.org/10.1016/S0038-0717(02)00074-3
Sauvadet, M., Lashermes, G., Alavoine, G., Recous, S., Chauvat, M., Maron, P. A., & Bertrand, I. (2018). High carbon use efficiency and low priming effect promote soil C stabilization under reduced tillage. Soil Biology and Biochemistry, 123, 64–73. https://doi.org/10.1016/j.soilbio.2018.04.026
Sinsabaugh, R. L., Findlay, S., Franchini, P., & Fischer, D. (1997). Enzymatic analysis of riverine bacterioplankton production. Limnology and Oceanography, 42, 29–38. https://doi.org/10.4319/lo.1997.42.1.0029
Sinsabaugh, R. L., Manzoni, S., Moorhead, D. L., & Richter, A. (2013). Carbon use efficiency of microbial communities: Stoichiometry, methodology and modelling. Ecology Letters, 16, 930–939. https://doi.org/10.1111/ele.12113
Sinsabaugh, R. L., & Shah, J. J. F. (2012). Ecoenzymatic stoichiometry and ecological theory. Annual Review of Ecology, Evolution, and Systematics, 43, 313–343. https://doi.org/10.1146/annurev-ecolsys-071112-124414
Sinsabaugh, T. B. L., Talbot, J. M., Waring, B. G., Powers, J. S., Kuske, C. R., Moorhead, D. L., & Shah, J. J. F. (2016). Stoichiometry of microbial carbon use efficiency in soils. Ecological Monographs, 86, 172–189. https://doi.org/10.1890/15-2110.1
Six, J., Elliott, E. T., Paustian, K., & Doran, J. W. (1998). Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Science Society of America Journal, 62, 1367–1377. https://doi.org/10.2136/sssaj1998.03615995006200050032x
Six, J., Frey, S. D., Thiet, R. K., & Batten, K. M. (2006). Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Science Society of America Journal, 70, 555–569. https://doi.org/10.2136/sssaj2004.0347
Spohn, M., Pötsch, E. M., Eichorst, S. A., Woebken, D., Wanek, W., & Richter, A. (2016). Soil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grassland. Soil Biology and Biochemistry, 97, 168–175. https://doi.org/10.1016/j.soilbio.2016.03.008
Stewart, C. E., Follett, R. F., Pruessner, E. G., Varvel, G. E., Vogel, K. P., & Mitchell, R. B. (2016). N fertilizer and harvest impacts on bioenergy crop contributions to SOC. GCB Bioenergy, 8, 1201–1211. https://doi.org/10.1111/gcbb.12326
Su, Y., He, Z., Yang, Y., Jia, S., Yu, M., Chen, X., & Shen, A. (2020). Linking soil microbial community dynamics to straw-carbon distribution in soil organic carbon. Scientific Reports, 10, 1–12. https://doi.org/10.1038/s41598-020-62198-2
Sun, B., Jia, S., Zhang, S., Mclaughlin, N. B., Zhang, X., Liang, A., Chen, X., Wei, S., & Liu, S. (2016). Tillage, seasonal and depths effects on soil microbial properties in black soil of Northeast China. Soil & Tillage Research, 155, 421–428. https://doi.org/10.1016/j.still.2015.09.014
Sun, R., Li, W., Dong, W., Tian, Y., Hu, C., & Liu, B. (2018). Tillage changes vertical distribution of soil bacterial and fungal communities. Frontiers in Microbiology, 9, 1–13. https://doi.org/10.3389/fmicb.2018.00699
Thierfelder, C., Baudron, F., Setimela, P., Nyagumbo, I., Mupangwa, W., Mhlanga, B., Lee, N., & Gérard, B. (2018). Complementary practices supporting conservation agriculture in southern Africa: A review. Agronomy for Sustainable Development, 38, 1–22. https://doi.org/10.1007/s13593-018-0492-8
Thiet, R. K., Frey, S. D., & Six, J. (2006). Do growth yield efficiencies differ between soil microbial communities differing in fungal:bacterial ratios? Reality check and methodological issues. Soil Biology and Biochemistry, 38, 837–844. https://doi.org/10.1016/j.soilbio.2005.07.010
Thomas, R. Q., Canham, C. D., Weathers, K. C., & Goodale, C. L. (2010). Increased tree carbon storage in response to nitrogen deposition in the US. Nature Geoscience, 3, 13–17. https://doi.org/10.1038/ngeo721
Van Groenigen, K. J., Forristal, D., Jones, M., Smyth, N., Schwartz, E., Hungate, B., & Dijkstra, P. (2013). Using metabolic tracer techniques to assess the impact of tillage and straw management on microbial carbon use efficiency in soil. Soil Biology and Biochemistry, 66, 139–145. https://doi.org/10.1016/j.soilbio.2013.07.002
Verbruggen, E., & Toby, K. E. (2010). Evolutionary ecology of mycorrhizal functional diversity in agricultural systems. Evolutionary Applications, 3, 547–560. https://doi.org/10.1111/j.1752-4571.2010.00145.x
Wagg, C., Schlaeppi, K., Banerjee, S., Kuramae, E. E., & van der Heijden, M. G. A. (2019). Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nature Communications, 10, 1–10. https://doi.org/10.1038/s41467-019-12798-y
Waldrop, M. P., & Firestone, M. K. (2004). Microbial community utilization of recalcitrant and simple carbon compounds: Impact of oak-woodland plant communities. Oecologia, 138, 275–284. https://doi.org/10.1007/s00442-003-1419-9
Wang, B., Gao, L., Yu, W., Wei, X., Li, J., Li, S., Song, X., Liang, G., Cai, D., & Wu, X. (2019). Distribution of soil aggregates and organic carbon in deep soil under long-term conservation tillage with residual retention in dryland. Journal of Arid Land, 11, 241–254. https://doi.org/10.1007/s40333-019-0094-6
Wang, C., Liu, D., & Bai, E. (2018). Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition. Soil Biology and Biochemistry, 120, 126–133. https://doi.org/10.1016/j.soilbio.2018.02.003
Wang, W., Hou, Y., Pan, W., Vinay, N., Mo, F., Liao, Y., & Wen, X. (2021). Continuous application of conservation tillage affects in situ N2O emissions and nitrogen cycling gene abundances following nitrogen fertilization. Soil Biology and Biochemistry, 157, 108239. https://doi.org/10.1016/j.soilbio.2021.108239
Wang, X., Cai, D., Zhang, J., & Gao, X. (2001). Nitrogen Untake by corn and N recovery in grain in dry farmland. Scientia Agricultura Sinica, 34, 179–185.
Wang, Y., Li, C., Tu, C., Hoyt, G. D., DeForest, J. L., & Hu, S. (2017). Long-term no-tillage and organic input management enhanced the diversity and stability of soil microbial community. Science of the Total Environment, 609, 341–347. https://doi.org/10.1016/j.scitotenv.2017.07.053
Wetterstedt, J. A. M., & Agren, G. I. (2011). Quality or decomposer efficiency - which is most important in the temperature response of litter decomposition? A modelling study using the GLUE methodology. Biogeosciences, 8, 477–487. https://doi.org/10.5194/bg-8-477-2011
White, D., Stair, J., & Ringelberg, D. (1996). Quantitative comparisons ofin situ microbial biodiversity by signature biomarker analysis. Journal of Industrial Microbiology & Biotechnology, 17, 185–196. https://doi.org/10.1007/bf01574692
Widdig, M., Schleuss, P. M., Biederman, L. A., Borer, E. T., Crawley, M. J., Kirkman, K. P., Seabloom, E. W., Wragg, P. D., & Spohn, M. (2020). Microbial carbon use efficiency in grassland soils subjected to nitrogen and phosphorus additions. Soil Biology and Biochemistry, 146, 107815. https://doi.org/10.1016/j.soilbio.2020.107815
Willers, C., Jansen van Rensburg, P. J., & Claassens, S. (2015). Phospholipid fatty acid profiling of microbial communities – A review of interpretations and recent applications. Journal of Applied Microbiology, 119, 1207–1218. https://doi.org/10.1111/jam.12902
Witzgall, K., Vidal, A., Schubert, D. I., Höschen, C., Schweizer, S. A., Buegger, F., Pouteau, V., Chenu, C., & Mueller, C. W. (2021). Particulate organic matter as a functional soil component for persistent soil organic carbon. Nature Communications, 12, 4115. https://doi.org/10.1038/s41467-021-24192-8
Wu, H., Irizarry, R. A., & Bravo, H. C. (2010). Intensity normalization improves color calling in SOLiD sequencing. Nature Methods, 7, 336–337. https://doi.org/10.1038/nmeth0510-336
Yang, H., Wu, G., Mo, P., Chen, S., Wang, S., Xiao, Y., Hang, M., Wen, T., Guo, X., & Fan, G. (2020a). The combined effects of maize straw mulch and no-tillage on grain yield and water and nitrogen use efficiency of dry-land winter wheat (Triticum aestivum L.). Soil and Tillage Research, 197, 104485. https://doi.org/10.1016/j.still.2019.104485
Yang, Y., Cheng, H., Gao, H., & An, S. (2020b). Response and driving factors of soil microbial diversity related to global nitrogen addition. Land Degradation & Development, 31, 190–204. https://doi.org/10.1002/ldr.3439
Ye, C., Chen, D., Hall, S. J., Pan, S., Yan, X., Bai, T., Guo, H., Zhang, Y., Bai, Y., & Hu, S. (2018). Reconciling multiple impacts of nitrogen enrichment on soil carbon: Plant, microbial and geochemical controls. Ecology Letters, 21, 1162–1173. https://doi.org/10.1111/ele.13083
Yuan, X., Qin, W., Xu, H., Zhang, Z., Zhou, H., & Zhu, B. (2020). Sensitivity of soil carbon dynamics to nitrogen and phosphorus enrichment in an alpine meadow. Soil Biology and Biochemistry, 150, 107984. https://doi.org/10.1016/j.soilbio.2020.107984
Zhang, B., He, H., Ding, X., Zhang, X., Zhang, X., Yang, X., & Filley, T. R. (2012). Soil microbial community dynamics over a maize (Zea mays L.) growing season under conventional- and no-tillage practices in a rainfed agroecosystem. Soil and Tillage Research, 124, 153–160. https://doi.org/10.1016/j.still.2012.05.011
Zhou, Z., Wang, C., Zheng, M., Jiang, L., & Luo, Y. (2017). Patterns and mechanisms of responses by soil microbial communities to nitrogen addition. Soil Biology and Biochemistry, 115, 433–441. https://doi.org/10.1016/j.soilbio.2017.09.015
Zhou, Z., Zhang, H., Yuan, Z., & Gong, R. (2020). The nutrient release rate accounts for the effect of organic matter type on soil microbial carbon use efficiency of a Pinus tabulaeformis forest in northern China. Journal of Soils and Sediments, 20, 352–364. https://doi.org/10.1007/s11368-019-02423-2