Computed tomography assisted determination of optimal insertion points and bone corridors for transverse implant placement in the feline tarsus and metatarsus.
Benlloch-Gonzalez, M; Grapperon-Mathis, M; Bouvy, Bernard
2014 • In Veterinary and Comparative Orthopaedics and Traumatology, 27 (6), p. 441-6
[en] OBJECTIVE: Describe optimal corridors for mediolateral or lateromedial implant placement in the feline tarsus and base of the metatarsus. METHODS: Computed tomographic images of 20 cadaveric tarsi were used to define optimal talocalcaneal, centroquartal, distal tarsal, and metatarsal corridors characterized by medial and lateral insertion points (IP), mean height, width, length and optimal dorsomedial-plantarolateral implantation angle (OIA). RESULTS: Talocalcaneal level: The IP were at the head of the talus and plantar to the peroneal tubercle of the calcaneus and OIA was 22.7° ± 0.3. Centroquartal level: The IP were at the centre of the medial surface of the central tarsal bone and dorsoproximal to the tuberosity of the fourth tarsal bone and OIA was 5.9° ± 0.06. Distal tarsal level: The IP were at the centre of the medial surface of the tarsal bone II and dorsodistal to the tuberosity of the fourth tarsal bone and OIA was 5.4° ± 0.14. Metatarsal level: The IP were at the dorsomedial surface of the proximal end of the metatarsal bone II and at the dorsolateral surface of metatarsal bone V and OIA was 0.5° ± 0.06. Significant positive correlation was found between body weight and the length of each corridor. CLINICAL SIGNIFICANCE: Most of the corridors obtained in this study had a diameter between 1.5 mm and 2 mm with a length of 15 mm to 18 mm, which stresses the importance of their accurate placement.
Disciplines :
Veterinary medicine & animal health
Author, co-author :
Benlloch-Gonzalez, M; Dr. Benlloch-Gonzalez, Stockholm's Regional Small Animal Hospital Bagarmossen,
Grapperon-Mathis, M
Bouvy, Bernard ; Université de Liège - ULiège > Département d'Enseignement et de Clinique des animaux de Compagnie (DCC) > Chirurgie des animaux de compagnie
Language :
English
Title :
Computed tomography assisted determination of optimal insertion points and bone corridors for transverse implant placement in the feline tarsus and metatarsus.
Publication date :
2014
Journal title :
Veterinary and Comparative Orthopaedics and Traumatology
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Evans HE. Arthrology: Ligaments and joints of the pelvic limb. In: Evans HE, editor. Miller's Anatomy of the Dog. Philadelphia: WB Saunders; 1993. pg. 244-257.
Evans HE. The skeleton. Bones of the pelvic limb. Tarsus. In: Evans HE, editor. Miller's Anatomy of the Dog. Philadelphia: WB Saunders; 1993. pg. 212-214.
Corr S. Management of distal limb shearing injuries in cats. J Feline Med Surg 2009; 11: 747-757.
Schmökel HG, Hartmeier GE, Kaser-Hotz B, et al. Tarsal injuries in the cat: A retrospective study of 21 cases. J Small Anim Pract 1994; 35: 156-162.
Piermattei DL, Flo GL, DeCamp CE. Fractures and other orthopaedic injuries of the tarsus, metatarsus and phalanges. In: Brinker, Piermattei and Flo's Handbook of Small Animal Orthopaedics and Fracture Repair. 4th ed. Philadelphia: Saunders; 2006. pg. 661-713.
Matthiesen DT. Tarsal injuries in the dog and cat. Comp Contin Educ Pract Vet 1983; 5: 548-555.
Gorse MJ, Purinton PT, Penwick RC, et al. Talocalcaneal luxation: an anatomic and clinical study. Vet Surg 1990; 19: 429-434.
Kulendra E, Grierson J, Okushima S, et al. Evaluation of the transarticular external skeletal fixator for the treatment of tarsocrural instability on 32 cats. Vet Comp Orthop Traumatol 2011; 5: 320-325.
Shani J, Yeshurun Y, Shahar R. Arthrodesis of the tarsometatarsal joint, using type II ESF with acrylic connecting bars in four dogs. Vet Comp Orthop Traumatol 2006; 1: 61-63.
Dyce J, Whitelock RG, Robinson KV, et al. Arthrodesis of the tarsometatarsal joint using a laterally applied plate in 10 dogs. J Small Anim Pract 1998; 39: 19-22.
Muir P, Norris JL. Tarsometatarsal subluxation in dogs: partial tarsal arthrodesis by plate fixation. J Am Anim Hosp Assoc 1999; 35: 155-162.
Fettig AA, McCarthy RJ, Kowaleski MP. Intertarsal and tarsometatarsal arthrodesis using 2. 0/2. 7-mm or 2. 7/3. 5-mm hybrid dynamic compression plates. J Am Anim Hosp Assoc 2002; 38: 364-369.
McKee WM, May C, Macias C, et al. Pantarsal arthrodesis with a customised medial or lateral bone plate in 13 dogs. Vet Record 2004; 154; 165-170.
Theoret MC, Moens NMM. The use of veterinary cuttable plates for carpal and tarsal arthrodesis in small dogs and cats. Can Vet J 2007; 48: 165-168.
Roch SP, Clements DN, Mitchell RAS, et al. Complications following tarsal arthrodesis using bone plate fixation in dogs. J Sm Anim Pract 2008; 49: 117-126.
Barnes DC, Knudsen CS, Gosling M, et al. Complications of lateral plate fixation compared with tension band wiring and pin or lag screw fixation for calcaneoquartal arthrodesis. Vet Comp Orthop Traumatol 2013; 6: 445-452.
Gielen IM, De Rycke LM, van Bree HJ, et al. Computed tomography of the tarsal joint in clinically normal dogs. Am J Vet Res 2001; 62: 1911-1915.
Sonntag F, Mihaljevic M, Klumpp S, et al. Gliedmaßen und Wirbelsäule. Hintergliedmaße. In: Mihaljevic M, Kramer M, Gomercic H. editors. CTund MRI-Atlas: Transversalanatomie des Hundes. Stuttgart: Parey; 2009. pg. 172-195.
Galateanu G, Apelt D, Aizenberg I, et al. Canine tarsal architecture as revealed by high-resolution computed tomography. Vet J 2013; 196: 374-380.
Ryken TC, Goel VK, Clausen JD, et al. Assesment of unicortical and bicortical fixation in a quasistatic cadaveric model: role of bone mineral density and screw torque. Spine 1995; 20: 1861-1867.
Ferrara LA, Ryken TC. Screw pullout testing. In: An YH, Draughn RA, editors. Mechanical testing of bone and the bone-implant interface. Boca Raton: CRC Press; 2000. pg. 551-566.
Krag MH, Beynnon BD, Pope MH, et al. Depth of insertion of transpedicular vertebral screws into human vertebrae: effect upon screw-vertebra interface strength. J Spinal Disord 1988; 287-294.
Chao EYS. Biomechanics of external fixation. In: Brooker AF, Cooney WP, Chao EYS, editors. Principles of external fixation. Baltimore: Williams and Wilkins; 1983. pg. 165-199.
Li A, Gibson N, Carmichael S, et al. Thirteen pancarpal arthrodeses using 2. 7/3. 5 mm hybrid dynamic compression plates. Vet Comp Orthop Traumatol 1999; 12: 102-107.
Anderson MA, Aron DN, Palmer RH. Improving pin selection and insertion technique for external skeletal fixation. Comp Cont Ed Pract Vet 1997; 19: 485-493.
Voss K, Keller M, Montavon PM. Internal splinting of dorsal intertarsal and tarsometatarsal instabilities in dogs and cats with the ComPact Unilock 2. 0/2. 4 System. Vet Comp Orthop Traumatol 2004; 17: 125-130.
Fitzpatrick N, Sajik D, Farrell M. Feline pantarsal arthrodesis using pre-contoured dorsal plates applied according to the principles of percutaneous plate arthrodesis. Vet Comp Orthop Traumatol 2013; 26: 399-407.
Hudson CC, Pozzi A. Minimally invasive repair of central tarsal bone luxation in a dog. Vet Comp Orthop Traumatol 2012; 25: 79-82.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.