Drug development; Drug discovery; High throughput; Impurity profiling; Method validation; Supercritical fluid chromatography; Chemical Engineering (all)
Abstract :
[en] Abstract The purpose of this chapter is to provide a brief overview of the past, present, and future applications of supercritical fluid chromatography (SFC) in pharmaceutical drug discovery and development. In the first part of this chapter, various examples are provided, showing how SFC has been used in the past. Originally employed for the analysis of apolar compounds, SFC rapidly became an interesting tool to substitute NPLC for chiral separations, due to its higher efficiency, faster analysis times, reduced environmental impact, and lower costs. Developments in the early 2000s begun exploring the usefulness of SFC also for achiral analyses, but the instrumentation available was not capable to meet the well-established robustness and sensitivity criteria used in liquid and gas chromatography, thus discouraging its implementation in pharmaceutical analysis. However, the introduction of ultra-high-performance supercritical fluid chromatography (UHPSFC) systems from 2012 has played a key role in refueling interest in this technique. With better instrumentation, UHPSFC demonstrated very promising results in the pharmaceutical industry also in the context of achiral separations, from the impurity profiling of synthetic APIs to its implementation in more challenging contexts, such as peptide analysis. In the second part of the chapter, considerations on the SFC stationary and mobile phases, its coupling to detectors (especially MS), and performance in the context of method validation are discussed. The recent evolution of SFC has depicted an image of this technique being efficient, fast, complementary to liquid chromatography (LC), and able to satisfy different validation criteria. Finally, an interesting perspective for SFC is linked to its implementation in multidimensional systems, with the aim to expand chromatographic selectivity.
Research Center/Unit :
CIRM - Centre Interdisciplinaire de Recherche sur le Médicament - ULiège
Disciplines :
Chemistry Pharmacy, pharmacology & toxicology
Author, co-author :
Losacco, Gioacchino Luca; School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland ; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland ; Analytical Research and Development, MRL, Merck & Co, Inc., Rahway, United States
Dispas, Amandine ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Veuthey, Jean-Luc; School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland ; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
Guillarme, Davy; School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland ; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
Language :
English
Title :
Application space for SFC in pharmaceutical drug discovery and development
DiMasi, J.A., Grabowski, H.G., Hansen, R.W., Innovation in the pharmaceutical industry: new estimates of R&D costs. J. Health Econ. 47 (2016), 20–33, 10.1016/j.jhealeco.2016.01.012.
Dobson, C.M., Chemical space and biology. Nature 432 (2004), 824–828, 10.1038/nature03192.
Triggle, D.J., The chemist as astronaut: searching for biologically useful space in the chemical universe. Biochem. Pharmacol. 78 (2009), 217–223, 10.1016/j.bcp.2009.02.015.
Lipinski, C.A., Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov. Today Technol. 1 (2004), 337–341, 10.1016/j.ddtec.2004.11.007.
Leeson, P.D., Springthorpe, B., The influence of drug-like concepts on decision-making in medicinal chemistry. Nat. Rev. Drug Discov. 6 (2007), 881–890, 10.1038/nrd2445.
Walters, W.P., Green, J., Weiss, J.R., Murcko, M.A., What do medicinal chemists actually make? A 50-year retrospective. J. Med. Chem. 54 (2011), 6405–6416, 10.1021/jm200504p.
Lipinski, C.A., Rule of five in 2015 and beyond: target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Adv. Drug Deliv. Rev. 101 (2016), 34–41, 10.1016/j.addr.2016.04.029.
Lautié, E., Russo, O., Ducrot, P., Boutin, J.A., Unraveling plant natural chemical diversity for drug discovery purposes. Front. Pharmacol., 11, 2020, 397, 10.3389/fphar.2020.00397.
Stratton, C.F., Newman, D.J., Tan, D.S., Cheminformatic comparison of approved drugs from natural product versus synthetic origins. Recent Adv. Med. Chem. Chem. Biol. 25 (2015), 4802–4807, 10.1016/j.bmcl.2015.07.014.
Feher, M., Schmidt, J.M., Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry. J. Chem. Inf. Comput. Sci. 43 (2003), 218–227, 10.1021/ci0200467.
Nicoli, R., Martel, S., Rudaz, S., Wolfender, J.-L., Veuthey, J.-L., Carrupt, P.-A., Guillarme, D., Advances in LC platforms for drug discovery. Expert Opin. Drug Discovery 5 (2010), 475–489, 10.1517/17460441003733874.
Mallis, L.M., Sarkahian, A.B., Kulishoff, J.M. Jr., Watts, W.L. Jr., Open-access liquid chromatography/mass spectrometry in a drug discovery environment. J. Mass Spectrom. 37 (2002), 889–896, 10.1002/jms.360.
Capello, C., Fischer, U., Hungerbühler, K., What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chem. 9 (2007), 927–934, 10.1039/B617536H.
Hemström, P., Irgum, K., Hydrophilic interaction chromatography. J. Sep. Sci. 29 (2006), 1784–1821, 10.1002/jssc.200600199.
Desfontaine, V., Guillarme, D., Francotte, E., Nováková, L., Supercritical fluid chromatography in pharmaceutical analysis. J. Pharm. Biomed. Anal. 2015:113 (2015), 56–71, 10.1016/j.jpba.2015.03.007.
Pinkston, J.D., Wen, D., Morand, K.L., Tirey, D.A., Stanton, D.T., Comparison of LC/MS and SFC/MS for screening of a large and diverse library of pharmaceutically relevant compounds. Anal. Chem. 78 (2006), 7467–7472, 10.1021/ac061033l.
King, J.W., Capillary supercritical fluid chromatography of cosmetic ingredients and formulations. J. Microcolumn Sep. 10 (1998), 33–39, 10.1002/(SICI)1520-667X(1998)10:1<33::AID-MCS5>3.0.CO;2-%23.
Wang, Z., Fingas, M., Analysis of sorbitan ester surfactants. Part II: capillary supercritical fluid chromatography. J. High Resolut. Chromatogr. 17 (1994), 85–90, 10.1002/jhrc.1240170208.
Gere, D.R., Board, R., McManigill, D., Supercritical fluid chromatography with small particle diameter packed columns. Anal. Chem. 54 (1982), 736–740, 10.1021/ac00241a032.
Crowther, J.B., Henion, J.D., Supercritical fluid chromatography of polar drugs using small-particle packed columns with mass spectrometric detection. Anal. Chem. 57 (1985), 2711–2716, 10.1021/ac00290a062.
Wright, B.W., Kalinoski, H.T., Smith, R.D., Investigation of retention and selectivity effects using various mobile phases in capillary supercritical fluid chromatography. Anal. Chem. 57 (1985), 2823–2829, 10.1021/ac00291a018.
Yonker, C.R., Smith, R.D., Study of retention processes in capillary supercritical fluid chromatography with binary fluid mobile phases. J. Chromatogr. 361 (1986), 25–32, 10.1016/S0021-9673(01)86890-4.
Kot, A., Sandra, P., Venema, A., Sub- and supercritical fluid chromatography on packed columns: a versatile tool for the enantioselective separation of basic and acidic drugs. J. Chromatogr. Sci. 32 (1994), 439–448.
Mourier, P.A., Eliot, E., Caude, M.H., Rosset, R.H., Tambute, A.G., Supercritical and subcritical fluid chromatography on a chiral stationary phase for the resolution of phosphine oxide enantiomers. Anal. Chem. 57 (1985), 2819–2823, 10.1021/ac00291a017.
Janssen, H.-G., Lou, X., Packed columns in SFC: mobile and stationary phases and further requirements. Chromatogr. Princ. Pract. 2 (1999), 15–52.
Lefler, J.L., Pushing the boundaries: employing Phenomenex's HILIC, RP and traditional normal-phase columns for SFC analysis and purification. LC-GC Eur., 2007, 28–29.
West, C., Lesellier, E., A unified classification of stationary phases for packed column supercritical fluid chromatography. J. Chromatogr. A 1191 (2008), 21–39, 10.1016/j.chroma.2008.02.108.
Blackwell, J.A., Stringham, R.W., Weckwerth, J.D., Effect of mobile phase additives in packed-column subcritical and supercritical fluid chromatography. Anal. Chem. 69 (1997), 409–415, 10.1021/AC9608883.
Brunelli, C., Zhao, Y., Brown, M.-H., Sandra, P., Development of a supercritical fluid chromatography high-resolution separation method suitable for pharmaceuticals using cyanopropyl silica. J. Chromatogr. A 1185 (2008), 263–272, 10.1016/j.chroma.2008.01.050.
Da Silva, J.O., Yip, H.S., Hegde, V., Supercritical fluid chromatography (SFC) as a green chromatographic technique to support rapid development of pharmaceutical candidates. Am. Pharm. Rev. 12 (2009), 98–104.
Bolaños, B., Greig, M., Ventura, M., Farrell, W., Aurigemma, C.M., Li, H., Quenzer, T.L., Tivel, K., Bylund, J.M.R., Tran, P., Pham, C., Phillipson, D., SFC/MS in drug discovery at Pfizer, La Jolla. Int. J. Mass Spectrom. 238 (2004), 85–97, 10.1016/j.ijms.2003.11.021.
White, C., Burnett, J., Integration of supercritical fluid chromatography into drug discovery as a routine support tool: II. Investigation and evaluation of supercritical fluid chromatography for achiral batch purification. J. Chromatogr. A 1074 (2005), 175–185, 10.1016/j.chroma.2005.02.087.
Maftouh, M., Granier-Loyaux, C., Chavana, E., Marini, J., Pradines, A., Heyden, Y.V., Picard, C., Screening approach for chiral separation of pharmaceuticals: Part III. Supercritical fluid chromatography for analysis and purification in drug discovery., 25th Int. Symp. Chromatogr. Part II, 1088, 2005, 67–81, 10.1016/j.chroma.2004.12.038.
Lesellier, E., Retention mechanisms in super/subcritical fluid chromatography on packed columns. Retent. Mech. Chromatogr. Electrophor. 1216 (2009), 1881–1890, 10.1016/j.chroma.2008.10.081.
Helmy, R., Biba, M., Zang, J., Mao, B., Fogelman, K., Vlachos, V., Hosek, P., Welch, C.J., Improving sensitivity in chiral supercritical fluid chromatography for analysis of active pharmaceutical ingredients. Chirality 19 (2007), 787–792.
Nováková, L., Grand-Guillaume Perrenoud, A., Francois, I., West, C., Lesellier, E., Guillarme, D., Modern analytical supercritical fluid chromatography using columns packed with sub-2 μm particles: A tutorial. Anal. Chim. Acta 824 (2014), 18–35, 10.1016/j.aca.2014.03.034.
McClain, R., Hyun, M.H., Welch, C.J., Advances in achiral stationary phases for SFC. Am. Pharm. Rev. 17, 32, 34 (2014), 36–41.
Patel, M.A., Riley, F., Ashraf-Khorassani, M., Taylor, L.T., Supercritical fluid chromatographic resolution of water soluble isomeric carboxyl/amine terminated peptides facilitated via mobile phase water and ion pair formation. J. Chromatogr. A 1233 (2012), 85–90, 10.1016/j.chroma.2012.02.024.
Taylor, L.T., Packed column supercritical fluid chromatography of hydrophilic analytes via water-rich modifiers. J. Chromatogr. A 1250 (2012), 196–204, 10.1016/j.chroma.2012.02.037.
Nováková, L., Grand-Guillaume Perrenoud, A., Nicoli, R., Saugy, M., Veuthey, J.-L., Guillarme, D., Ultra high performance supercritical fluid chromatography coupled with tandem mass spectrometry for screening of doping agents. I: investigation of mobile phase and MS conditions. Anal. Chim. Acta 853 (2015), 637–646, 10.1016/j.aca.2014.10.004.
Nováková, L., Rentsch, M., Grand-Guillaume Perrenoud, A., Nicoli, R., Saugy, M., Veuthey, J., Guillarme, D., Ultra high performance supercritical fluid chromatography coupled with tandem mass spectrometry for screening of doping agents. II: analysis of biological samples. Anal. Chim. Acta 853 (2015), 647–659, 10.1016/j.aca.2014.10.007.
Nováková, L., Desfontaine, V., Ponzetto, F., Nicoli, R., Saugy, M., Veuthey, J.-L., Guillarme, D., Fast and sensitive supercritical fluid chromatography–tandem mass spectrometry multi-class screening method for the determination of doping agents in urine. Anal. Chim. Acta 915 (2016), 102–110, 10.1016/j.aca.2016.02.010.
Grand-Guillaume Perrenoud, A., Hamman, C., Goel, M., Veuthey, J.-L., Guillarme, D., Fekete, S., Maximizing kinetic performance in supercritical fluid chromatography using state-of-the-art instruments. J. Chromatogr. A 1314 (2013), 288–297, 10.1016/j.chroma.2013.09.039.
Song, L., Huang, Y., Gou, M.-J., Crommen, J., Jiang, Z., Feng, Y., Method development and validation for the determination of biogenic amines in soy sauce using supercritical fluid chromatography coupled with single quadrupole mass spectrometry. J. Sep. Sci. 43 (2020), 2728–2736, 10.1002/jssc.202000030.
Zheng, J., Pinkston, J.D., Zoutendam, P.H., Taylor, L.T., Feasibility of supercritical fluid chromatography/mass spectrometry of polypeptides with up to 40-Mers. Anal. Chem. 78 (2006), 1535–1545, 10.1021/ac052025s.
Bennett, R., Olesik, S.V., Protein separations using enhanced-fluidity liquid chromatography. Push. Boundaries Chromatogr. Electrophor. 1523 (2017), 257–264, 10.1016/j.chroma.2017.07.060.
Bennett, R., Olesik, S.V., Enhanced fluidity liquid chromatography of inulin fructans using ternary solvent strength and selectivity gradients. Anal. Chim. Acta 999 (2018), 161–168, 10.1016/j.aca.2017.10.036.
Wang, Y., Olesik, S.V., Enhanced-fluidity liquid chromatography–mass spectrometry for intact protein separation and characterization. Anal. Chem. 91 (2019), 935–942, 10.1021/acs.analchem.8b03970.
Taguchi, K., Fukusaki, E., Bamba, T., Simultaneous analysis for water- and fat-soluble vitamins by a novel single chromatography technique unifying supercritical fluid chromatography and liquid chromatography. J. Chromatogr. A 1362 (2014), 270–277, 10.1016/j.chroma.2014.08.003.
Desfontaine, V., Losacco, G.L., Gagnebin, Y., Pezzatti, J., Farrell, W.P., González-Ruiz, V., Rudaz, S., Veuthey, J.-L., Guillarme, D., Applicability of supercritical fluid chromatography – mass spectrometry to metabolomics. I–Optimization of separation conditions for the simultaneous analysis of hydrophilic and lipophilic substances. J. Chromatogr. A 1562 (2018), 96–107, 10.1016/j.chroma.2018.05.055.
Losacco, G.L., Ismail, O., Pezzatti, J., González-Ruiz, V., Boccard, J., Rudaz, S., Veuthey, J.-L., Guillarme, D., Applicability of Supercritical fluid chromatography–Mass spectrometry to metabolomics. II–Assessment of a comprehensive library of metabolites and evaluation of biological matrices. J. Chromatogr. A, 461021, 2020, 10.1016/j.chroma.2020.461021.
van de Velde, B., Guillarme, D., Kohler, I., Supercritical fluid chromatography–mass spectrometry in metabolomics: past, present, and future perspectives. J. Chromatogr. B, 1161(122), 2020, 444, 10.1016/j.jchromb.2020.122444.
Losacco, G.L., DaSilva, J.O., Liu, J., Regalado, E.L., Veuthey, J.-L., Guillarme, D., Expanding the range of sub/supercritical fluid chromatography: Advantageous use of methanesulfonic acid in water-rich modifiers for peptide analysis. J. Chromatogr. A, 1642(462), 2021, 048, 10.1016/j.chroma.2021.462048.
Ventura, M., Advantageous use of SFC for separation of crude therapeutic peptides and peptide libraries. J. Pharm. Biomed. Anal., 185(113), 2020, 227, 10.1016/j.jpba.2020.113227.
Govender, K., Naicker, T., Baijnath, S., Kruger, H.G., Govender, T., The development of a sub/supercritical fluid chromatography based purification method for peptides. J. Pharm. Biomed. Anal., 190(113), 2020, 539, 10.1016/j.jpba.2020.113539.
Liu, J., Makarov, A.A., Bennett, R., Ahmad, I.A.H., DaSilva, J., Reibarkh, M., Mangion, I., Mann, B.F., Regalado, E.L., Chaotropic effects in sub/supercritical fluid chromatography via ammonium hydroxide in water-rich modifiers: enabling separation of peptides and highly polar pharmaceuticals at the preparative scale. Anal. Chem. 91 (2019), 13907–13915, 10.1021/acs.analchem.9b03408.
Hicks, M.B., Tong, W., Kowalski, J., Purohit, A.K., DaSilva, J., Regalado, E.L., Advanced reaction monitoring of pharmaceutical processes enabled with sub/supercritical fluid chromatography. J. Supercrit. Fluids, 168(105), 2021, 068, 10.1016/j.supflu.2020.105068.
Gibitz-Eisath, N., Eichberger, M., Gruber, R., Seger, C., Sturm, S., Stuppner, H., Toward eco-friendly secondary plant metabolite quantitation: ultra high performance supercritical fluid chromatography applied to common vervain (Verbena officinalis L.). J. Sep. Sci. 43 (2020), 829–838, 10.1002/jssc.201900854.
Raimbault, A., Noireau, A., West, C., Analysis of free amino acids with unified chromatography-mass spectrometry—application to food supplements. J. Chromatogr. A, 1616(460), 2020, 772, 10.1016/j.chroma.2019.460772.
Spelling, V., Stefansson, M., Evaluation of chromatographic parameters in supercritical fluid chromatography of amino acids as model polar analytes and extended to polypeptide separations. J. Chromatogr. A, 1633(461), 2020, 646, 10.1016/j.chroma.2020.461646.
Noireau, A., Lemasson, E., Mauge, F., Petit, A.-M., Bertin, S., Hennig, P., Lesellier, É., West, C., Purification of drug degradation products supported by analytical and preparative supercritical fluid chromatography. J. Pharm. Biomed. Anal. 170 (2019), 40–47, 10.1016/j.jpba.2019.03.033.
Losacco, G.L., Fekete, S., Veuthey, J.-L., Guillarme, D., Investigating the use of unconventional temperatures in supercritical fluid chromatography. Anal. Chim. Acta 1134 (2020), 84–95, 10.1016/j.aca.2020.07.076.
Patel, D.C., Breitbach, Z.S., Yu, J., Nguyen, K.A., Armstrong, D.W., Quinine bonded to superficially porous particles for high-efficiency and ultrafast liquid and supercritical fluid chromatography. Anal. Chim. Acta 963 (2017), 164–174, 10.1016/j.aca.2017.02.005.
Roy, D., Armstrong, D.W., Fast super/subcritical fluid chromatographic enantioseparations on superficially porous particles bonded with broad selectivity chiral selectors relative to fully porous particles. J. Chromatogr. A, 1605(360), 2019, 339, 10.1016/j.chroma.2019.06.060.
Desfontaine, V., Tarafder, A., Hill, J., Fairchild, J., Grand-Guillaume Perrenoud, A., Veuthey, J.-L., Guillarme, D., A systematic investigation of sample diluents in modern supercritical fluid chromatography. J. Chromatogr. A 1511 (2017), 122–131, 10.1016/j.chroma.2017.06.075.
Guillarme, D., Desfontaine, V., Heinisch, S., Veuthey, J.-L., What are the current solutions for interfacing supercritical fluid chromatography and mass spectrometry?. J. Chromatogr. B 1083 (2018), 160–170, 10.1016/j.jchromb.2018.03.010.
Losacco, G.L., Veuthey, J.-L., Guillarme, D., Supercritical fluid chromatography–mass spectrometry: recent evolution and current trends. TrAC Trends Anal. Chem. 118 (2019), 731–738, 10.1016/j.trac.2019.07.005.
ICH, n.d. The International Conference of Harmonization of Technical Requirements of Pharmaceuticals for Human Use; Q2 (R1) - Validation of Analytical Procedures: Text and Methodology.
Dispas, A., Desfontaine, V., Andri, B., Lebrun, P., Kotoni, D., Clarke, A., Guillarme, D., Hubert, P., Quantitative determination of salbutamol sulfate impurities using achiral supercritical fluid chromatography. J. Pharm. Biomed. Anal. 134 (2017), 170–180, 10.1016/j.jpba.2016.11.039.
Hicks, M.B., Regalado, E.L., Tan, F., Gong, X., Welch, C.J., Supercritical fluid chromatography for GMP analysis in support of pharmaceutical development and manufacturing activities. J. Pharm. Biomed. Anal. 117 (2016), 316–324, 10.1016/j.jpba.2015.09.014.
Schmidtsdorff, S., Schmidt, A.H., Simultaneous detection of nitrosamines and other sartan-related impurities in active pharmaceutical ingredients by supercritical fluid chromatography. J. Pharm. Biomed. Anal. 174 (2019), 151–160, 10.1016/j.jpba.2019.04.049.
Dispas, A., Marini, R., Desfontaine, V., Veuthey, J.-L., Kotoni, D., Losacco, L.G., Clarke, A., Muscat Galea, C., Mangelings, D., Jocher, B.M., Regalado, E.L., Plachká, K., Nováková, L., Wuyts, B., François, I., Gray, M., Aubin, A.J., Tarafder, A., Cazes, M., Desvignes, C., Villemet, L., Sarrut, M., Raimbault, A., Lemasson, E., Lesellier, E., West, C., Leek, T., Wong, M., Dai, L., Zhang, K., Grand-Guillaume Perrenoud, A., Brunelli, C., Hennig, P., Bertin, S., Mauge, F., Da Costa, N., Farrell, W.P., Hill, M., Desphande, N., Grangrade, M., Sadaphule, S., Yadav, R., Rane, S., Shringare, S., Iguiniz, M., Heinisch, S., Lefevre, J., Corbel, E., Roques, N., Heyden, Y.V., Guillarme, D., Hubert, P., First inter-laboratory study of a supercritical fluid chromatography method for the determination of pharmaceutical impurities. J. Pharm. Biomed. Anal. 161 (2018), 414–424, 10.1016/j.jpba.2018.08.042.
Alsante, K.M., Baertschi, S.W., Coutant, M., Marquez, B.L., Sharp, T.R., Zelesky, T.C., 3—Degradation and impurity analysis for pharmaceutical drug candidates. Ahuja, S., Scypinski, S., (eds.) Separation Science and Technology, 2011, Academic Press, 59–169, 10.1016/B978-0-12-375,680-0.00003-6.
Lemasson, E., Bertin, S., Hennig, P., Lesellier, E., West, C., Comparison of ultra-high performance methods in liquid and supercritical fluid chromatography coupled to electrospray ionization–mass spectrometry for impurity profiling of drug candidates. J. Chromatogr. A 1472 (2016), 117–128, 10.1016/j.chroma.2016.10.045.
Fekete, S., Kohler, I., Rudaz, S., Guillarme, D., Importance of instrumentation for fast liquid chromatography in pharmaceutical analysis. Rev. Pap. Pharm. Biomed. Anal. 2013:87 (2014), 105–119, 10.1016/j.jpba.2013.03.012.
Glenne, E., Öhlén, K., Leek, H., Klarqvist, M., Samuelsson, J., Fornstedt, T., A closer study of methanol adsorption and its impact on solute retentions in supercritical fluid chromatography. J. Chromatogr. A 1442 (2016), 129–139, 10.1016/j.chroma.2016.03.006.
Glenne, E., Leśko, M., Samuelsson, J., Fornstedt, T., Impact of methanol adsorption on the robustness of analytical supercritical fluid chromatography in transfer from SFC to UHPSFC. Anal. Chem. 92 (2020), 15429–15436, 10.1021/acs.analchem.0c03106.