carbon dynamics; carbon storage; erosion; floodplain; mean residence time; sedimentation; source/sink; stable isotopes; Active channels; Carbon dynamics; Carbon storage; Decomposition rate; Flood plains; Floodplain soils; Mean residence time; Sedimentation rates; Source-sink; Stable isotopes; Water Science and Technology
Abstract :
[en] The fate of organic carbon deposited in floodplain sediments is an important control on the magnitude and direction of the carbon flux from anthropogenically accelerated erosion and channelization of the riverine network. Globally, carbon deposition rates and mean residence time (MRT) within different geomorphic settings remains poorly constrained. We sampled soil profiles to 0.8 m depth from two geomorphic zones: active channel belt (ACB) and lowland floodplain, under long-term pasture adjacent to the river Culm in SW England, UK. We evaluated sedimentation rates and carbon storage using fallout radionuclide 137Cs, particle size and total carbon analyses. Variation in decomposition was assessed via empirical (soil aggregate size, density fractionation combined with natural abundance 13C analysis) and modelling simulation (using the RothC model and catchment implications explored using a floodplain evolution model). Sedimentation and carbon accumulation rates were 5–6 times greater in the ACB than the floodplain. Carbon decomposition rates also varied with geomorphic setting. In floodplain cores, faster decomposition rates were indicated by greater 13C-enrichment and subsoils dominated by mineral-associated soil organic carbon. Whereas, in the ACB, carbon was less processed and 13C-depleted, with light fraction and macroaggregate-carbon throughout the cores, and RothC modelled decomposition rates were 4-fold less than lowland floodplain cores. Including the ACB in floodplain carbon MRT calculations increased overall MRT by 10%. The major differences in the balance of sedimentation and decomposition rates between active and inactive floodplains suggests the relative extent of these contrasting zones is critical to the overall carbon balance. Restoration projects could enhance soil carbon storage by maximizing active floodplain areas by increasing river channel complexity.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Quine, Timothy A.; Geography, College of Life & Environmental Sciences, University of Exeter, Exeter, United Kingdom
Cressey, Elizabeth L. ; Geography, College of Life & Environmental Sciences, University of Exeter, Exeter, United Kingdom
Dungait, Jennifer A. J.; Geography, College of Life & Environmental Sciences, University of Exeter, Exeter, United Kingdom
De Baets, Sarah; Geography, College of Life & Environmental Sciences, University of Exeter, Exeter, United Kingdom ; Soil and Agrifood Institute, Cranfield University, Cranfield, United Kingdom ; Research Coordination Office, KU Leuven, Leuven, Belgium
Meersmans, Jeroen ; Université de Liège - ULiège > TERRA Research Centre > Echanges Eau - Sol - Plantes ; Geography, College of Life & Environmental Sciences, University of Exeter, Exeter, United Kingdom ; Soil and Agrifood Institute, Cranfield University, Cranfield, United Kingdom
Jones, Matthew W.; Geography, College of Life & Environmental Sciences, University of Exeter, Exeter, United Kingdom ; Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
Nicholas, Andrew P.; Geography, College of Life & Environmental Sciences, University of Exeter, Exeter, United Kingdom
Language :
English
Title :
Geomorphically mediated carbon dynamics of floodplain soils and implications for net effect of carbon erosion
This work was funded by UK Natural Environment Research Council as part of the Impacts of Climate Change on Erosion, Sediment and Transport and Soil Carbon in the UK and Europe project (NE/E011713/1). MWJ contribution was supported by NERC PhD studentship (NE/L002434/1) and NERC Independent Research Fellowship (NE/V01417X/1). We thank Sophie M. Green for her helpful manuscript comments, Daisy Atkins for her digitisation of the Culm catchment, Richard Jones and Neville England for their fieldwork assistance, and the Exeter University technician team for their laboratory assistance.This work was funded by UK Natural Environment Research Council as part of the Impacts of Climate Change on Erosion, Sediment and Transport and Soil Carbon in the UK and Europe project (NE/E011713/1). MWJ contribution was supported by NERC PhD studentship (NE/L002434/1) and NERC Independent Research Fellowship (NE/V01417X/1). We thank Sophie M. Green for her helpful manuscript comments, Daisy Atkins for her digitisation of the Culm catchment, Richard Jones and Neville England for their fieldwork assistance, and the Exeter University technician team for their laboratory assistance.
Aufdenkampe, A. K., Mayorga, E., Raymond, P. A., Melack, J. M., Doney, S. C., Alin, S. R., Aalto, R. E., & Yoo, K. (2011). Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Frontiers in Ecology and the Environment, 9(1), 53–60. https://doi.org/10.1890/100014
Batson, J., Noe, G. B., Hupp, C. R., Krauss, K. W., Rybicki, N. B., & Schenk, E. R. (2015). Soil greenhouse gas emissions and carbon budgeting in a short-hydroperiod floodplain wetland. Journal of Geophysical Research: Biogeosciences, 120(1), 77–95. https://doi.org/10.1002/2014JG002817
Beniston, J. W., DuPont, S. T., Glover, J. D., Lal, R., & Dungait, J. A. (2014). Soil organic carbon dynamics 75 years after land-use change in perennial grassland and annual wheat agricultural systems. Biogeochemistry, 120(1), 37–49. https://doi.org/10.1007/s10533-014-9980-3
Bennett, J. A., Brown, A. G., Schwenninger, J. L., & Rhodes, E. J. (2011). Holocene channel changes and geoarchaeology of the Exe River, Devon, UK, and the floodplain paradox. Geoarchaeology, climate change and sustainability. Geological Society of America Special Publication, 476, 135–152. https://doi.org/10.1130/2011.2476(11)
Berhe, A. A., & Kleber, M. (2013). Erosion, deposition, and the persistence of soil organic matter: Mechanistic considerations and problems with terminology. Earth Surface Processes and Landforms, 38(8), 908–912. https://doi.org/10.1002/esp.3408
Brooks, A. P., & Brierley, G. J. (2002). Mediated equilibrium: The influence of riparian vegetation and wood on the long-term evolution and behaviour of a near-pristine river. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 27(4), 343–367. https://doi.org/10.1002/esp.332
Brown, A. G., Lespez, L., Sear, D. A., Macaire, J.-J., Houben, P., Klimek, K., Brazier, R. E., Van Oost, K., & Pears, B. (2018). Natural vs anthropogenic streams in Europe: History, ecology and implications for restoration, river-rewilding and riverine ecosystem services. Earth-Science Reviews, 180, 185–205. https://doi.org/10.1016/j.earscirev.2018.02.001
Chaopricha, N. T., & Marín-Spiotta, E. (2014). Soil burial contributes to deep soil organic carbon storage. Soil Biology and Biochemistry, 69, 251–264. https://doi.org/10.1016/j.soilbio.2013.11.011
Coleman, K., & Jenkinson, D. S. (2014). RothC—A model for the turnover of carbon in soil. Model description and users guide. Rothamsted Research. https://www.rothamsted.ac.uk/sites/default/files/RothC_guide_DOS.pdf
Constantine, J. A., & Dunne, T. (2008). Meander cutoff and the controls on the production of oxbow lakes. Geology, 36(1), 23–26. https://doi.org/10.1130/G24130A.1
Cressey, E., Dungait, J., Jones, D., Nicholas, A., & Quine, T. (2018). Soil microbial populations in deep floodplain soils are adapted to infrequent but regular carbon substrate addition. Soil Biology and Biochemistry, 122, 60–70. https://doi.org/10.1016/j.soilbio.2018.04.001
D'Elia, A. H., Liles, G. C., Viers, J. H., & Smart, D. R. (2017). Deep carbon storage potential of buried floodplain soils. Scientific Reports, 7(1), 1–7. https://doi.org/10.1038/s41598-017-06494-4
Doetterl, S., Stevens, A., Van Oost, K., Quine, T. A., & Van Wesemael, B. (2013). Spatially-explicit regional-scale prediction of soil organic carbon stocks in cropland using environmental variables and mixed model approaches. Geoderma, 204, 31–42. https://doi.org/10.1016/j.geoderma.2013.04.007
Falloon, P., Smith, P., Coleman, K., & Marshall, S. (1998). Estimating the size of the inert organic matter pool from total soil organic carbon content for use in the Rothamsted carbon model. Soil Biology & Biochemistry, 30(8–9), 1207–1211. https://doi.org/10.1016/S0038-0717(97)00256-3
Falloon, P., Smith, P., Smith, J. U., Szabo, J., Coleman, K., & Marshall, S. (1998). Regional estimates of carbon sequestration potential: Linking the Rothamsted carbon model to GIS databases. Biology and Fertility of soils, 27(3), 236–241. https://doi.org/10.1007/s003740050426
Fontaine, S., Barot, S., Barré, P., Bdioui, N., Mary, B., & Rumpel, C. (2007). Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature, 450(7167), 277–280. https://doi.org/10.1038/nature06275
Gatland, J. R., Santos, I. R., Maher, D. T., Duncan, T., & Erler, D. V. (2014). Carbon dioxide and methane emissions from an artificially drained coastal wetland during a flood: Implications for wetland global warming potential. Journal of Geophysical Research: Biogeosciences, 119(8), 1698–1716. https://doi.org/10.1002/2013JG002544
Glendell, M., Jones, R., Dungait, J., Meusburger, K., Schwendel, A., Barclay, R., Barker, S., Haley, S., Quine, T. A., & Meersmans, J. (2018). Tracing of particulate organic C sources across the terrestrial-aquatic continuum, a case study at the catchment scale (Carminowe Creek, Southwest England). Science of the Total Environment, 616, 1077–1088. https://doi.org/10.1016/j.scitotenv.2017.10.211
Graf-Rosenfellner, M., Cierjacks, A., Kleinschmit, B., & Lang, F. (2016). Soil formation and its implications for stabilization of soil organic matter in the riparian zone. Catena, 139, 9–18. https://doi.org/10.1016/j.catena.2015.11.010
Hinshaw, S., & Wohl, E. (2021). Quantitatively estimating carbon sequestration potential in soil and large wood in the context of river restoration. Frontiers in Earth Science, 9, 975. https://doi.org/10.3389/feart.2021.708895
Hooke, J. (1977). An analysis of changes in River Channel patterns: The example of streams in Devon (Doctoral dissertation, University of Exeter).
Hooke, J. M. (1980). Magnitude and distribution of rates of river bank erosion. Earth surface processes, 5(2), 143–157. https://doi.org/10.1002/esp.3760050205
Howard, A. D., & Knutson, T. R. (1984). Sufficient conditions for river meandering: A simulation approach. Water Resources Research, 20(11), 1659–1667. https://doi.org/10.1029/WR020i011p01659
Hupp, C. R., Kroes, D. E., Noe, G. B., Schenk, E. R., & Day, R. H. (2019). Sediment trapping and carbon sequestration in floodplains of the lower Atchafalaya Basin, LA: Allochthonous versus autochthonous carbon sources. Journal of Geophysical Research: Biogeosciences, 124(3), 663–677. https://doi.org/10.1029/2018JG004533
Isidorova, A., Mendonça, R., & Sobek, S. (2019). Reduced mineralization of terrestrial OC in anoxic sediment suggests enhanced burial efficiency in reservoirs compared to other depositional environments. Journal of Geophysical Research: Biogeosciences, 124(3), 678–688. https://doi.org/10.1029/2018JG004823
Johnson, S. 2018. Connecting the Culm. https://blackdownhillsaonb.org.uk/project/connecting-the-culm/
Lal, R. (2019). Accelerated soil erosion as a source of atmospheric CO2. Soil and Tillage Research, 188, 35–40. https://doi.org/10.1016/j.still.2018.02.001
Lambert, C., & Walling, D. (1987). Floodplain sedimentation: A preliminary investigation of contemporary deposition within the lower reaches of the river culm, Devon, UK. Geografiska Annaler: Series A, Physical Geography, 69(3–4), 393–404. https://doi.org/10.1080/04353676.1987.11880227
Lauer, J. W., & Parker, G. (2008). Modeling framework for sediment deposition, storage, and evacuation in the floodplain of a meandering river: Theory. Water Resources Research, 44(4), W04425. https://doi.org/10.1029/2006WR005528
Lewin, J., & Ashworth, P. J. (2014). The negative relief of large river floodplains. Earth-Science Reviews, 129, 1–23. https://doi.org/10.1016/j.earscirev.2013.10.014
Lewin, J., Ashworth, P. J., & Strick, R. J. (2017). Spillage sedimentation on large river floodplains. Earth Surface Processes and Landforms, 42(2), 290–305. https://doi.org/10.1002/esp.3996
Lewin, J., & Macklin, M. (2010). Floodplain catastrophes in the UKHolocene: Messages for managing climate change. Hydrological Processes, 24(20), 2900–2911. https://doi.org/10.1002/hyp.7704
Lininger, K. B., Wohl, E., & Rose, J. R. (2018). Geomorphic controls on floodplain soil organic carbon in the Yukon flats, interior Alaska, from reach to river basin scales. Water Resources Research, 54(3), 1934–1951. https://doi.org/10.1002/2017WR022042
Lugato, E., Smith, P., Borrelli, P., Panagos, P., Ballabio, C., Orgiazzi, A., Fernandez-Ugalde, O., Montanarella, L., & Jones, A. (2018). Soil erosion is unlikely to drive a future carbon sink in Europe. Science Advances, 4(11), eaau3523. https://doi.org/10.1126/sciadv.aau3523
Mayer, S., Schwindt, D., Steffens, M., Völkel, J., & Kögel-Knabner, I. (2018). Drivers of organic carbon allocation in a temperate slope-floodplain catena under agricultural use. Geoderma, 327, 63–72. https://doi.org/10.1016/j.geoderma.2018.04.021
Meersmans, J., Martin, M., Lacarce, E., Orton, T., de Baets, S., Gourrat, M., Saby, N. P. A., Wetterlind, J., Bispo, A., Quine, T. A., & Quine, T. A. (2013). Estimation of soil carbon input in France: An inverse modelling approach. Pedosphere, 23(4), 422–436. https://doi.org/10.1016/S1002-0160(13)60035-1
Moody, J. A., & Troutman, B. M. (2000). Quantitative model of the growth of floodplains by vertical accretion. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 25(2), 115–133. https://doi.org/10.1002/(SICI)1096-9837(200002)25:2<115::AID-ESP46>3.0.CO;2-Z
Nanson, G., & Croke, J. (1992). A genetic classification of floodplains. Geomorphology, 4(6), 459–486. https://doi.org/10.1016/0169-555X(92)90039-Q
Nanson, G. C. (1980). Point bar and floodplain formation of the meandering Beatton River, northeastern British Columbia, Canada. Sedimentology, 27(1), 3–29. https://doi.org/10.1111/j.1365-3091.1980.tb01155.x
Ni, J., Yue, Y., Borthwick, A. G., Li, T., Miao, C., & He, X. (2012). Erosion-induced CO2 flux of small watersheds. Global and Planetary Change, 94, 101–110. https://doi.org/10.1016/j.gloplacha.2012.07.003
Omengo, F. O., Geeraert, N., Bouillon, S., & Govers, G. (2016). Deposition and fate of organic carbon in floodplains along a tropical semiarid lowland river (Tana River, Kenya). Journal of Geophysical Research: Biogeosciences, 121(4), 1131–1143. https://doi.org/10.1002/2015JG003288
Pizzuto, J. E. (1987). Sediment diffusion during overbank flows. Sedimentology, 34(2), 301–317. https://doi.org/10.1111/j.1365-3091.1987.tb00779.x
[dataset] Quine, T., Cressey, E., Dungait, J., De Baets, S., Meersmans, J., Jones, M. W., & Nicholas, A. P. (2021). Geomorphically mediated carbon dynamics of floodplain soils and implications for net effect of carbon erosion. figshare. Dataset. 10.6084/m9.figshare.17263883.v1.
Quine, T. A., & Van Oost, K. (2007). Quantifying carbon sequestration as a result of soil erosion and deposition: Retrospective assessment using caesium-137 and carbon inventories. Global Change Biology, 13(12), 2610–2625. https://doi.org/10.1111/j.1365-2486.2007.01457.x
Raich, J. W., & Schlesinger, W. H. (1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B, 44(2), 81–99. https://doi.org/10.1034/j.1600-0889.1992.t01-1-00001.x
Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F. T., Gruber, N., Janssens, I. A., Laruelle, G. G., Lauerwald, R., Luyssaert, S., Andersson, A. J., Arndt, S., Arnosti, C., Borges, A. V., Dale, A. W., Gallego-Sala, A., Goddéris, Y., Goossens, N., Hartmann, J., Heinze, C., … Andersson, A. J. (2013). Anthropogenic perturbation of the carbon fluxes from land to ocean. Nature Geoscience, 6(8), 597–607. https://doi.org/10.1038/ngeo1830
Ricker, M. C., Donohue, S. W., Stolt, M. H., & Zavada, M. S. (2012). Development and application of multi-proxy indices of land use change for riparian soils in southern New England, USA. Ecological Applications, 22(2), 487–501. https://doi.org/10.1890/11-1640.1
Rosenbloom, N. A., Harden, J. W., Neff, J. C., & Schimel, D. S. (2006). Geomorphic control of landscape carbon accumulation. Journal of geophysical research. Biogeosciences, 111(G1), G01004. https://doi.org/10.1029/2005JG000077
Scheingross, J. S., Repasch, M. N., Hovius, N., Sachse, D., Lupker, M., Fuchs, M., Halevy, I., Gröcke, D. R., Golombek, N. Y., Haghipourd, N., Eglinton, T. I., Orfeo, O., Schleicher, A. M., & Haghipour, N. (2021). The fate of fluvially-deposited organic carbon during transient floodplain storage. Earth and Planetary Science Letters, 561, 116822. https://doi.org/10.1016/j.epsl.2021.116822
Schwendel, A. C., Nicholas, A. P., Aalto, R. E., Sambrook Smith, G. H., & Buckley, S. (2015). Interaction between meander dynamics and floodplain heterogeneity in a large tropical sand-bed river: The Rio Beni, Bolivian Amazon. Earth Surface Processes and Landforms, 40(15), 2026–2040. https://doi.org/10.1002/esp.3777
Six, J., Elliott, E., Paustian, K., & Doran, J. (1998). Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Science Society of America Journal, 62(5), 1367–1377. https://doi.org/10.2136/sssaj1998.03615995006200050032x
Sutfin, N. A., & Wohl, E. (2019). Elevational differences in hydrogeomorphic disturbance regime influence sediment residence times within mountain river corridors. Nature Communications, 10(1), 1–14. https://doi.org/10.1038/s41467-019-09864-w
Sutfin, N. A., Wohl, E., Fegel, T., Day, N., & Lynch, L. (2021). Logjams and channel morphology influence sediment storage, transformation of organic matter, and carbon storage within mountain stream corridors. Water Resources Research, 57, e2020WR028046. https://doi.org/10.1029/2020WR028046
Sutfin, N. A., Wohl, E. E., & Dwire, K. A. (2016). Banking carbon: A review of organic carbon storage and physical factors influencing retention in floodplains and riparian ecosystems. Earth Surface Processes and Landforms, 41(1), 38–60. https://doi.org/10.1002/esp.3857
Taillardat, P., Thompson, B. S., Garneau, M., Trottier, K., & Friess, D. A. (2020). Climate change mitigation potential of wetlands and the cost-effectiveness of their restoration. Interface focus, 10(5), 129. https://doi.org/10.1098/rsfs.2019.0129
Torres-Sallan, G., Schulte, R. P., Lanigan, G. J., Byrne, K. A., Reidy, B., Simó, I., Six, J., & Creamer, R. E. (2017). Clay illuviation provides a long-term sink for C sequestration in subsoils. Scientific Reports, 7(1), 1–7. https://doi.org/10.1038/srep45635
Van Oost, K., Verstraeten, G., Doetterl, S., Notebaert, B., Wiaux, F., Broothaerts, N., & Six, J. (2012). Legacy of human-induced C erosion and burial on soil–atmosphere C exchange. Proceedings of the National Academy of Sciences, 109(47), 19492–19497. https://doi.org/10.1073/pnas.1211162109
Walling, D. (2005). Tracing suspended sediment sources in catchments and river systems. Science of the Total Environment, 344(1–3), 159–184. https://doi.org/10.1016/j.scitotenv.2005.02.011
Walling, D., Fang, D., Nicholas, A., Sweet, R., Rowan, J., Duck, R., & Werritty, A. (2006). River flood plains as carbon sinks. IAHS Publication, 306, 460.
Walling, D. E., & Quine, T. (1990). Calibration of caesium-137 measurements to provide quantitative erosion rate data. Land Degradation & Development, 2(3), 161–175. https://doi.org/10.1002/ldr.3400020302
Wang, Z., Van Oost, K., Lang, A., Quine, T., Clymans, W., Merckx, R., Notebaert, B., & Govers, G. (2014). The fate of buried organic carbon in colluvial soils: A long-term perspective. Biogeosciences, 11(3), 873–883. https://doi.org/10.5194/bg-11-873-2014
Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M., Marin-Spiotta, E., Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco, N., Wollschläger, U., Vogel, H.-J., Kögel-Knabnerag, I., & Garcia-Franco, N. (2019). Soil organic carbon storage as a key function of soils-A review of drivers and indicators at various scales. Geoderma, 333, 149–162. https://doi.org/10.1016/j.geoderma.2018.07.026
Wohl, E., Castro, J., Cluer, B., Merritts, D., Powers, P., Staab, B., & Thorne, C. (2021). Rediscovering, reevaluating, and restoring lost river-wetland corridors. Frontiers in Earth Science, 9, 511. https://doi.org/10.3389/feart.2021.653623
Wohl, E., Hall, R. O., Jr., Lininger, K. B., Sutfin, N. A., & Walters, D. M. (2017). Carbon dynamics of river corridors and the effects of human alterations. Ecological Monographs, 87(3), 379–409. https://doi.org/10.1002/ecm.1261
Yan, P., Shi, P., Gao, S., Chen, L., Zhang, X., & Bai, L. (2002). 137Cs dating of lacustrine sediments and human impacts on Dalian Lake, Qinghai Province, China. Catena, 47(2), 91–99. https://doi.org/10.1016/S0341-8162(01)00193-X
Zimmermann, M., Leifeld, J., Schmidt, M., Smith, P., & Fuhrer, J. (2007). Measured soil organic matter fractions can be related to pools in the RothC model. European Journal of Soil Science, 58(3), 658–667. https://doi.org/10.1111/j.1365-2389.2006.00855.x