[en] The β-amyloid peptide (Aβ) is found as amyloid fibrils in senile plaques, a typical hallmark of Alzheimer's disease (AD). However, intermediate soluble oligomers of Aβ are now recognized as initiators of the pathogenic cascade leading to AD. Studies using recombinant Aβ have shown that hexameric Aβ in particular acts as a critical nucleus for Aβ self-assembly. We recently isolated hexameric Aβ assemblies from a cellular model, and demonstrated their ability to enhance Aβ aggregation in vitro. Here, we report the presence of similar hexameric-like Aβ assemblies across several cellular models, including neuronal-like cell lines. In order to better understand how they are produced in a cellular context, we investigated the role of presenilin-1 (PS1) and presenilin-2 (PS2) in their formation. PS1 and PS2 are the catalytic subunits of the γ-secretase complex that generates Aβ. Using CRISPR-Cas9 to knockdown each of the two presenilins in neuronal-like cell lines, we observed a direct link between the PS2-dependent processing pathway and the release of hexameric-like Aβ assemblies in extracellular vesicles. Further, we assessed the contribution of hexameric Aβ to the development of amyloid pathology. We report the early presence of hexameric-like Aβ assemblies in both transgenic mice brains exhibiting human Aβ pathology and in the cerebrospinal fluid of AD patients, suggesting hexameric Aβ as a potential early AD biomarker. Finally, cell-derived hexameric Aβ was found to seed other human Aβ forms, resulting in the aggravation of amyloid deposition in vivo and neuronal toxicity in vitro.
Disciplines :
Neurology
Author, co-author :
Vrancx, Céline; Alzheimer Research Group, Cellular and Molecular Division (CEMO), Institute of Neuroscience, Université Catholique de Louvain, 1200, Brussels, Belgium
Vadukul, Devkee M; Alzheimer Research Group, Cellular and Molecular Division (CEMO), Institute of Neuroscience, Université Catholique de Louvain, 1200, Brussels, Belgium
Suelves, Nuria; Alzheimer Research Group, Cellular and Molecular Division (CEMO), Institute of Neuroscience, Université Catholique de Louvain, 1200, Brussels, Belgium
Contino, Sabrina; Alzheimer Research Group, Cellular and Molecular Division (CEMO), Institute of Neuroscience, Université Catholique de Louvain, 1200, Brussels, Belgium
D'Auria, Ludovic; Neurochemistry Unit, Cellular and Molecular Division (CEMO), Institute of Neuroscience, Université Catholique de Louvain, 1200, Brussels, Belgium
Perrin, Florian; Alzheimer Research Group, Cellular and Molecular Division (CEMO), Institute of Neuroscience, Université Catholique de Louvain, 1200, Brussels, Belgium
van Pesch, Vincent; Neurochemistry Unit, Cellular and Molecular Division (CEMO), Institute of Neuroscience, Université Catholique de Louvain, 1200, Brussels, Belgium
Hanseeuw, Bernard; Department of Neurology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, 1200, Brussels, Belgium
Quinton, Loïc ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie biologique
Kienlen-Campard, Pascal ; Alzheimer Research Group, Cellular and Molecular Division (CEMO), Institute of Neuroscience, Université Catholique de Louvain, 1200, Brussels, Belgium. pascal.kienlen-campard@uclouvain.be
Language :
English
Title :
Mechanism of Cellular Formation and In Vivo Seeding Effects of Hexameric β-Amyloid Assemblies.
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture F.R.S.-FNRS - Fonds de la Recherche Scientifique Fondation Recherche Alzheimer FMRE - Fondation Médicale Reine Elisabeth
Funding text :
This work was supported by a grant of the Belgian F.N.R.S FRIA (Fonds National pour la Recherche Scientifique) and a grant of UCLouvain Fonds du Patrimoine to CV. Funding to PKC is acknowledged from SAO-FRA Alzheimer Research Foundation, Fondation Louvain and Queen Elisabeth Medical Research Foundation (FMRE to PKC and LQ). The work was supported by funds from FNRS Grant PDRT.0177.18 to PKC and LQ.
Haass C, Kaether C, Thinakaran G, Sisodia S (2012) Trafficking and proteolytic processing of APP. Cold Spring Harb Perspect Med 2(5):a006270. 10.1101/cshperspect.a006270 DOI: 10.1101/cshperspect.a006270
Takami M, Nagashima Y, Sano Y, Ishihara S, Morishima-Kawashima M, Funamoto S, Ihara Y (2009) gamma-Secretase: successive tripeptide and tetrapeptide release from the transmembrane domain of beta-carboxyl terminal fragment. J Neurosci 29(41):13042–13052. 10.1523/jneurosci.2362-09.2009 DOI: 10.1523/jneurosci.2362-09.2009
Bitan G, Kirkitadze MD, Lomakin A, Vollers SS, Benedek GB, Teplow DB (2003) Amyloid beta -protein (Abeta) assembly: Abeta 40 and Abeta 42 oligomerize through distinct pathways. Proc Natl Acad Sci USA 100(1):330–335. 10.1073/pnas.222681699 DOI: 10.1073/pnas.222681699
Benilova I, Karran E, De Strooper B (2012) The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci 15(3):349–357. 10.1038/nn.3028 DOI: 10.1038/nn.3028
Almeida ZL, Brito RMM (2020) Structure and aggregation mechanisms in amyloids. Molecules. 10.3390/molecules25051195 DOI: 10.3390/molecules25051195
Sengupta U, Nilson AN, Kayed R (2016) The role of amyloid-β oligomers in toxicity, propagation, and immunotherapy. EBioMedicine 6:42–49. 10.1016/j.ebiom.2016.03.035 DOI: 10.1016/j.ebiom.2016.03.035
Ye L, Fritschi SK, Schelle J, Obermüller U, Degenhardt K, Kaeser SA, Eisele YS, Walker LC, et al (2015) Persistence of Aβ seeds in APP null mouse brain. Nat Neurosci 18(11):1559–1561. 10.1038/nn.4117 DOI: 10.1038/nn.4117
Wolff M, Zhang-Haagen B, Decker C, Barz B, Schneider M, Biehl R, Radulescu A, Strodel B, et al (2017) Aβ42 pentamers/hexamers are the smallest detectable oligomers in solution. Sci Rep 7(1):2493. 10.1038/s41598-017-02370-3 DOI: 10.1038/s41598-017-02370-3
Ferrone F (1999) Analysis of protein aggregation kinetics. Methods Enzymol 309:256–274. 10.1016/s0076-6879(99)09019-9 DOI: 10.1016/s0076-6879(99)09019-9
Roychaudhuri R, Yang M, Hoshi MM, Teplow DB (2009) Amyloid beta-protein assembly and Alzheimer disease. J Biol Chem 284(8):4749–4753. 10.1074/jbc.R800036200 DOI: 10.1074/jbc.R800036200
Cernescu M, Stark T, Kalden E, Kurz C, Leuner K, Deller T, Göbel M, Eckert GP, et al (2012) Laser-induced liquid bead ion desorption mass spectrometry: an approach to precisely monitor the oligomerization of the β-amyloid peptide. Anal Chem 84(12):5276–5284. 10.1021/ac300258m DOI: 10.1021/ac300258m
Österlund N, Moons R, Ilag LL, Sobott F, Gräslund A (2019) Native ion mobility-mass spectrometry reveals the formation of β-barrel shaped amyloid-β hexamers in a membrane-mimicking environment. J Am Chem Soc 141(26):10440–10450. 10.1021/jacs.9b04596 DOI: 10.1021/jacs.9b04596
Decock M, Stanga S, Octave JN, Dewachter I, Smith SO, Constantinescu SN, Kienlen-Campard P (2016) Glycines from the APP GXXXG/GXXXA transmembrane motifs promote formation of pathogenic aβ oligomers in cells. Front Aging Neurosci 8:107. 10.3389/fnagi.2016.00107 DOI: 10.3389/fnagi.2016.00107
Vadukul DM, Vrancx C, Burguet P, Contino S, Suelves N, Serpell LC, Quinton L, Kienlen-Campard P (2021) An evaluation of the self-assembly enhancing properties of cell-derived hexameric amyloid-β. Sci Rep 11(1):11570. 10.1038/s41598-021-90680-y DOI: 10.1038/s41598-021-90680-y
De Strooper B (2003) Aph-1, Pen-2, and nicastrin with presenilin generate an active gamma-Secretase complex. Neuron 38(1):9–12. 10.1016/s0896-6273(03)00205-8 DOI: 10.1016/s0896-6273(03)00205-8
De Strooper B, Saftig P, Craessaerts K, Vanderstichele H, Guhde G, Annaert W, Von Figura K, Van Leuven F (1998) Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391(6665):387–390. 10.1038/34910 DOI: 10.1038/34910
Frånberg J, Svensson AI, Winblad B, Karlström H, Frykman S (2011) Minor contribution of presenilin 2 for γ-secretase activity in mouse embryonic fibroblasts and adult mouse brain. Biochem Biophys Res Commun 404(1):564–568. 10.1016/j.bbrc.2010.12.029 DOI: 10.1016/j.bbrc.2010.12.029
Pintchovski SA, Schenk DB, Basi GS (2013) Evidence that enzyme processivity mediates differential Aβ production by PS1 and PS2. Curr Alzheimer Res 10(1):4–10. 10.2174/156720513804871480 DOI: 10.2174/156720513804871480
Xia D, Watanabe H, Wu B, Lee SH, Li Y, Tsvetkov E, Bolshakov VY, Shen J, et al (2015) Presenilin-1 knockin mice reveal loss-of-function mechanism for familial Alzheimer’s disease. Neuron 85(5):967–981. 10.1016/j.neuron.2015.02.010 DOI: 10.1016/j.neuron.2015.02.010
Stanga S, Vrancx C, Tasiaux B, Marinangeli C, Karlström H, Kienlen-Campard P (2018) Specificity of presenilin-1- and presenilin-2-dependent γ-secretases towards substrate processing. J Cell Mol Med 22(2):823–833. 10.1111/jcmm.13364 DOI: 10.1111/jcmm.13364
Meckler X, Checler F (2016) Presenilin 1 and Presenilin 2 target γ-secretase complexes to distinct cellular compartments. J Biol Chem 291(24):12821–12837. 10.1074/jbc.M115.708297 DOI: 10.1074/jbc.M115.708297
Sannerud R, Esselens C, Ejsmont P, Mattera R, Rochin L, Tharkeshwar AK, De Baets G, De Wever V, et al (2016) Restricted location of PSEN2/γ-secretase determines substrate specificity and generates an intracellular Aβ pool. Cell 166(1):193–208. 10.1016/j.cell.2016.05.020 DOI: 10.1016/j.cell.2016.05.020
Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, et al (1998) Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 95(11):6448–6453. 10.1073/pnas.95.11.6448 DOI: 10.1073/pnas.95.11.6448
Lesné S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440(7082):352–357. 10.1038/nature04533 DOI: 10.1038/nature04533
Müller-Schiffmann A, Herring A, Abdel-Hafiz L, Chepkova AN, Schäble S, Wedel D, Horn AH, Sticht H, et al (2016) Amyloid-β dimers in the absence of plaque pathology impair learning and synaptic plasticity. Brain 139(Pt 2):509–525. 10.1093/brain/awv355 DOI: 10.1093/brain/awv355
Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, et al (2008) Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14(8):837–842. 10.1038/nm1782 DOI: 10.1038/nm1782
Townsend M, Shankar GM, Mehta T, Walsh DM, Selkoe DJ (2006) Effects of secreted oligomers of amyloid beta-protein on hippocampal synaptic plasticity: a potent role for trimers. J Physiol 572(Pt 2):477–492. 10.1113/jphysiol.2005.103754 DOI: 10.1113/jphysiol.2005.103754
Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, Guillozet-Bongaarts A, Ohno M, et al (2006) Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci 26(40):10129–10140. 10.1523/jneurosci.1202-06.2006 DOI: 10.1523/jneurosci.1202-06.2006
Kienlen-Campard P, Tasiaux B, Van Hees J, Li M, Huysseune S, Sato T, Fei JZ, Aimoto S, et al (2008) Amyloidogenic processing but not amyloid precursor protein (APP) intracellular C-terminal domain production requires a precisely oriented APP dimer assembled by transmembrane GXXXG motifs. J Biol Chem 283(12):7733–7744. 10.1074/jbc.M707142200 DOI: 10.1074/jbc.M707142200
Huysseune S, Kienlen-Campard P, Hébert S, Tasiaux B, Leroy K, Devuyst O, Brion JP, De Strooper B, et al (2009) Epigenetic control of aquaporin 1 expression by the amyloid precursor protein. FASEB J 23(12):4158–4167. 10.1096/fj.09-140012 DOI: 10.1096/fj.09-140012
Karlström H, Bergman A, Lendahl U, Näslund J, Lundkvist J (2002) A sensitive and quantitative assay for measuring cleavage of presenilin substrates. J Biol Chem 277(9):6763–6766. 10.1074/jbc.C100649200 DOI: 10.1074/jbc.C100649200
Marshall KE, Vadukul DM, Dahal L, Theisen A, Fowler MW, Al-Hilaly Y, Ford L, Kemenes G, et al (2016) A critical role for the self-assembly of Amyloid-β1-42 in neurodegeneration. Sci Rep 6:30182. 10.1038/srep30182 DOI: 10.1038/srep30182
Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278. 10.1016/j.cell.2014.05.010 DOI: 10.1016/j.cell.2014.05.010
Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482(7385):331–338. 10.1038/nature10886 DOI: 10.1038/nature10886
Hage S, Stanga S, Marinangeli C, Octave JN, Dewachter I, Quetin-Leclercq J, Kienlen-Campard P (2015) Characterization of Pterocarpus erinaceus kino extract and its gamma-secretase inhibitory properties. J Ethnopharmacol 163:192–202. 10.1016/j.jep.2015.01.028 DOI: 10.1016/j.jep.2015.01.028
Marinangeli C, Tasiaux B, Opsomer R, Hage S, Sodero AO, Dewachter I, Octave JN, Smith SO, et al (2015) Presenilin transmembrane domain 8 conserved AXXXAXXXG motifs are required for the activity of the γ-secretase complex. J Biol Chem 290(11):7169–7184. 10.1074/jbc.M114.601286 DOI: 10.1074/jbc.M114.601286
Teunissen CE, Petzold A, Bennett JL, Berven FS, Brundin L, Comabella M, Franciotta D, Frederiksen JL, et al (2009) A consensus protocol for the standardization of cerebrospinal fluid collection and biobanking. Neurology 73(22):1914–1922. 10.1212/WNL.0b013e3181c47cc2 DOI: 10.1212/WNL.0b013e3181c47cc2
Opsomer R, Contino S, Perrin F, Gualdani R, Tasiaux B, Doyen P, Vergouts M, Vrancx C, et al (2020) Amyloid precursor protein (APP) controls the expression of the transcriptional activator neuronal PAS domain protein 4 (NPAS4) and synaptic GABA release. eNeuro. 10.1523/eneuro.0322-19.2020 DOI: 10.1523/eneuro.0322-19.2020
Munter LM, Voigt P, Harmeier A, Kaden D, Gottschalk KE, Weise C, Pipkorn R, Schaefer M, et al (2007) GxxxG motifs within the amyloid precursor protein transmembrane sequence are critical for the etiology of Abeta42. EMBO J 26(6):1702–1712. 10.1038/sj.emboj.7601616 DOI: 10.1038/sj.emboj.7601616
Dehury B, Tang N, Blundell TL, Kepp KP (2019) Structure and dynamics of γ-secretase with presenilin 2 compared to presenilin 1. RSC Adv 9(36):20901–20916. 10.1039/C9RA02623A DOI: 10.1039/C9RA02623A
Lauritzen I, Pardossi-Piquard R, Bourgeois A, Pagnotta S, Biferi MG, Barkats M, Lacor P, Klein W, et al (2016) Intraneuronal aggregation of the β-CTF fragment of APP (C99) induces Aβ-independent lysosomal-autophagic pathology. Acta Neuropathol 132(2):257–276. 10.1007/s00401-016-1577-6 DOI: 10.1007/s00401-016-1577-6
Evrard C, Kienlen-Campard P, Coevoet M, Opsomer R, Tasiaux B, Melnyk P, Octave JN, Buée L, et al (2018) Contribution of the endosomal-lysosomal and proteasomal systems in amyloid-β precursor protein derived fragments processing. Front Cell Neurosci 12:435. 10.3389/fncel.2018.00435 DOI: 10.3389/fncel.2018.00435
Perrin F, Papadopoulos N, Suelves N, Opsomer R, Vadukul DM, Vrancx C, Smith SO, Vertommen D, et al (2020) Dimeric transmembrane orientations of APP/C99 regulate γ-secretase processing line impacting signaling and oligomerization. ISCIENCE. 10.1016/j.isci.2020.101887 DOI: 10.1016/j.isci.2020.101887
Rajendran L, Honsho M, Zahn TR, Keller P, Geiger KD, Verkade P, Simons K (2006) Alzheimer’s disease beta-amyloid peptides are released in association with exosomes. Proc Natl Acad Sci USA 103(30):11172–11177. 10.1073/pnas.0603838103 DOI: 10.1073/pnas.0603838103
Eimer WA, Vassar R (2013) Neuron loss in the 5XFAD mouse model of Alzheimer’s disease correlates with intraneuronal Aβ42 accumulation and Caspase-3 activation. Mol Neurodegener 8:2. 10.1186/1750-1326-8-2 DOI: 10.1186/1750-1326-8-2
Doecke JD, Pérez-Grijalba V, Fandos N, Fowler C, Villemagne VL, Masters CL, Pesini P, Sarasa M (2020) Total Aβ(42)/Aβ(40) ratio in plasma predicts amyloid-PET status, independent of clinical AD diagnosis. Neurology 94(15):e1580–e1591. 10.1212/wnl.0000000000009240 DOI: 10.1212/wnl.0000000000009240
Gravina SA, Ho L, Eckman CB, Long KE, Otvos L, Younkin LH, Suzuki N, Younkin SG (1995) Amyloid beta protein (A beta) in Alzheimer’s disease brain. Biochemical and immunocytochemical analysis with antibodies specific for forms ending at A beta 40 or A beta 42(43). J Biol Chem 270(13):7013–7016. 10.1074/jbc.270.13.7013 DOI: 10.1074/jbc.270.13.7013
Jarrett JT, Berger EP, Lansbury PT Jr (1993) The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochemistry 32(18):4693–4697. 10.1021/bi00069a001 DOI: 10.1021/bi00069a001
Li X, Buxbaum JN (2011) Transthyretin and the brain re-visited: is neuronal synthesis of transthyretin protective in Alzheimer’s disease? Mol Neurodegener 6:79. 10.1186/1750-1326-6-79 DOI: 10.1186/1750-1326-6-79
Kim H, Kim B, Kim HS, Cho JY (2020) Nicotinamide attenuates the decrease in dendritic spine density in hippocampal primary neurons from 5xFAD mice, an Alzheimer’s disease animal model. Mol Brain 13(1):17. 10.1186/s13041-020-0565-x DOI: 10.1186/s13041-020-0565-x
Mariani MM, Malm T, Lamb R, Jay TR, Neilson L, Casali B, Medarametla L, Landreth GE (2017) Neuronally-directed effects of RXR activation in a mouse model of Alzheimer’s disease. Sci Rep 7:42270. 10.1038/srep42270 DOI: 10.1038/srep42270
Noh H, Park C, Park S, Lee YS, Cho SY, Seo H (2014) Prediction of miRNA-mRNA associations in Alzheimer’s disease mice using network topology. BMC Genomics 15(1):644. 10.1186/1471-2164-15-644 DOI: 10.1186/1471-2164-15-644
Roychaudhuri R, Yang M, Deshpande A, Cole GM, Frautschy S, Lomakin A, Benedek GB, Teplow DB (2013) C-terminal turn stability determines assembly differences between Aβ40 and Aβ42. J Mol Biol 425(2):292–308. 10.1016/j.jmb.2012.11.006 DOI: 10.1016/j.jmb.2012.11.006
Lendel C, Bjerring M, Dubnovitsky A, Kelly RT, Filippov A, Antzutkin ON, Nielsen NC, Härd T (2014) A hexameric peptide barrel as building block of amyloid-β protofibrils. Angew Chem Int Ed Engl 53(47):12756–12760. 10.1002/anie.201406357 DOI: 10.1002/anie.201406357
Bayer TA, Wirths O (2011) Intraneuronal Aβ as a trigger for neuron loss: can this be translated into human pathology? Biochem Soc Trans 39(4):857–861. 10.1042/bst0390857 DOI: 10.1042/bst0390857
Friedrich RP, Tepper K, Rönicke R, Soom M, Westermann M, Reymann K, Kaether C, Fändrich M (2010) Mechanism of amyloid plaque formation suggests an intracellular basis of Abeta pathogenicity. Proc Natl Acad Sci USA 107(5):1942–1947. 10.1073/pnas.0904532106 DOI: 10.1073/pnas.0904532106
Gouras GK, Tampellini D, Takahashi RH, Capetillo-Zarate E (2010) Intraneuronal beta-amyloid accumulation and synapse pathology in Alzheimer’s disease. Acta Neuropathol 119(5):523–541. 10.1007/s00401-010-0679-9 DOI: 10.1007/s00401-010-0679-9
Pensalfini A, Albay R 3rd, Rasool S, Wu JW, Hatami A, Arai H, Margol L, Milton S, et al (2014) Intracellular amyloid and the neuronal origin of Alzheimer neuritic plaques. Neurobiol Dis 71:53–61. 10.1016/j.nbd.2014.07.011 DOI: 10.1016/j.nbd.2014.07.011
Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, Petersen RC, Trojanowski JQ (2010) Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 9(1):119–128. 10.1016/s1474-4422(09)70299-6 DOI: 10.1016/s1474-4422(09)70299-6
Castelletto V, Ryumin P, Cramer R, Hamley IW, Taylor M, Allsop D, Reza M, Ruokolainen J, et al (2017) Self-assembly and Anti-amyloid cytotoxicity activity of amyloid beta peptide derivatives. Sci Rep 7:43637. 10.1038/srep43637 DOI: 10.1038/srep43637
Morales R, Callegari K, Soto C (2015) Prion-like features of misfolded Aβ and tau aggregates. Virus Res 207:106–112. 10.1016/j.virusres.2014.12.031 DOI: 10.1016/j.virusres.2014.12.031
Katzmarski N, Ziegler-Waldkirch S, Scheffler N, Witt C, Abou-Ajram C, Nuscher B, Prinz M, Haass C, et al (2020) Aβ oligomers trigger and accelerate Aβ seeding. Brain Pathol 30(1):36–45. 10.1111/bpa.12734 DOI: 10.1111/bpa.12734