International Consensus Based Review and Recommendations for Minimum Reporting Standards in Research on Transcutaneous Vagus Nerve Stimulation (Version 2020).
Farmer, Adam D; Strzelczyk, Adam; Finisguerra, Alessandraet al.
2020 • In Frontiers in Human Neuroscience, 14, p. 568051
[en] Given its non-invasive nature, there is increasing interest in the use of transcutaneous vagus nerve stimulation (tVNS) across basic, translational and clinical research. Contemporaneously, tVNS can be achieved by stimulating either the auricular branch or the cervical bundle of the vagus nerve, referred to as transcutaneous auricular vagus nerve stimulation(VNS) and transcutaneous cervical VNS, respectively. In order to advance the field in a systematic manner, studies using these technologies need to adequately report sufficient methodological detail to enable comparison of results between studies, replication of studies, as well as enhancing study participant safety. We systematically reviewed the existing tVNS literature to evaluate current reporting practices. Based on this review, and consensus among participating authors, we propose a set of minimal reporting items to guide future tVNS studies. The suggested items address specific technical aspects of the device and stimulation parameters. We also cover general recommendations including inclusion and exclusion criteria for participants, outcome parameters and the detailed reporting of side effects. Furthermore, we review strategies used to identify the optimal stimulation parameters for a given research setting and summarize ongoing developments in animal research with potential implications for the application of tVNS in humans. Finally, we discuss the potential of tVNS in future research as well as the associated challenges across several disciplines in research and clinical practice.
Disciplines :
Neurology
Author, co-author :
Farmer, Adam D; Department of Gastroenterology, University Hospitals of North Midlands NHS Trust, Stoke on Trent, United Kingdom
Strzelczyk, Adam; Department of Neurology, Epilepsy Center Frankfurt Rhine-Main, Goethe-University Frankfurt, Frankfurt am Main, Germany
Finisguerra, Alessandra; Scientific Institute, IRCCS E. Medea, Pasian di Prato, Italy
Gourine, Alexander V; Department of Neuroscience, Physiology and Pharmacology, Centre for Cardiovascular and Metabolic Neuroscience, University College London, London, United Kingdom
Gharabaghi, Alireza; Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tuebingen, Tuebingen, Germany
Hasan, Alkomiet; Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, University of Augsburg, Augsburg, Germany ; Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
Burger, Andreas M; Laboratory for Biological Psychology, Faculty of Psychology and Educational Sciences, University of Leuven, Leuven, Belgium
Jaramillo, Andrés M; Leibniz Institute for Neurobiology, Magdeburg, Germany
Mertens, Ann; Department of Neurology, Institute for Neuroscience, 4Brain, Ghent University Hospital, Gent, Belgium
Majid, Arshad; Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
Verkuil, Bart; Clinical Psychology and the Leiden Institute of Brain and Cognition, Leiden University, Leiden, Netherlands
Badran, Bashar W; Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
Ventura-Bort, Carlos; Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany
Gaul, Charly; Migraine and Headache Clinic Koenigstein, Königstein im Taunus, Germany
Beste, Christian; Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
Warren, Christopher M; Utah State University, Logan, UT, United States
Quintana, Daniel S; NORMENT, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway ; Department of Psychology, University of Oslo, Oslo, Norway ; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
Hämmerer, Dorothea; Medical Faculty, Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany ; Institute of Cognitive Neuroscience, University College London, London, United Kingdom ; Center for Behavioral Brain Sciences Magdeburg (CBBS), Otto-von-Guericke University, Magdeburg, Germany
Freri, Elena; Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
Frangos, Eleni; Pain and Integrative Neuroscience Branch, National Center for Complementary and Integrative Health, NIH, Bethesda, MD, United States
Tobaldini, Eleonora; Department of Internal Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy ; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
Kaniusas, Eugenijus; Institute of Electrodynamics, Microwave and Circuit Engineering, TU Wien, Vienna, Austria ; SzeleSTIM GmbH, Vienna, Austria
Rosenow, Felix; Department of Neurology, Epilepsy Center Frankfurt Rhine-Main, Goethe-University Frankfurt, Frankfurt am Main, Germany
Capone, Fioravante; Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
Panetsos, Fivos; Faculty of Biology and Faculty of Optics, Complutense University of Madrid and Institute for Health Research, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
Ackland, Gareth L; Translational Medicine and Therapeutics, Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
Kaithwas, Gaurav; Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
O'Leary, Georgia H; Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
Genheimer, Hannah; Department of Biological Psychology, Clinical Psychology and Psychotherapy, University of Würzburg, Würzburg, Germany
Jacobs, Heidi I L; Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States ; Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, Netherlands
Van Diest, Ilse; Research Group Health Psychology, Faculty of Psychology and Educational Sciences, University of Leuven, Leuven, Belgium
Schoenen, Jean ; Centre Hospitalier Universitaire de Liège - CHU > > Service de neurologie (CHR)
Redgrave, Jessica; Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
Fang, Jiliang; Functional Imaging Lab, Department of Radiology, Guang An Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
Deuchars, Jim; School of Biomedical Science, Faculty of Biological Science, University of Leeds, Leeds, United Kingdom
Széles, Jozsef C; Division for Vascular Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
Thayer, Julian F; Department of Psychological Science, University of California, Irvine, Irvine, CA, United States
More, Kaushik; Institute for Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany ; Neuromodulatory Networks, Leibniz Institute for Neurobiology, Magdeburg, Germany
Vonck, Kristl; Department of Neurology, Institute for Neuroscience, 4Brain, Ghent University Hospital, Gent, Belgium
Steenbergen, Laura; Clinical and Cognitive Psychology and the Leiden Institute of Brain and Cognition, Leiden University, Leiden, Netherlands
Vianna, Lauro C; NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasilia, Brasilia, Brazil
McTeague, Lisa M; Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
Ludwig, Mareike; Department of Anatomy, Faculty of Medicine, Mersin University, Mersin, Turkey
Veldhuizen, Maria G; Mental Health and Wellbeing Research Group, Vrije Universiteit Brussel, Brussels, Belgium
De Couck, Marijke; Faculty of Health Care, University College Odisee, Aalst, Belgium ; Division of Epileptology, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
Casazza, Marina; Department of Neurosurgery, University of Tübingen, Tübingen, Germany
Keute, Marius; Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tuebingen, Tuebingen, Germany
Bikson, Marom; Department of Biomedical Engineering, City College of New York, New York, NY, United States
Andreatta, Marta; Department of Biological Psychology, Clinical Psychology and Psychotherapy, University of Würzburg, Würzburg, Germany ; Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, Netherlands
D'Agostini, Martina; Research Group Health Psychology, Faculty of Psychology and Educational Sciences, University of Leuven, Leuven, Belgium
Weymar, Mathias; Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany ; Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam, Germany
Betts, Matthew; Department of Anatomy, Faculty of Medicine, Mersin University, Mersin, Turkey ; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany ; Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany
Prigge, Matthias; Neuromodulatory Networks, Leibniz Institute for Neurobiology, Magdeburg, Germany
Kaess, Michael; University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland ; Section for Translational Psychobiology in Child and Adolescent Psychiatry, Department of Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
Roden, Michael; Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany ; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany ; German Center for Diabetes Research, Munich, Germany
Thai, Michelle; Department of Psychology, College of Liberal Arts, University of Minnesota, Minneapolis, MN, United States
Schuster, Nathaniel M; Department of Anesthesiology, Center for Pain Medicine, University of California, San Diego Health System, La Jolla, CA, United States
Montano, Nicola; Department of Internal Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy ; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
Hansen, Niels; Department of Psychiatry and Psychotherapy, University of Göttingen, Göttingen, Germany ; Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIPLab), University of Göttingen, Göttingen, Germany
Kroemer, Nils B; Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
Rong, Peijing; Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
Fischer, Rico; Department of Psychology, University of Greifswald, Greifswald, Germany
Howland, Robert H; Department of Psychiatry, University of Pittsburgh School of Medicine, UPMC Western Psychiatric Hospital, Pittsburgh, PA, United States
Sclocco, Roberta; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States ; Department of Radiology, Logan University, Chesterfield, MO, United States
Sellaro, Roberta; Cognitive Psychology Unit, Institute of Psychology, Leiden University, Leiden, Netherlands ; Leiden Institute for Brain and Cognition, Leiden, Netherlands ; Department of Developmental Psychology and Socialisation, University of Padova, Padova, Italy
Garcia, Ronald G; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States ; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
Bauer, Sebastian; Department of Neurology, Epilepsy Center Frankfurt Rhine-Main, Goethe-University Frankfurt, Frankfurt am Main, Germany
Gancheva, Sofiya; Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany ; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany ; Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
Stavrakis, Stavros; Faculty of Biological Science, School of Biomedical Science, University of Leeds, Leeds, United Kingdom
Kampusch, Stefan; Institute of Electrodynamics, Microwave and Circuit Engineering, TU Wien, Vienna, Austria ; SzeleSTIM GmbH, Vienna, Austria
Deuchars, Susan A; School of Biomedical Science, Faculty of Biological Science, University of Leeds, Leeds, United Kingdom
Wehner, Sven; Department of Surgery, University Hospital Bonn, Bonn, Germany
Laborde, Sylvain; Department of Performance Psychology, Institute of Psychology, Deutsche Sporthochschule, Köln, Germany
Usichenko, Taras; Department of Anesthesiology, University Medicine Greifswald, Greifswald, Germany ; Department of Anesthesia, McMaster University, Hamilton, ON, Canada
Polak, Thomas; Laboratory of Functional Neurovascular Diagnostics, AG Early Diagnosis of Dementia, Department of Psychiatry, Psychosomatics and Psychotherapy, University Clinic Würzburg, Würzburg, Germany
Zaehle, Tino; Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
Borges, Uirassu; Department of Performance Psychology, Institute of Psychology, Deutsche Sporthochschule, Köln, Germany ; Department of Social and Health Psychology, Institute of Psychology, Deutsche Sporthochschule, Köln, Germany
Teckentrup, Vanessa; Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
Jandackova, Vera K; Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Ostrava, Czechia ; Department of Human Movement Studies, Faculty of Education, University of Ostrava, Ostrava, Czechia
Napadow, Vitaly; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States ; Department of Radiology, Logan University, Chesterfield, MO, United States
Koenig, Julian; University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland ; Section for Experimental Child and Adolescent Psychiatry, Department of Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
International Consensus Based Review and Recommendations for Minimum Reporting Standards in Research on Transcutaneous Vagus Nerve Stimulation (Version 2020).
Afanasiev S. A., Pavliukova E. N., Kuzmichkina M. A., Rebrova T. Y., Anfinogenova Y., Likhomanov K. S., et al. (2016). Nonpharmacological correction of hypersympatheticotonia in patients with chronic coronary insufficiency and severe left ventricular dysfunction. Ann. Noninvasive Electrocardiol. 21, 548–556. 10.1111/anec.1234926947948
Aihua L., Lu S., Liping L., Xiuru W., Hua L., Yuping W., (2014). A controlled trial of transcutaneous vagus nerve stimulation for the treatment of pharmacoresistant epilepsy. Epilepsy Behav. 39, 105–110. 10.1016/j.yebeh.2014.08.005
Alexander G. M., Huang Y. Z., Soderblom E. J., He X.-P., Moseley M. A., McNamara J. O., (2017). Vagal nerve stimulation modifies neuronal activity and the proteome of excitatory synapses of amygdala/piriform cortex. J. Neurochem. 140, 629–644. 10.1111/jnc.1393127973753
Allchin R. E., Batten T. F., McWilliam P. N., Vaughan P. F., (1994). Electrical stimulation of the vagus increases extracellular glutamate recovered from the nucleus tractus solitarii of the cat by in vivo microdialysis. Exp. Physiol. 79, 265–268. 10.1113/expphysiol.1994.sp0037617911674
Antonino D., Teixeira A. L., Maia-Lopes P. M., Souza M. C., Sabino-Carvalho J. L., Murray A. R., et al. (2017). Non-invasive vagus nerve stimulation acutely improves spontaneous cardiac baroreflex sensitivity in healthy young men: a randomized placebo-controlled trial. Brain Stimul. 10, 875–881. 10.1016/j.brs.2017.05.00628566194
Aston-Jones G., Waterhouse B., (2016). Locus coeruleus: from global projection system to adaptive regulation of behavior. Brain Res. 1645, 75–78. 10.1016/j.brainres.2016.03.00126969408
Ay I., Nasser R., Simon B., Ay H., (2016). Transcutaneous cervical vagus nerve stimulation ameliorates acute ischemic injury in rats. Brain Stimul. 9, 166–173. 10.1016/j.brs.2015.11.00826723020
Ay I., Sorensen A. G., Ay H., (2011). Vagus nerve stimulation reduces infarct size in rat focal cerebral ischemia: an unlikely role for cerebral blood flow. Brain Res. 1392, 110–115. 10.1016/j.brainres.2011.03.06021458427
Badran B. W., Brown J. C., Dowdle L. T., Mithoefer O. J., LaBate N. T., Coatsworth J., et al. (2018a). Tragus or cymba conchae? Investigating the anatomical foundation of transcutaneous auricular vagus nerve stimulation (taVNS). Brain Stimul. 11, 947–948. 10.1016/j.brs.2018.06.00329895444
Badran B. W., Dowdle L. T., Mithoefer O. J., LaBate N. T., Coatsworth J., Brown J. C., et al. (2018b). Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: a concurrent taVNS/fMRI study and review. Brain Stimul. 11, 492–500. 10.1016/j.brs.2017.12.00929361441
Badran B. W., Jenkins D. D., Cook D., Thompson S., Dancy M., DeVries W. H., et al. (2020). Transcutaneous auricular vagus nerve stimulation-paired rehabilitation for oromotor feeding problems in newborns: an open-label pilot study. Front. Hum. Neurosci. 14:77. 10.3389/fnhum.2020.0007732256328
Badran B. W., Mithoefer O. J., Summer C. E., LaBate N. T., Glusman C. E., Badran A. W., et al. (2018c). Short trains of transcutaneous auricular vagus nerve stimulation (taVNS) have parameter-specific effects on heart rate. Brain Stimul. 11, 699–708. 10.1016/j.brs.2018.04.00429716843
Badran B. W., Yu A. B., Adair D., Mappin G., DeVries W. H., Jenkins D. D., et al. (2019). Laboratory administration of transcutaneous auricular vagus nerve stimulation (taVNS): technique, targeting, and considerations. J. Visual. Exp. 143:984. 10.3791/5898430663712
Banni S., Carta G., Murru E., Cordeddu L., Giordano E., Marrosu F., et al. (2012). Vagus nerve stimulation reduces body weight and fat mass in rats. PLoS ONE. 7:e44813. 10.1371/journal.pone.004481323028630
Barbanti P., Grazzi L., Egeo G., Padovan A. M., Liebler E., Bussone G., (2015). Non-invasive vagus nerve stimulation for acute treatment of high-frequency and chronic migraine: an open-label study. J. Headache Pain 16:61. 10.1186/s10194-015-0542-426123825
Barbella G., Cocco I., Freri E., Marotta G., Visani E., Franceschetti S., et al. (2018). Transcutaneous vagal nerve stimulatio (t-VNS): an adjunctive treatment option for refractory epilepsy. Seizure 60, 115–119. 10.1016/j.seizure.2018.06.01629940349
Bauer S., Baier H., Baumgartner C., Bohlmann K., Fauser S., Graf W., et al. (2016). Transcutaneous vagus nerve stimulation (tVNS) for treatment of drug-resistant epilepsy: a randomized, double-blind clinical trial (cMPsE02). Brain Stimul. 9, 356–363. 10.1016/j.brs.2015.11.00327033012
Beaumont E., Campbell R. P., Andresen M. C., Scofield S., Singh K., Libbus I., et al. (2017). Cervical vagus nerve stimulation augments spontaneous discharge in second- and higher-order sensory neurons in the rat nucleus of the solitary tract. Am. J. Physiol Heart Circ. Physiol. 313, H354–H367. 10.1152/ajpheart.00070.201728476920
Beste C., Steenbergen L., Sellaro R., Grigoriadou S., Zhang R., Chmielewski W., et al. (2016). Effects of concomitant stimulation of the GABAergic and norepinephrine system on inhibitory control—a study using transcutaneous vagus nerve stimulation. Brain Stimul. 9, 811–818. 10.1016/j.brs.2016.07.00427522167
Betts M. J., Cardenas-Blanco A., Kanowski M., Jessen F., Düzel E., (2017). In vivo MRI assessment of the human locus coeruleus along its rostrocaudal extent in young and older adults. Neuroimage 163, 150–159. 10.1016/j.neuroimage.2017.09.04228943414
Betts M. J., Kirilina E., Otaduy M. C. G., Ivanov D., Acosta-Cabronero J., Callaghan M. F., et al. (2019). Locus coeruleus imaging as a biomarker for noradrenergic dysfunction in neurodegenerative diseases. Brain 142, 2558–2571. 10.1093/brain/awz19331327002
Bianca R., Komisaruk B. R., (2007). Pupil dilatation in response to vagal afferent electrical stimulation is mediated by inhibition of parasympathetic outflow in the rat. Brain Res. 1177, 29–36. 10.1016/j.brainres.2007.06.10417919470
Bikson M., Esmaeilpour Z., Adair D., Kronberg G., Tyler W. J., Antal A., et al. (2019). Transcranial electrical stimulation nomenclature. Brain Stimul. 12, 1349–1366. 10.1016/j.brs.2019.07.010
Bonaz B., Picq C., Sinniger V., Mayol J. F., Clarençon D., (2013). Vagus nerve stimulation: from epilepsy to the cholinergic anti-inflammatory pathway. Neurogastroenterol. Motil. 25, 208–221. 10.1111/nmo.1207623360102
Boon P., De Cock E., Mertens A., Trinka E., (2018). Neurostimulation for drug-resistant epilepsy: a systematic review of clinical evidence for efficacy, safety, contraindications and predictors for response. Curr. Opin. Neurol. 31, 198–210. 10.1097/WCO.000000000000053429493559
Borges U., Knops L., Laborde S., Klatt S., Raab M., (2020). Transcutaneous vagus nerve stimulation may enhance only specific aspects of the core executive functions. A randomized crossover trial. Front. Neurosci. 14:523. 10.3389/fnins.2020.0052332523510
Borges U., Laborde S., Raab M., (2019). Influence of transcutaneous vagus nerve stimulation on cardiac vagal activity: not different from sham stimulation and no effect of stimulation intensity. PLoS ONE 14:e0223848. 10.1371/journal.pone.022384831603939
Borodovitsyna O., Flamini M. D., Chandler D. J., (2018). Acute stress persistently alters locus coeruleus function and anxiety-like behavior in adolescent rats. Neuroscience 373, 7–19. 10.1016/j.neuroscience.2018.01.02029341884
Brack K. E., Coote J. H., Ng G. A., (2004). Interaction between direct sympathetic and vagus nerve stimulation on heart rate in the isolated rabbit heart. Exp. Physiol. 89, 128–139. 10.1113/expphysiol.2003.00265415109218
Brázdil M., DoleŽalová I., Koritáková E., Chládek J., Roman R., Pail M., et al. (2019). EEG Reactivity predicts individual efficacy of vagal nerve stimulation in intractable epileptics. Front. Neurol. 10:392. 10.3389/fneur.2019.0039231118916
Bretherton B., Atkinson L., Murray A., Clancy J., Deuchars S., Deuchars J., (2019). Effects of transcutaneous vagus nerve stimulation in individuals aged 55 years or above: potential benefits of daily stimulation. Aging 11, 4836–4857. 10.18632/aging.10207431358702
Brock C., Brock B., Aziz Q., Møller H. J., Pfeiffer Jensen M., Drewes A. M., et al. (2017). Transcutaneous cervical vagal nerve stimulation modulates cardiac vagal tone and tumor necrosis factor-alpha. Neurogastroenterol. Motil. 29:e12999. 10.1111/nmo.1299927957782
Brooks C. M., Lange G., (1977). Interaction of myogenic and neurogenic mechanisms that control heart rate. Proc. Natl. Acad. Sci. U.S.A. 74, 1761–1762. 10.1073/pnas.74.4.1761266218
Brooks J. C. W., Faull O. K., Pattinson K. T. S., Jenkinson M., (2013). Physiological noise in brainstem fMRI. Front. Hum. Neurosci. 7:623. 10.3389/fnhum.2013.0062324109446
Brown G. L., Eccles J. C., (1934). The action of a single vagal volley on the rhythm of the heart beat. J. Physiol. 82, 211–241. 10.1113/jphysiol.1934.sp00317616994580
Burger A. M., D'Agostini M., Verkuil B., Diest I. V., (2020a). Moving beyond belief: a narrative review of potential biomarkers for transcutaneous vagus nerve stimulation. Psychophysiology 57:e13571. 10.1111/psyp.1357132202671
Burger A. M., Diest I. V., Does W. V., der Hysaj M., Thayer J. F., Brosschot J. F., et al. (2018). Transcutaneous vagus nerve stimulation and extinction of prepared fear: a conceptual non-replication. Sci. Rep. 8:11471. 10.1038/s41598-018-29561-w30065275
Burger A. M., Van der Does W., Brosschot J. F., Verkuil B., (2020b). From ear to eye? No effect of transcutaneous vagus nerve stimulation on human pupil dilation: a report of three studies. Biol. Psychol. 152:107863. 10.1016/j.biopsycho.2020.10786332050095
Burger A. M., Van der Does W., Thayer J. F., Brosschot J. F., Verkuil B., (2019a). Transcutaneous vagus nerve stimulation reduces spontaneous but not induced negative thought intrusions in high worriers. Biol. Psychol. 142, 80–89. 10.1016/j.biopsycho.2019.01.01430710565
Burger A. M., Van Diest I., Van der Does W., Korbee J. N., Waziri N., Brosschot J. F., et al. (2019b). The effect of transcutaneous vagus nerve stimulation on fear generalization and subsequent fear extinction. Neurobiol. Learn. Mem. 161, 192–201. 10.1016/j.nlm.2019.04.00630986531
Burger A. M., Verkuil B., (2018). Transcutaneous nerve stimulation via the tragus: are we really stimulating the vagus nerve? Brain Stimul. 11, 945–946. 10.1016/j.brs.2018.03.01829661599
Burger A. M., Verkuil B., Fenlon H., Thijs L., Cools L., Miller H. C., et al. (2017). Mixed evidence for the potential of non-invasive transcutaneous vagal nerve stimulation to improve the extinction and retention of fear. Behav. Res. Ther. 97, 64–74. 10.1016/j.brat.2017.07.00528719827
Burger A. M., Verkuil B., Van Diest I., Van der Does W., Thayer J. F., Brosschot J. F., (2016). The effects of transcutaneous vagus nerve stimulation on conditioned fear extinction in humans. Neurobiol. Learn. Mem. 132, 49–56. 10.1016/j.nlm.2016.05.00727222436
Burneo J. G., Faught E., Knowlton R., Morawetz R., Kuzniecky R., (2002). Weight loss associated with vagus nerve stimulation. Neurology 59, 463–464. 10.1212/WNL.59.3.46312177391
Busch V., Zeman F., Heckel A., Menne F., Ellrich J., Eichhammer P., (2013). The effect of transcutaneous vagus nerve stimulation on pain perception – an experimental study. Brain Stimul. 6, 202–209. 10.1016/j.brs.2012.04.00622621941
Butson C. R., McIntyre C. C., (2005). Tissue and electrode capacitance reduce neural activation volumes during deep brain stimulation. Clin. Neurophysiol. 116, 2490–2500. 10.1016/j.clinph.2005.06.02316125463
Butt M. F., Albusoda A., Farmer A. D., Aziz Q., (2020). The anatomical basis for transcutaneous auricular vagus nerve stimulation. J. Anat. 236, 588–611. 10.1111/joa.1312231742681
Cakmak Y. O., Apaydin H., Kiziltan G., Gunduz A., Ozsoy B., Urey H., et al. (2017). Rapid alleviation of parkinson's disease symptoms via electrostimulation of intrinsic auricular muscle zones. Front. Hum. Neurosci. 11:338. 10.3389/fnhum.2017.0033828701941
Capone F., Assenza G., Di Pino G., Musumeci G., Ranieri F., Florio L., et al. (2015). The effect of transcutaneous vagus nerve stimulation on cortical excitability. J. Neural Transm. 122, 679–685. 10.1007/s00702-014-1299-725182412
Capone F., Miccinilli S., Pellegrino G., Zollo L., Simonetti D., Bressi F., et al. (2017). Transcutaneous vagus nerve stimulation combined with robotic rehabilitation improves upper limb function after stroke. Neural Plasticity 2017:7876507. 10.1155/2017/787650729375915
Cha W. W., Song K., Lee H. Y., (2016). Persistent geotropic direction-changing positional nystagmus treated with transcutaneous vagus nerve stimulation. Brain Stimul. 9, 469–470. 10.1016/j.brs.2016.03.01127068230
Chakravarthy K., Chaudhry H., Williams K., Christo P. J., (2015). Review of the uses of vagal nerve stimulation in chronic pain management. Curr. Pain Headache Rep. 19:54. 10.1007/s11916-015-0528-626493698
Chandler D. J., Jensen P., McCall J. G., Pickering A. E., Schwarz L. A., Totah N. K., (2019). Redefining noradrenergic neuromodulation of behavior: impacts of a modular locus coeruleus architecture. J. Neurosci. 39, 8239–8249. 10.1523/JNEUROSCI.1164-19.201931619493
Chen M., Yu L., Ouyang F., Liu Q., Wang Z., Wang S., et al. (2015). The right side or left side of noninvasive transcutaneous vagus nerve stimulation: based on conventional wisdom or scientific evidence? Int. J. Cardiol. 187, 44–45. 10.1016/j.ijcard.2015.03.35125828310
Clancy J. A., Mary D. A., Witte K. K., Greenwood J. P., Deuchars S. A., Deuchars J., (2014). Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity. Brain Stimul. 7, 871–877. 10.1016/j.brs.2014.07.031
Colzato L. S., Ritter S. M., Steenbergen L., (2018a). Transcutaneous vagus nerve stimulation (tVNS) enhances divergent thinking. Neuropsychologia 111, 72–76. 10.1016/j.neuropsychologia.2018.01.00329326067
Colzato L. S., Sellaro R., Beste C., (2017). Darwin revisited: the vagus nerve is a causal element in controlling recognition of other's emotions. Cortex 92, 95–102. 10.1016/j.cortex.2017.03.01728460255
Cork S. C., (2018). The role of the vagus nerve in appetite control: implications for the pathogenesis of obesity. J. Neuroendocrinol. 30:e12643. 10.1111/jne.1264330203877
Cristancho P., Cristancho M. A., Baltuch G. H., Thase M. E., O'Reardon J. P., (2011). Effectiveness and safety of vagus nerve stimulation for severe treatment-resistant major depression in clinical practice after FDA approval: outcomes at 1 year. J. Clin. Psychiatry 72, 1376–1382. 10.4088/JCP.09m05888blu21295002
De Couck M., Cserjesi R., Caers R., Zijlstra W. P., Widjaja D., Wolf N., et al. (2017). Effects of short and prolonged transcutaneous vagus nerve stimulation on heart rate variability in healthy subjects. Auton. Neurosci. 203, 88–96. 10.1016/j.autneu.2016.11.00328017263
De Ferrari G. M., Schwartz P. J., (2011). Vagus nerve stimulation: from pre-clinical to clinical application: challenges and future directions. Heart Fail. Rev. 16, 195–203. 10.1007/s10741-010-9216-021165697
De Icco R., Martinelli D., Bitetto V., Fresia M., Liebler E., Sandrini G., et al. (2018). Peripheral vagal nerve stimulation modulates the nociceptive withdrawal reflex in healthy subjects: a randomized, cross-over, sham-controlled study. Cephalalgia 38, 1658–1664. 10.1177/033310241774234729154689
de Lartigue G., (2016). Role of the vagus nerve in the development and treatment of diet-induced obesity. J. Physiol. 594, 5791–5815. 10.1113/JP27153826959077
De Ridder D., Vanneste S., Engineer N. D., Kilgard M. P., (2014). Safety and efficacy of vagus nerve stimulation paired with tones for the treatment of tinnitus: a case series. Neuromodulation 17, 170–179. 10.1111/ner.1212724255953
De Taeye L., Vonck K., van Bochove M., Boon P., Van Roost D., Mollet L., et al. (2014). The P3 event-related potential is a biomarker for the efficacy of vagus nerve stimulation in patients with epilepsy. Neurotherapeutics 11, 612–622. 10.1007/s13311-014-0272-324711167
Desbeaumes Jodoin V., Richer F., Miron J.-P., Fournier-Gosselin M.-P., Lespérance P., (2018). Long-term sustained cognitive benefits of vagus nerve stimulation in refractory depression. J. ECT 34, 283–290. 10.1097/YCT.000000000000050229870432
Dietrich S., Smith J., Scherzinger C., Hofmann-Preiß K., Freitag T., Eisenkolb A., et al. (2008). A novel transcutaneous vagus nerve stimulation leads to brainstem and cerebral activations measured by functional MRI / funktionelle magnetresonanztomographie zeigt aktivierungen des hirnstamms und weiterer zerebraler strukturen unter transkutaner vagusnervstimulation. Biomed. Tech/Biomed. Eng. 53, 104–111. 10.1515/BMT.2008.022
Dorr A. E., Debonnel G., (2006). Effect of vagus nerve stimulation on serotonergic and noradrenergic transmission. J. Pharmacol. Exp. Ther. 318, 890–898. 10.1124/jpet.106.10416616690723
Du X. J., Dart A. M., Riemersma R. A., (1994). Sex differences in the parasympathetic nerve control of rat heart. Clin. Exp. Pharmacol. Physiol. 21, 485–493. 10.1111/j.1440-1681.1994.tb02545.x7982279
Ehlert U., Erni K., Hebisch G., Nater U., (2006). Salivary alpha-amylase levels after yohimbine challenge in healthy men. J. Clin. Endocrinol. Metab. 91, 5130–5133. 10.1210/jc.2006-046116968802
Falkenberg L. E., Westerhausen R., Specht K., Hugdahl K., (2012). Resting-state glutamate level in the anterior cingulate predicts blood-oxygen level-dependent response to cognitive control. Proc. Natl Acad. Sci. U. S. A. 109, 5069–5073. 10.1073/pnas.111562810922411802
Fallgatter A. J., Ehlis A.-C., Ringel T. M., Herrmann M. J., (2005). Age effect on far field potentials from the brain stem after transcutaneous vagus nerve stimulation. Int. J. Psychophysiol. 56, 37–43. 10.1016/j.ijpsycho.2004.09.00715725488
Fallgatter A. J., Neuhauser B., Herrmann M. J., Ehlis A.-C., Wagener A., Scheuerpflug P., et al. (2003). Far field potentials from the brain stem after transcutaneous vagus nerve stimulation. J. Neural Transm. 110, 1437–1443. 10.1007/s00702-003-0087-619728032
Fang J., Egorova N., Rong P., Liu J., Hong Y., Fan Y., et al. (2017). Early cortical biomarkers of longitudinal transcutaneous vagus nerve stimulation treatment success in depression. Neuroimage Clin. 14, 105–111. 10.1016/j.nicl.2016.12.01628180068
Fang J., Rong P., Hong Y., Fan Y., Liu J., Wang H., et al. (2016). Transcutaneous vagus nerve stimulation modulates default mode network in major depressive disorder. Biol. Psychiatry 79, 266–273. 10.1016/j.biopsych.2015.03.02525963932
Ferrari G. M. D., Crijns H. J. G. M., Borggrefe M., Milasinovic G., Smid J., Zabel M., et al. (2011). Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur. Heart J. 32, 847–855. 10.1093/eurheartj/ehq39121030409
Fischer R., Ventura-Bort C., Hamm A., Weymar M., (2018). Transcutaneous vagus nerve stimulation (tVNS) enhances conflict-triggered adjustment of cognitive control. Cogn. Affect. Behav. Neurosci. 18, 680–693. 10.3758/s13415-018-0596-229693214
Follesa P., Biggio F., Gorini G., Caria S., Talani G., Dazzi L., et al. (2007). Vagus nerve stimulation increases norepinephrine concentration and the gene expression of BDNF and bFGF in the rat brain. Brain Res. 1179, 28–34. 10.1016/j.brainres.2007.08.04517920573
Frangos E., Ellrich J., Komisaruk B. R., (2015). Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: FMRI evidence in humans. Brain Stimul. 8, 624–636. 10.1016/j.brs.2014.11.01825573069
Frangos E., Komisaruk B. R., (2017). Access to vagal projections via cutaneous electrical stimulation of the neck: FMRI evidence in healthy humans. Brain Stimul. 10, 19–27. 10.1016/j.brs.2016.10.00828104084
Frøkjaer J. B., Bergmann S., Brock C., Madzak A., Farmer A. D., Ellrich J., et al. (2016). Modulation of vagal tone enhances gastroduodenal motility and reduces somatic pain sensitivity. Neurogastroenterol. Motil. 28, 592–598. 10.1111/nmo.1276026728182
Gancheva S., Bierwagen A., Markgraf D. F., Bönhof G. J., Murphy K. G., Hatziagelaki E., et al. (2018). Constant hepatic ATP concentrations during prolonged fasting and absence of effects of cerbomed nemos® on parasympathetic tone and hepatic energy metabolism. Mol. Metab. 7, 71–79. 10.1016/j.molmet.2017.10.00229122559
Garcia R. G., Lin R. L., Lee J., Kim J., Barbieri R., Sclocco R., et al. (2017). Modulation of brainstem activity and connectivity by respiratory-gated auricular vagal afferent nerve stimulation in migraine patients. Pain 158, 1461–1472. 10.1097/j.pain.000000000000093028541256
Gaul C., Diener H.-C., Silver N., Magis D., Reuter U., Andersson A., et al. (2016). Non-invasive vagus nerve stimulation for PREVention and Acute treatment of chronic cluster headache (PREVA): a randomised controlled study. Cephalalgia 36, 534–546. 10.1177/0333102415607070
Gee J. W., de Knapen T., Donner T. H., (2014). Decision-related pupil dilation reflects upcoming choice and individual bias. Proc. Natl. Acad. Sci. U.S.A. 111, E618–E625. 10.1073/pnas.131755711124449874
Genheimer H., Andreatta M., Asan E., Pauli P., (2017). Reinstatement of contextual conditioned anxiety in virtual reality and the effects of transcutaneous vagus nerve stimulation in humans. Sci. Rep. 7:17886. 10.1038/s41598-017-18183-329263408
Gidron Y., Deschepper R., De Couck M., Thayer J. F., Velkeniers B., (2018). The vagus nerve can predict and possibly modulate non-communicable chronic diseases: introducing a neuroimmunological paradigm to public health. J. Clin. Med. 7:371. 10.3390/jcm710037130347734
Gil K., Bugajski A., Thor P., (2011). Electrical vagus nerve stimulation decreases food consumption and weight gain in rats fed a high-fat diet. J. Physiol. Pharmacol. 62, 637–646.22314566
Giraudier M., Ventura-Bort C., Weymar M., (2020). Transcutaneous vagus nerve stimulation (tVNS) improves high confidence recognition memory but not emotional word processing. Front. Psychol. 11:1276. 10.3389/fpsyg.2020.0127632733306
Goadsby P. J., Grosberg B. M., Mauskop A., Cady R., Simmons K. A., (2014). Effect of noninvasive vagus nerve stimulation on acute migraine: an open-label pilot study. Cephalalgia 34, 986–993. 10.1177/033310241452449424607501
Goldberger J. J., Arora R., Buckley U., Shivkumar K., (2019). Autonomic nervous system dysfunction. J. Am. College Cardiol. 73:64. 10.1016/j.jacc.2018.12.064
Gourine A. V., Dale N., Korsak A., Llaudet E., Tian F., Huckstepp R., et al. (2008). Release of ATP and glutamate in the nucleus tractus solitarii mediate pulmonary stretch receptor (Breuer–Hering) reflex pathway. J. Physiol. 586, 3963–3978. 10.1113/jphysiol.2008.154567
Groves D. A., Bowman E. M., Brown V. J., (2005). Recordings from the rat locus coeruleus during acute vagal nerve stimulation in the anaesthetised rat. Neurosci. Lett. 379, 174–179. 10.1016/j.neulet.2004.12.055
Guleyupoglu B., Schestatsky P., Edwards D., Fregni F., Bikson M., (2013). Classification of methods in transcranial electrical stimulation (tES) and evolving strategy from historical approaches to contemporary innovations. J. Neurosci. Methods 219, 297–311. 10.1016/j.jneumeth.2013.07.016
Hämmerer D., Callaghan M. F., Hopkins A., Kosciessa J., Betts M., Cardenas-Blanco A., et al. (2018). Locus coeruleus integrity in old age is selectively related to memories linked with salient negative events. Proc. Natl. Acad. Sci. U.S.A. 115, 2228–2233. 10.1073/pnas.171226811529440429
Hansen N., (2019). Memory reinforcement and attenuation by activating the human locus coeruleus via transcutaneous vagus nerve stimulation. Front. Neurosci. 12:955. 10.3389/fnins.2018.0095530949016
Harden C. L., Pulver M. C., Ravdin L. D., Nikolov B., Halper J. P., Labar D. R., (2000). A pilot study of mood in epilepsy patients treated with vagus nerve stimulation. Epilepsy Behav. 1, 93–99. 10.1006/ebeh.2000.004625439348
Hasan A., Wolff-Menzler C., Pfeiffer S., Falkai P., Weidinger E., Jobst A., et al. (2015). Transcutaneous noninvasive vagus nerve stimulation (tVNS) in the treatment of schizophrenia: a bicentric randomized controlled pilot study. Eur. Arch. Psychiatry Clin. Neurosci. 265, 589–600. 10.1007/s00406-015-0618-926210303
He W., Jing X., Wang X., Rong P., Li L., Shi H., et al. (2013a). Transcutaneous auricular vagus nerve stimulation as a complementary therapy for pediatric epilepsy: a pilot trial. Epilepsy Behav. 28, 343–346. 10.1016/j.yebeh.2013.02.00123820114
He W., Jing X.-H., Zhu B., Zhu X.-L., Li L., Bai W.-Z., et al. (2013b). The auriculo-vagal afferent pathway and its role in seizure suppression in rats. BMC Neurosci. 14:85. 10.1186/1471-2202-14-8523927528
Heien M. L. A. V., Johnson M. A., Wightman R. M., (2004). Resolving neurotransmitters detected by fast-scan cyclic voltammetry. Anal. Chem. 76, 5697–5704. 10.1021/ac049150915456288
Hein E., Nowak M., Kiess O., Biermann T., Bayerlein K., Kornhuber J., et al. (2013). Auricular transcutaneous electrical nerve stimulation in depressed patients: a randomized controlled pilot study. J. Neural Transm. 120, 821–827. 10.1007/s00702-012-0908-623117749
Hirschberg S., Li Y., Randall A., Kremer E. J., Pickering A. E., (2017). Functional dichotomy in spinal- vs prefrontal-projecting locus coeruleus modules splits descending noradrenergic analgesia from ascending aversion and anxiety in rats. ELife 6:e29808. 10.7554/eLife.29808.02729027903
Homma S., Yamazaki Y., Karakida T., (1993). Blood pressure and heart rate relationships during cervical sympathetic and vagus nerve stimulation in streptozotocin diabetic rats. Brain Res. 629, 342–344. 10.1016/0006-8993(93)91343-Q8111638
Hong G.-S., Pintea B., Lingohr P., Coch C., Randau T., Schaefer N., et al. (2019). Effect of transcutaneous vagus nerve stimulation on muscle activity in the gastrointestinal tract (transVaGa): a prospective clinical trial. Int. J. Colorectal Dis. 34, 417–422. 10.1007/s00384-018-3204-630519842
Hosoi T., Okuma Y., Nomura Y., (2000). Electrical stimulation of afferent vagus nerve induces IL-1beta expression in the brain and activates HPA axis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R141–R147. 10.1152/ajpregu.2000.279.1.R141
Hou P. W., Hsu H. C., Lin Y. W., Tang N. Y., Cheng C. Y., Hsieh C. L., (2015). The history mechanism, and clinical application of auricular therapy in traditional Chinese medicine. Evid Based Complement. Alternat. Med. 2015:495684. 10.1155/2015/49568426823672
Huang F., Dong J., Kong J., Wang H., Meng H., Spaeth R. B., et al. (2014). Effect of transcutaneous auricular vagus nerve stimulation on impaired glucose tolerance: a pilot randomized study. BMC Complement. Alternat. Med. 14:203. 10.1186/1472-6882-14-20327411374
Huang J., Wang Y., Jiang D., Zhou J., Huang X., (2010). The sympathetic-vagal balance against endotoxemia. J. Neural Transm. 117, 729–735. 10.1007/s00702-010-0407-6
Huffman W. J., Subramaniyan S., Rodriguiz R. M., Wetsel W. C., Grill W. M., Terrando N., (2019). Modulation of neuroinflammation and memory dysfunction using percutaneous vagus nerve stimulation in mice. Brain Stimul. 12, 19–29. 10.1016/j.brs.2018.10.00530337243
Hulsey D. R., Riley J. R., Loerwald K. W., Rennaker R. L., Kilgard M. P., Hays S. A., (2017). Parametric characterization of neural activity in the locus coeruleus in response to vagus nerve stimulation. Exp. Neurol. 289, 21–30. 10.1016/j.expneurol.2016.12.00527988257
Huston J. M., Gallowitsch-Puerta M., Ochani M., Ochani K., Yuan R., Rosas-Ballina M., et al. (2007). Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis. Crit.Care Med. 35, 2762–2768. 10.1097/01.CCM.0000288102.15975.BA17901837
Hyvärinen P., Yrttiaho S., Lehtimäki J., Ilmoniemi R. J., Mäkitie A., Ylikoski J., et al. (2015). Transcutaneous vagus nerve stimulation modulates tinnitus-related beta- and gamma-band activity. Ear Hear. 36, e76–e85. 10.1097/AUD.000000000000012325437140
Ikramuddin S., Blackstone R. P., Brancatisano A., Toouli J., Shah S. N., Wolfe B. M., et al. (2014). Effect of reversible intermittent intra-abdominal vagal nerve blockade on morbid obesity: the recharge randomized clinical trial. JAMA 312, 915–922. 10.1001/jama.2014.1054025182100
Iseger T. A., van Bueren N. E. R., Kenemans J. L., Gevirtz R., Arns M., (2020). A frontal-vagal network theory for major depressive disorder: implications for optimizing neuromodulation techniques. Brain Stimul. 13, 1–9. 10.1016/j.brs.2019.10.00631668983
Jacobs H. I. L., Riphagen J. M., Razat C. M., Wiese S., Sack A. T., (2015). Transcutaneous vagus nerve stimulation boosts associative memory in older individuals. Neurobiol. Aging 36, 1860–1867. 10.1016/j.neurobiolaging.2015.02.02325805212
Jacquin M. F., Semba K., Rhoades R. W., Egger M. D., (1982). Trigeminal primary afferents project bilaterally to dorsal horn and ipsilaterally to cerebellum, reticular formation, and cuneate, solitary, supratrigeminal and vagal nuclei. Brain Res. 246, 285–291. 10.1016/0006-8993(82)91177-56289979
Jalife J., Slenter V. A., Salata J. J., Michaels D. C., (1983). Dynamic vagal control of pacemaker activity in the mammalian sinoatrial node. Circ. Res. 52, 642–656. 10.1161/01.RES.52.6.6426861283
Janner H., Klausenitz C., Gürtler N., Hahnenkamp K., Usichenko T. I., (2018). Effects of electrical transcutaneous vagus nerve stimulation on the perceived intensity of repetitive painful heat stimuli: a blinded placebo- and sham-controlled randomized crossover investigation. Anesthesia Analgesia 126, 2085–2092. 10.1213/ANE.000000000000282029337730
Jiang Y., Li L., Ma J., Zhang L., Niu F., Feng T., et al. (2016). Auricular vagus nerve stimulation promotes functional recovery and enhances the post-ischemic angiogenic response in an ischemia/reperfusion rat model. Neurochem. Int. 97, 73–82. 10.1016/j.neuint.2016.02.00926964767
Jin Y., Kong J., (2016). Transcutaneous vagus nerve stimulation: a promising method for treatment of autism spectrum disorders. Front. Neurosci. 10:609. 10.3389/fnins.2016.0060928163670
Jodoin V. D., Lespérance P., Nguyen D. K., Fournier-Gosselin M.-P., Richer F., Centre Hospitalier de l'Université de Montréal Canada., (2018). Effects of vagus nerve stimulation on pupillary function. Int. J. Psychophysiol. 98(3 Pt 1), 455–459. 10.1016/j.ijpsycho.2015.10.00126437126
John C. E., Jones S. R., (2007). “Fast scan cyclic voltammetry of dopamine and serotonin in mouse brain slices,” in Electrochemical Methods for Neuroscience, eds A. C. Michael and L. M. Borland (Francis:CRC Press/Taylor). Available onlie at: http://www.ncbi.nlm.nih.gov/books/NBK2579/21204393
Johnson R. L., Wilson C. G., (2018). A review of vagus nerve stimulation as a therapeutic intervention. J. Inflamm. Res. 11, 203–213. 10.2147/JIR.S16324829844694
Jongkees B. J., Immink M. A., Finisguerra A., Colzato L. S., (2018). Transcutaneous vagus nerve stimulation (tVNS) enhances response selection during sequential action. Front. Psychol. 9:1159. 10.3389/fpsyg.2018.0115930034357
Joshi S., Li Y., Kalwani R. M., Gold J. I., (2016). Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron 89, 221–234. 10.1016/j.neuron.2015.11.02826711118
Juel J., Brock C., Olesen S., Madzak A., Farmer A., Aziz Q., et al. (2017). Acute physiological and electrical accentuation of vagal tone has no effect on pain or gastrointestinal motility in chronic pancreatitis. J. Pain Res. 10, 1347–1355. 10.2147/JPR.S13343828615966
Kaczmarczyk R., Tejera D., Simon B. J., Heneka M. T., (2017). Microglia modulation through external vagus nerve stimulation in a murine model of Alzheimer's disease. J. Neurochem. 146, 76–85. 10.1111/jnc.1428429266221
Kalia M., Sullivan J. M., (1982). Brainstem projections of sensory and motor components of the vagus nerve in the rat. J. Comp. Neurol. 211, 248–265. 10.1002/cne.9021103047174893
Kampusch S., Kaniusas E., Széles J. C., (2013). “New approaches in multi-punctual percutaneous stimulation of the auricular vagus nerve,” in 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER) (San Diego, CA), 263–266. 10.1109/NER.2013.6695922
Kaniusas E., (2019). Biomedical Signals and Sensors III: Linking Electric Biosignals and Biomedical Sensors. Available online at: https://www.springer.com/de/book/9783319749167
Kaniusas E., Kampusch S., Tittgemeyer M., Panetsos F., Gines R. F., Papa M., et al. (2019a). Current directions in the auricular vagus nerve stimulation II – an engineering perspective. Front. Neurosci. 13:772. 10.3389/fnins.2019.0077231396044
Kaniusas E., Kampusch S., Tittgemeyer M., Panetsos F., Gines R. F., Papa M., et al. (2019b). Current directions in the auricular vagus nerve stimulation I – a physiological perspective. Front. Neurosci. 13:854. 10.3389/fnins.2019.0085431447643
Kaniusas E., Samoudi A. M., Kampusch S., Bald K., Tanghe E., Martens L., et al. (2020). Stimulation pattern efficiency in percutaneous auricular vagus nerve stimulation: experimental versus numerical data. IEEE Trans. Biomed. Eng. 67, 1921–1935. 10.1109/TBME.2019.295077731675313
Kemp J., Després O., Pebayle T., Dufour A., (2014). Age-related decrease in sensitivity to electrical stimulation is unrelated to skin conductance: an evoked potentials study. Clin. Neurophysiol. 125, 602–607. 10.1016/j.clinph.2013.08.02024070673
Keute M., Boehrer L., Ruhnau P., Heinze H.-J., Zaehle T., (2019a). Transcutaneous vagus nerve stimulation (tVNS) and the dynamics of visual bistable perception. Front. Neurosci. 13:227. 10.3389/fnins.2019.0022730906250
Keute M., Demirezen M., Graf A., Mueller N. G., Zaehle T., (2019b). No modulation of pupil size and event-related pupil response by transcutaneous auricular vagus nerve stimulation (taVNS). Sci. Rep. 9:11452. 10.1038/s41598-019-47961-431391505
Keute M., Ruhnau P., Heinze H.-J., Zaehle T., (2018). Behavioral and electrophysiological evidence for GABAergic modulation through transcutaneous vagus nerve stimulation. Clin. Neurophysiol. 129, 1789–1795. 10.1016/j.clinph.2018.05.02629981954
Khadka N., Borges H., Zannou A. L., Jang J., Kim B., Lee K., et al. (2018). Dry tDCS: Tolerability of a novel multilayer hydrogel composite non-adhesive electrode for transcranial direct current stimulation. Brain Stimul. 11, 1044–1053. 10.1016/j.brs.2018.07.049
Kile B. M., Walsh P. L., McElligott Z. A., Bucher E. S., Guillot T. S., Salahpour A., et al. (2012). Optimizing the temporal resolution of fast-scan cyclic voltammetry. ACS Chem. Neurosci. 3, 285–292. 10.1021/cn200119u22708011
Koenig J., Parzer P., Haigis N., Liebemann J., Jung T., Resch F., et al. (2019). Effects of acute transcutaneous vagus nerve stimulation on emotion recognition in adolescent depression. Psychol. Med. 1–10. 10.1017/S0033291719003490. [Epub ahead of print].31818339
Koenig J., Rash J. A., Campbell T. S., Thayer J. F., Kaess M., (2017). A meta-analysis on sex differences in resting-state vagal activity in children and adolescents. Front. Physiol. 8:582. 10.3389/fphys.2017.00582
Koenig J., Thayer J. F., (2016). Sex differences in healthy human heart rate variability: a meta-analysis. Neurosci. Biobehav. Rev. 64, 288–310. 10.1016/j.neubiorev.2016.03.00726964804
Kong J., Fang J., Park J., Li S., Rong P., (2018). Treating depression with transcutaneous auricular vagus nerve stimulation: state of the art and future perspectives. Front. Psychiatry 9:20. 10.3389/fpsyt.2018.0002029459836
Koopman F. A., Chavan S. S., Miljko S., Grazio S., Sokolovic S., Schuurman P. R., et al. (2016). Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc. Natl. Acad. Sci. U.S.A. 113, 8284–8289. 10.1073/pnas.160563511327382171
Krahl S. E., Clark K. B., (2012). Vagus nerve stimulation for epilepsy: a review of central mechanisms. Surg. Neurol. Int. 3, S255–S259. 10.4103/2152-7806.10301523230530
Krahl S. E., Senanayake S. S., Handforth A., (2003). Right-sided vagus nerve stimulation reduces generalized seizure severity in rats as effectively as left-sided. Epilepsy Res. 56, 1–4. 10.1016/s0920-1211(03)00122-014529948
Kraus T., Hösl K., Kiess O., Schanze A., Kornhuber J., Forster C., (2007). BOLD fMRI deactivation of limbic and temporal brain structures and mood enhancing effect by transcutaneous vagus nerve stimulation. J. Neural Transm. 114, 1485–1493. 10.1007/s00702-007-0755-z17564758
Kraus T., Kiess O., Hösl K., Terekhin P., Kornhuber J., Forster C., (2013). CNS BOLD fMRI effects of sham-controlled transcutaneous electrical nerve stimulation in the left outer auditory canal – a pilot study. Brain Stimul. 6, 798–804. 10.1016/j.brs.2013.01.01123453934
Krause B., Cohen Kadosh R., (2014). Not all brains are created equal: the relevance of individual differences in responsiveness to transcranial electrical stimulation. Front. Syst. Neurosci. 8:25. 10.3389/fnsys.2014.0002524605090
Kreuzer P. M., Landgrebe M., Husser O., Resch M., Schecklmann M., Geisreiter F., et al. (2012). Transcutaneous vagus nerve stimulation: retrospective assessment of cardiac safety in a pilot study. Front. Psychiatry 3:70. 10.3389/fpsyt.2012.00070
Kreuzer P. M., Landgrebe M., Resch M., Husser O., Schecklmann M., Geisreiter F., et al. (2014). Feasibility, safety and efficacy of transcutaneous vagus nerve stimulation in chronic tinnitus: an open pilot study. Brain Stimul. 7, 740–747. 10.1016/j.brs.2014.05.00324996510
Kuo T. B., Lin T., Yang C. C., Li C. L., Chen C. F., Chou P., (1999). Effect of aging on gender differences in neural control of heart rate. Am. J. Physiol. 277, H2233–H2239. 10.1152/ajpheart.1999.277.6.H223310600841
Kuo T. B. J., Lai C. J., Huang Y.-T., Yang C. C. H., (2005). Regression analysis between heart rate variability and baroreflex-related vagus nerve activity in rats. J. Cardiovasc. Electrophysiol. 16, 864–869. 10.1111/j.1540-8167.2005.40656.x16101628
Lamb D. G., Porges E. C., Lewis G. F., Williamson J. B., (2017). Non-invasive vagal nerve stimulation effects on hyperarousal and autonomic state in patients with posttraumatic stress disorder and history of mild traumatic brain injury: preliminary evidence. Front. Med. 4:124. 10.3389/fmed.2017.0012428824913
Lange G., Janal M. N., Maniker A., Fitzgibbons J., Fobler M., Cook D., et al. (2011). Safety and efficacy of vagus nerve stimulation in fibromyalgia: a phase I/II proof of concept trial. Pain Med. 12, 1406–1413. 10.1111/j.1526-4637.2011.01203.x21812908
Lanska D. J., (2002). Corning and vagal nerve stimulation for seizures in the 1880s. Neurology 58, 452–459. 10.1212/WNL.58.3.45211839848
Laqua R., Leutzow B., Wendt M., Usichenko T., (2014). Transcutaneous vagal nerve stimulation may elicit anti- and pro-nociceptive effects under experimentally-induced pain—a crossover placebo-controlled investigation. Auton. Neurosci. Basic Clin. 185, 120–122. 10.1016/j.autneu.2014.07.00825135040
Lehtimäki J., Hyvärinen P., Ylikoski M., Bergholm M., Mäkel,ä J. P., Aarnisalo A., et al. (2013). Transcutaneous vagus nerve stimulation in tinnitus: a pilot study. Acta Oto Laryngol. 133, 378–382. 10.3109/00016489.2012.75073624996510
Lerman I., Hauger R., Sorkin L., Proudfoot J., Davis B., Huang A., et al. (2016). Noninvasive transcutaneous vagus nerve stimulation decreases whole blood culture-derived cytokines and chemokines: a randomized, blinded, healthy control pilot trial: noninvasive vagus nerve stimulation modulates peripheral inflammation. Neuromodulation 19, 283–290. 10.1111/ner.12398
Leutzow B., Lange J., Gibb A., Schroeder H., Nowak A., Wendt M., et al. (2013). Vagal sensory evoked potentials disappear under the neuromuscular block – an experimental study. Brain Stimul. 6, 812–816. 10.1016/j.brs.2013.03.00523602023
Levine Y. A., Koopman F., Faltys M., Zitnik R., Tak P.-P., (2014). Neurostimulation of the cholinergic antiinflammatory pathway in rheumatoid arthritis and inflammatory bowel disease. Bioelectron. Med. 1, 34–43. 10.15424/bioelectronmed.2014.00008
Levy M. N., Martin P. J., Lano T., Zieske H., (1969). Paradoxical effect of vagus nerve stimulation on heart rate in dogs. Circ. Res. 25, 303–314. 10.1161/01.RES.25.3.3035822518
Lewine J. D., Paulson K., Bangera N., Simon B. J., (2019). Exploration of the impact of brief noninvasive vagal nerve stimulation on EEG and event-related potentials: impact of nVNS on brain electrophysiology. Neuromodulation 22, 564–572. 10.1111/ner.12864
Liporace J., Hucko D., Morrow R., Barolat G., Nei M., Schnur J., et al. (2001). Vagal nerve stimulation: adjustments to reduce painful side effects. Neurology 57, 885–886. 10.1212/WNL.57.5.88511552021
Liu J., Fang J., Wang Z., Rong P., Hong Y., Fan Y., et al. (2016). Transcutaneous vagus nerve stimulation modulates amygdala functional connectivity in patients with depression. J. Affect. Disord. 205, 319–326. 10.1016/j.jad.2016.08.00327559632
Liu K. Y., Acosta-Cabronero J., Cardenas-Blanco A., Loane C., Berry A. J., Betts M. J., et al. (2019). In vivo visualization of age-related differences in the locus coeruleus. Neurobiol. Aging 74, 101–111. 10.1016/j.neurobiolaging.2018.10.01432312580
Liu K. Y., Marijatta F., Hämmerer D., Acosta-Cabronero J., Düzel E., Howard R. J., (2017). Magnetic resonance imaging of the human locus coeruleus: a systematic review. Neurosci. Biobehav. Rev. 83, 325–355. 10.1016/j.neubiorev.2017.10.02329107830
Liugan M., Zhang M., Cakmak Y. O., (2018). Neuroprosthetics for auricular muscles: neural networks and clinical aspects. Front. Neurol. 8:752. 10.3389/fneur.2017.0075229387041
Lv H., Zhao Y., Chen J., Wang D., Chen H., (2019). Vagus nerve stimulation for depression: a systematic review. Front. Psychol. 10:64. 10.3389/fpsyg.2019.00064
Maffiuletti N. A., Herrero A. J., Jubeau M., Impellizzeri F. M., Bizzini M., (2008). Differences in electrical stimulation thresholds between men and women. Ann. Neurol. 63, 507–512. 10.1002/ana.2134618300313
Malik M., (1996). Heart rate variability. Standards of measurement, physiological interpretation, and clinical use: task force of the European Society of Cardiology and the North American Society for Pacing and Electrophysiology. Annals Noninv. Electrocardiol. 1, 151–181. 10.1111/j.1542-474X.1996.tb00275.x8737210
Manta S., Dong J., Debonnel G., Blier P., (2009). Enhancement of the function of rat serotonin and norepinephrine neurons by sustained vagus nerve stimulation. J. Psychiatry Neurosci. 34, 272–280.19568478
Manta S., El Mansari M., Debonnel G., Blier P., (2013). Electrophysiological and neurochemical effects of long-term vagus nerve stimulation on the rat monoaminergic systems. Int. J. Neuropsychopharmacol. 16, 459–470. 10.1017/S146114571200038722717062
Marrosu F., Serra A., Maleci A., Puligheddu M., Biggio G., Piga M., (2003). Correlation between GABAA receptor density and vagus nerve stimulation in individuals with drug-resistant partial epilepsy. Epilepsy Res. 55, 59–70. 10.1016/S0920-1211(03)00107-4
McGough J. J., Sturm A., Cowen J., Tung K., Salgari G. C., Leuchter A. F., et al. (2019). Double-blind, sham-controlled, pilot study of trigeminal nerve stimulation for attention-deficit/hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry 58, 403–411.e3. 10.1016/j.jaac.2018.11.01330768393
Merrill D. R., Bikson M., Jefferys J. G. R., (2005). Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J. Neurosci. Methods 141, 171–198. 10.1016/j.jneumeth.2004.10.02015661300
Mertens A., Naert L., Miatton M., Poppa T., Carrette E., Gadeyne S., et al. (2020). Transcutaneous vagus nerve stimulation does not affect verbal memory performance in healthy volunteers. Front. Psychol. 11:551. 10.3389/fpsyg.2020.0055132351421
Mertens A., Raedt R., Gadeyne S., Carrette E., Boon P., Vonck K., (2018). Recent advances in devices for vagus nerve stimulation. Expert Rev. Med. Devices 15, 527–539. 10.1080/17434440.2018.150773230071175
Minhas P., Bansal V., Patel J., Ho J. S., Diaz J., Datta A., et al. (2010). Electrodes for high-definition transcutaneous DC stimulation for applications in drug delivery and electrotherapy, including tDCS. J. Neurosci. Methods 190, 188–197. 10.1016/j.jneumeth.2010.05.00720488204
Mirza K. B., Golden C. T., Nikolic K., Toumazou C., (2019). Closed-loop implantable therapeutic neuromodulation systems based on neurochemical monitoring. Front. Neurosci. 13:808. 10.3389/fnins.2019.0080831481864
Moher D. Schulz K. F. Altman D. CONSORT Group Consolidated Standards of Reporting Trials (2001). The CONSORT statement: revised recommendations for improving the quality of reports of parallel-group randomized trials. JAMA 285, 1987–1991. 10.1001/jama.285.15.1987
Moodithaya S., Avadhany S. T., (2012). Gender differences in age-related changes in cardiac autonomic nervous function. J. Aging Res. 2012:679345. 10.1155/2012/67934522187649
Morris G. L., Gloss D., Buchhalter J., Mack K. J., Nickels K., Harden C., (2013). Evidence-based guideline update: vagus nerve stimulation for the treatment of epilepsy. Epilepsy Curr. 13, 297–303. 10.5698/1535-7597-13.6.29724348133
Morris J., Straube A., Diener H.-C., Ahmed F., Silver N., Walker S., et al. (2016). Cost-effectiveness analysis of non-invasive vagus nerve stimulation for the treatment of chronic cluster headache. J. Headache Pain 17:43. 10.1186/s10194-016-0633-x27102120
Mourdoukoutas A. P., Truong D. Q., Adair D. K., Simon B. J., Bikson M., (2018). High-resolution multi-scale computational model for non-invasive cervical vagus nerve stimulation. Neuromodulation 21, 261–268. 10.1111/ner.1270629076212
Mridha Z., de Gee J. W., Shi Y., Alkashgari R., Williams J., Suminski A., et al. (2019). Graded recruitment of pupil-linked neuromodulation by parametric stimulation of the vagus nerve | bioRxiv [Preprint]. 10.1101/2019.12.28.890111
Murphy P. R., Robertson I. H., Balsters J. H., O'connell R. G., (2011). Pupillometry and P3 index the locus coeruleus-noradrenergic arousal function in humans. Psychophysiology 48, 1532–1543. 10.1111/j.1469-8986.2011.01226.x21762458
Murray A. R., Atkinson L., Mahadi M. K., Deuchars S. A., Deuchars J., (2016a). The strange case of the ear and the heart: the auricular vagus nerve and its influence on cardiac control. Auton. Neurosci. Basic Clin. 199, 48–53. 10.1016/j.autneu.2016.06.00427388046
Murray A. R., Clancy J. A., Deuchars S. A., Deuchars J., (2016b). Transcutaneous vagus nerve stimulation (tVNS) decreases sympathetic nerve activity in older healthy human subjects. FASEB J. 30(1 Suppl), 754.3. 10.1136/heartjnl-2016-309890.215
Napadow V., (2019). When a white horse is a horse: embracing the overlap between acupuncture and neuromodulation. J. Altern. Complement. Med. 24, 621–623. 10.1089/acm.2018.29047.vtn29792511
Napadow V., Edwards R. R., Cahalan C. M., Mensing G., Greenbaum S., Valovska A., et al. (2012). Evoked pain analgesia in chronic pelvic pain patients using respiratory-gated auricular vagal afferent nerve stimulation. Pain Med. 13, 777–789. 10.1111/j.1526-4637.2012.01385.x22568773
Nassi J. J., Cepko C. L., Born R. T., Beier K. T., (2015). Neuroanatomy goes viral! Front. Neuroanat. 9:80. 10.3389/fnana.2015.00080
Nemeroff C. B., Mayberg H. S., Krahl S. E., McNamara J., Frazer A., Henry T. R., et al. (2006). VNS therapy in treatment-resistant depression: clinical evidence and putative neurobiological mechanisms. Neuropsychopharmacology 31, 1345–1355. 10.1038/sj.npp.130108216641939
Nesbitt A. D., Marin J. C. A., Tompkins E., Ruttledge M. H., Goadsby P. J., (2015). Initial use of a novel noninvasive vagus nerve stimulator for cluster headache treatment. Neurology 84, 1249–1253. 10.1212/WNL.000000000000139425713002
Neuhaus A. H., Luborzewski A., Rentzsch J., Brakemeier E. L., Opgen-Rhein C., Gallinat J., et al. (2007). P300 is enhanced in responders to vagus nerve stimulation for treatment of major depressive disorder. J. Affect. Disord. 100, 123–128. 10.1016/j.jad.2006.10.005
Neuser M. P., Teckentrup V., Kühnel A., Hallschmid M., Walter M., Kroemer N. B., (2019). Vagus nerve stimulation increases vigor to work for rewards. BioRxiv [Preprint]. 789982. 10.1101/789982
Ng G. A., Brack K. E., Coote J. H., (2001). Effects of direct sympathetic and vagus nerve stimulation on the physiology of the whole heart—a novel model of isolated langendorff perfused rabbit heart with intact dual autonomic innervation. Exp. Physiol. 86, 319–329. 10.1113/eph860214611471534
Nieuwenhuis S., Aston-Jones G., Cohen J. D., (2005). Decision making, the P3, and the locus coeruleus-norepinephrine system. Psychol. Bull. 131, 510–532. 10.1037/0033-2909.131.4.51016060800
Njagi J., Chernov M. M., Leiter J. C., Andreescu S., (2010). Amperometric detection of dopamine in vivo with an enzyme based carbon fiber microbiosensor. Anal. Chem. 82, 989–996. 10.1021/ac902260520055419
Nogier P. M. F., (1957). Über die akupunktur der ohrmuschel. Dt Ztschr Akup 6, 25–35.
Noller C. M., Levine Y. A., Urakov T. M., Aronson J. P., Nash M. S., (2019). Vagus nerve stimulation in rodent models: an overview of technical considerations. Front. Neurosci. 13:911. 10.3389/fnins.2019.0091131551679
Paleczny B., Seredyński R., Ponikowska B., (2019). Inspiratory- and expiratory-gated transcutaneous vagus nerve stimulation have different effects on heart rate in healthy subjects: preliminary results. Clin. Auton. Res. 10.1007/s10286-019-00604-0. [Epub ahead of print].30941526
Panebianco M., Zavanone C., Dupont S., Restivo D. A., Pavone A., (2016). Vagus nerve stimulation therapy in partial epilepsy: a review. Acta Neurol. Belgica 116, 241–248. 10.1007/s13760-016-0616-326908034
Pardo J., Sheikh S., Kuskowski M., Surerus-Johnson C., Hagen M., Lee J., et al. (2007). Weight loss during chronic, cervical vagus nerve stimulation in depressed patients with obesity. Int. J. Obesity 31, 1756–1759. 10.1038/sj.ijo.080366617563762
Pavlov V. A., Tracey K. J., (2012). The vagus nerve and the inflammatory reflex–linking immunity and metabolism. Nat. Rev. Endocrinol. 8, 743–754. 10.1038/nrendo.2012.18923169440
Peng L., Mu K., Liu A., Zhou L., Gao Y., Shenoy I. T., et al. (2018). Transauricular vagus nerve stimulation at auricular acupoints kindey (CO10), yidan (CO11), liver (CO12) and shenmen (TF4) can induce auditory and limbic cortices activation measured by fMRI. Hear. Res. 359, 1–12. 10.1016/j.heares.2017.12.00329305037
Penry J. K., Dean J. C., (1990). Prevention of intractable partial seizures by intermittent vagal stimulation in humans: preliminary results. Epilepsia 31, S40–S43. 10.1111/j.1528-1157.1990.tb05848.x2121469
Perkins D. O., (2002). Predictors of noncompliance in patients with schizophrenia. J. Clin. Psychiatry 63, 1121–1128. 10.4088/JCP.v63n1206
Peterchev A. V., Wagner T. A., Miranda P. C., Nitsche M. A., Paulus W., Lisanby S. H., et al. (2012). Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices. Brain Stimul. 5, 435–453. 10.1016/j.brs.2011.10.00122305345
Peuker E. T., Filler T. J., (2002). The nerve supply of the human auricle. Clin. Anat. 15, 35–37. 10.1002/ca.108911835542
Polak T., Markulin F., Ehlis A.-C., Langer J. B. M., Ringel T. M., Fallgatter A. J., (2009). Far field potentials from brain stem after transcutaneous vagus nerve stimulation: optimization of stimulation and recording parameters. J. Neural Transm. 116, 1237–1242. 10.1007/s00702-009-0282-119728032
Premchand R. K., Sharma K., Mittal S., Monteiro R., Dixit S., Libbus I., et al. (2014). Autonomic regulation therapy via left or right cervical vagus nerve stimulation in patients with chronic heart failure: results of the ANTHEM-HF trial. J. Cardiac Failure 20, 808–816. 10.1016/j.cardfail.2014.08.00925187002
Priovoulos N., Jacobs H. I. L., Ivanov D., Uludag K., Verhey F. R. J., Poser B. A., (2018). High-resolution in vivo imaging of human locus coeruleus by magnetization transfer MRI at 3T and 7T. Neuroimage 168, 427–436. 10.1016/j.neuroimage.2017.07.04528743460
Raedt R., Clinckers R., Mollet L., Vonck K., El Tahry R., Wyckhuys T., et al. (2011). Increased hippocampal noradrenaline is a biomarker for efficacy of vagus nerve stimulation in a limbic seizure model. J. Neurochem. 117, 461–469. 10.1111/j.1471-4159.2011.07214.x21323924
Rajkowski J., (1993). Correlations between locus coeruleus (LC) neural activity, pupil diameter and behavior in monkey support a role of LC in attention. Soc. Neurosc. Available online at: https://ci.nii.ac.jp/naid/10021384962/en/
Rawat J. K., Roy S., Singh M., Guatam S., Yadav R. K., Ansari M. N., et al. (2019). Transcutaneous vagus nerve stimulation regulates the cholinergic anti-inflammatory pathway to counteract 1, 2-dimethylhydrazine induced colon carcinogenesis in albino wistar rats. Front. Pharmacol. 10:353. 10.3389/fphar.2019.0035331164817
Redgrave J., Day D., Leung H., Laud P. J., Ali A., Lindert R., et al. (2018). Safety and tolerability of transcutaneous vagus nerve stimulation in humans; a systematic review. Brain Stimul. 11, 1225–1238. 10.1016/j.brs.2018.08.01030217648
Rong P., Liu A., Zhang J., Wang Y., He W., Yang A., et al. (2014). Transcutaneous vagus nerve stimulation for refractory epilepsy: a randomized controlled trial. Clin. Sci. 10.1042/CS20130518. [Epub ahead of print].24684603
Rong P., Liu J., Wang L., Liu R., Fang J., Zhao J., et al. (2016). Effect of transcutaneous auricular vagus nerve stimulation on major depressive disorder: a nonrandomized controlled pilot study. J. Affect. Disord. 195, 172–179. 10.1016/j.jad.2016.02.031
Roosevelt R. W., Smith D. C., Clough R. W., Jensen R. A., Browning R. A., (2006). Increased extracellular concentrations of norepinephrine in cortex and hippocampus following vagus nerve stimulation in the rat. Brain Res. 1119, 124–132. 10.1016/j.brainres.2006.08.04816962076
Roslin M., Kurian M., (2001). The use of electrical stimulation of the vagus nerve to treat morbid obesity. Epilepsy Behav. 2, S11–S16. 10.1006/ebeh.2001.0213
Rufener K. S., Geyer U., Janitzky K., Heinze H.-J., Zaehle T., (2018). Modulating auditory selective attention by non-invasive brain stimulation: differential effects of transcutaneous vagal nerve stimulation and transcranial random noise stimulation. Eur. J. Neurosci. 48, 2301–2309. 10.1111/ejn.1412830144194
Salman I. M., (2015). Cardiovascular autonomic dysfunction in chronic kidney disease: a comprehensive review. Curr. Hypertens. Rep. 17:59. 10.1007/s11906-015-0571-z26071764
Sasaki M., Shibata E., Tohyama K., Takahashi J., Otsuka K., Tsuchiya K., et al. (2006). Neuromelanin magnetic resonance imaging of locus ceruleus and substantia nigra in Parkinson's disease. Neuroreport 17, 1215–1218. 10.1097/01.wnr.0000227984.84927.a716837857
Sator-Katzenschlager S. M., Scharbert G., Kozek-Langenecker S. A., Szeles J. C., Finster G., Schiesser A. W., et al. (2004). The short- and long-term benefit in chronic low back pain through adjuvant electrical versus manual auricular acupuncture. Anesthesia Analgesia 98, 1359–1364. 10.1213/01.ANE.0000107941.16173.F715105215
Schevernels H., van Bochove M. E., De Taeye L., Bombeke K., Vonck K., Van Roost D., et al. (2016). The effect of vagus nerve stimulation on response inhibition. Epilepsy Behav. 64, 171–179. 10.1016/j.yebeh.2016.09.01427743550
Schulz-Stübner S., Kehl F., (2011). Treatment of persistent hiccups with transcutaneous phrenic and vagal nerve stimulation. Intensive Care Med. 37, 1048–1049. 10.1007/s00134-011-2150-321365316
Schwarz L. A., Miyamichi K., Gao X. J., Beier K. T., Weissbourd B., DeLoach K. E., et al. (2015). Viral-genetic tracing of the input–output organization of a central noradrenaline circuit. Nature 524, 88–92. 10.1038/nature1460026131933
Sclocco R., Beissner F., Bianciardi M., Polimeni J. R., Napadow V., (2018). Challenges and opportunities for brainstem neuroimaging with ultrahigh field MRI. Neuroimage 168, 412–426. 10.1016/j.neuroimage.2017.02.05228232189
Sclocco R., Garcia R. G., Gabriel A., Kettner N. W., Napadow V., Barbieri R., (2017). “Respiratory-gated auricular vagal afferent nerve stimulation (RAVANS) effects on autonomic outflow in hypertension,” in 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (Jeju), 3130–3133. 10.1109/EMBC.2017.803752029060561
Sclocco R., Garcia R. G., Kettner N. W., Fisher H. P., Isenburg K., Makarovsky M., et al. (2020). Stimulus frequency modulates brainstem response to respiratory-gated transcutaneous auricular vagus nerve stimulation. Brain Stimul. 13, 970–978. 10.1016/j.brs.2020.03.01132380448
Sclocco R., Garcia R. G., Kettner N. W., Isenburg K., Fisher H. P., Hubbard C. S., et al. (2019). The influence of respiration on brainstem and cardiovagal response to auricular vagus nerve stimulation: a multimodal ultrahigh-field (7T) fMRI study. Brain Stimul. 12, 911–921. 10.1016/j.brs.2019.02.00330803865
Sellaro R., de Gelder B., Finisguerra A., Colzato L. S., (2018). Transcutaneous vagus nerve stimulation (tVNS) enhances recognition of emotions in faces but not bodies. Cortex 99, 213–223. 10.1016/j.cortex.2017.11.00729275193
Sellaro R., Steenbergen L., Verkuil B., van IJzendoorn M. H., Colzato L. S., (2015a). Transcutaneous vagus nerve stimulation (tVNS) does not increase prosocial behavior in cyberball. Front. Psychol. 6:499. 10.3389/fpsyg.2015.0049925972825
Sellaro R., van Leusden J. W. R., Tona K.-D., Verkuil B., Nieuwenhuis S., Colzato L. S., (2015b). Transcutaneous vagus nerve stimulation enhances post-error slowing. J. Cogn. Neurosci. 27, 2126–2132. 10.1162/jocn_a_0085126226074
Shikora S., Toouli J., Herrera M. F., Kulseng B., Zulewski H., Brancatisano R., et al. (2013). Vagal blocking improves glycemic control and elevated blood pressure in obese subjects with type 2 diabetes mellitus. J. Obes. 2013:245683. 10.1155/2013/24568323984050
Shim H. J., Kwak M. Y., An Y.-H., Kim D. H., Kim Y. J., Kim H. J., (2015). Feasibility and safety of transcutaneous vagus nerve stimulation paired with notched music therapy for the treatment of chronic tinnitus. J. Audiol. Otol. 19, 159–167. 10.7874/jao.2015.19.3.15926771015
Silberstein S. D., Calhoun A. H., Lipton R. B., Grosberg B. M., Cady R. K., Dorlas S., et al. (2016a). Chronic migraine headache prevention with noninvasive vagus nerve stimulation: the EVENT study. Neurology 87, 529–538. 10.1212/WNL.000000000000291827412146
Silberstein S. D., Mechtler L. L., Kudrow D. B., Calhoun A. H., McClure C., Saper J. R., et al. (2016b). Non-invasive vagus nerve stimulation for the acute treatment of cluster headache: findings from the randomized, double-blind, sham-controlled ACT1 study. Headache 56, 1317–1332. 10.1111/head.1289627593728
Silvanto J., Muggleton N., Walsh V., (2008). State-dependency in brain stimulation studies of perception and cognition. Trends Cogn. Sci. 12, 447–454. 10.1016/j.tics.2008.09.00418951833
Slenter V. A., Salata J. J., Jalife J., (1984). Vagal control of pacemaker periodicity and intranodal conduction in the rabbit sinoatrial node. Circ. Res. 54, 436–446. 10.1161/01.RES.54.4.4366713608
Sooksood K., Stieglitz T., Ortmanns M., (2009). “Recent advances in charge balancing for functional electrical stimulation,” in Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference (Minneapolis), 2009, 5518–5521. 10.1109/IEMBS.2009.533318119964125
Sooksood K., Stieglitz T., Ortmanns M., (2010). An active approach for charge balancing in functional electrical stimulation. IEEE Trans. Biomed. Circ. Syst. 4, 162–170. 10.1109/TBCAS.2010.204027723853340
Stavrakis S., Humphrey M. B., Scherlag B. J., Hu Y., Jackman W. M., Nakagawa H., et al. (2015). Low-level transcutaneous electrical vagus nerve stimulation suppresses atrial fibrillation. J. Am. Coll. Cardiol. 65, 867–875. 10.1016/j.jacc.2014.12.02625744003
Steenbergen L., Colzato L. S., Maraver M. J., (2020). Vagal signaling and the somatic marker hypothesis: the effect of transcutaneous vagal nerve stimulation on delay discounting is modulated by positive mood. Int. J. Psychophysiol. 148, 84–92. 10.1016/j.ijpsycho.2019.10.01031734442
Steenbergen L., Sellaro R., Stock A.-K., Verkuil B., Beste C., Colzato L. S., (2015). Transcutaneous vagus nerve stimulation (tVNS) enhances response selection during action cascading processes. Eur. Neuropsychopharmacol. 25, 773–778. 10.1016/j.euroneuro.2015.03.01525869158
Stefan H., Kreiselmeyer G., Kerling F., Kurzbuch K., Rauch C., Heers M., et al. (2012). Transcutaneous vagus nerve stimulation (t-VNS) in pharmacoresistant epilepsies: a proof of concept trial. Epilepsia 53, e115–e118. 10.1111/j.1528-1167.2012.03492.x22554199
Straube A., Ellrich J., Eren O., Blum B., Ruscheweyh R., (2015). Treatment of chronic migraine with transcutaneous stimulation of the auricular branch of the vagal nerve (auricular t-VNS): A randomized, monocentric clinical trial. J. Headache Pain 16:543. 10.1186/s10194-015-0543-326156114
Sun P., Zhou K., Wang S., Li P., Chen S., Lin G., et al. (2013). Involvement of MAPK/NF-κB signaling in the activation of the cholinergic anti-inflammatory pathway in experimental colitis by chronic vagus nerve stimulation. PLoS ONE 8:e69424. 10.1371/journal.pone.006942423936328
Szeska C., Richter J., Wendt J., Weymar M., Hamm A. O., (2020). Promoting long-term inhibition of human fear responses by non-invasive transcutaneous vagus nerve stimulation during extinction training. Sci. Rep. 10:1529. 10.1038/s41598-020-58412-w32001763
Sztajzel J., Jung M., Bayes de Luna A., (2008). Reproducibility and gender-related differences of heart rate variability during all-day activity in young men and women. Ann. Noninvasive Electrocardiol. 13, 270–277. 10.1111/j.1542-474X.2008.00231.x18713328
Takemura M., Sugimoto T., Sakai A., (1987). Topographic organization of central terminal region of different sensory branches of the rat mandibular nerve. Exp. Neurol. 96, 540–557. 10.1016/0014-4886(87)90217-23582543
Teckentrup V., Neubert S., Santiago J. C. P., Hallschmid M., Walter M., Kroemer N. B., (2020). Non-invasive stimulation of vagal afferents reduces gastric frequency. Brain Stimul. 13, 470–473. 10.1016/j.brs.2019.12.01831884186
Tekdemir I., Aslan A., Elhan A., (1998). A clinico-anatomic study of the auricular branch of the vagus nerve and Arnold's ear-cough reflex. Surg. Radiol. Anat. 20, 253–257. 10.1007/s00276-998-0253-59787391
Thayer J. F., Lane R. D., (2000). A model of neurovisceral integration in emotion regulation and dysregulation. J. Affect. Disord. 61, 201–216. 10.1016/S0165-0327(00)00338-411163422
Thayer J. F., Lane R. D., (2009). Claude bernard and the heart-brain connection: further elaboration of a model of neurovisceral integration. Neurosci. Biobehav. Rev. 33, 81–88. 10.1016/j.neubiorev.2008.08.00418771686
Tobaldini E., Toschi-Dias E., Appratto de Souza L., Rabello Casali K., Vicenzi M., Sandrone G., et al. (2019). Cardiac and peripheral autonomic responses to orthostatic stress during transcutaneous vagus nerve stimulation in healthy subjects. J. Clin. Med. 8:496. 10.3390/jcm804049630979068
Tomagra G., Picollo F., Battiato A., Picconi B., De Marchis S., Pasquarelli A., et al. (2019). Quantal release of dopamine and action potential firing detected in midbrain neurons by multifunctional diamond-based microarrays. Front. Neurosci. 13:288. 10.3389/fnins.2019.0028831024230
Tona K.-D., Revers H., Verkuil B., Nieuwenhuis S., (2020). Noradrenergic regulation of cognitive flexibility: no effects of stress, transcutaneous vagus nerve stimulation, and atomoxetine on task-switching in humans. J. Cogn. Neurosci. 32:1881–1895. 10.1162/jocn_a_0160332644883
Totah N. K. B., Logothetis N. K., Eschenko O., (2019). Noradrenergic ensemble-based modulation of cognition over multiple timescales. Brain Res. 1709, 50–66. 10.1016/j.brainres.2018.12.03130586547
Tran N., Asad Z., Elkholey K., Scherlag B. J., Po S. S., Stavrakis S., (2019). Autonomic neuromodulation acutely ameliorates left ventricular strain in humans. J. Cardiovasc. Transl. Res. 12, 221–230. 10.1007/s12265-018-9853-630560316
Trujillo P., Petersen K. J., Cronin M. J., Lin Y.-C., Kang H., Donahue M. J., et al. (2019). Quantitative magnetization transfer imaging of the human locus coeruleus. Neuroimage 200, 191–198. 10.1016/j.neuroimage.2019.06.04931233908
Tu Y., Fang J., Cao J., Wang Z., Park J., Jorgenson K., et al. (2018). A distinct biomarker of continuous transcutaneous vagus nerve stimulation treatment in major depressive disorder. Brain Stimul. 11, 501–508. 10.1016/j.brs.2018.01.00629398576
Usichenko T., Hacker H., Lotze M., (2017a). Transcutaneous auricular vagal nerve stimulation (taVNS) might be a mechanism behind the analgesic effects of auricular acupuncture. Brain Stimul. 10, 1042–1044. 10.1016/j.brs.2017.07.01328803834
Usichenko T., Laqua R., Leutzow B., Lotze M., (2017b). Preliminary findings of cerebral responses on transcutaneous vagal nerve stimulation on experimental heat pain. Brain Imaging Behav. 11, 30–37. 10.1007/s11682-015-9502-526781484
Uthman B. M., Wilder B. J., Penry J. K., Dean C., Ramsay R. E., Reid S. A., et al. (1993). Treatment of epilepsy by stimulation of the vagus nerve. Neurology 43, 1338–1345. 10.1212/WNL.43.7.1338
Val-Laillet D., Biraben A., Randuineau G., Malbert C. H., (2010). Chronic vagus nerve stimulation decreased weight gain, food consumption and sweet craving in adult obese minipigs. Appetite 55, 245–252. 10.1016/j.appet.2010.06.00820600417
Valsalva A. M., (1704). De Aura Humana Tractatus and Trajecti ad Rhenum Urecht. Utrecht:Trajecti ad Rhenum.
van Kempen J., Loughnane G. M., Newman D. P., Kelly S. P., Thiele A., O'Connell R. G., et al. (2019). Behavioural and neural signatures of perceptual decision-making are modulated by pupil-linked arousal. ELife 8:e42541. 10.7554/eLife.4254130882347
Van Leusden J. W. R., Sellaro R., Colzato L. S., (2015). Transcutaneous vagal nerve stimulation (tVNS): a new neuromodulation tool in healthy humans? Front. Psychol. 6:102. 10.3389/fpsyg.2015.0010225713547
Vanneste S., Martin J., Rennaker R. L., Kilgard M. P., (2017). Pairing sound with vagus nerve stimulation modulates cortical synchrony and phase coherence in tinnitus: an exploratory retrospective study. Sci. Rep. 7:17345. 10.1038/s41598-017-17750-y29230011
Vargas Luna J. L., Krenn M., Cortés J. A., Mayr W., (2013). Comparison of current and voltage control techniques for neuromuscular electrical stimulation in the anterior thigh. Biomed. Tech. 58:1–2. 10.1515/bmt-2013-402124042611
Vázquez-Oliver A., Brambilla-Pisoni C., Domingo-Gainza M., Maldonado R., Ivorra A., Ozaita A., (2020). Auricular transcutaneous vagus nerve stimulation improves memory persistence in naïve mice and in an intellectual disability mouse model. Brain Stimul. 13, 494–498. 10.1016/j.brs.2019.12.02431919001
Ventura-Bort C., Wirkner J., Genheimer H., Wendt J., Hamm A. O., Weymar M., (2018). Effects of transcutaneous vagus nerve stimulation (tVNS) on the P300 and alpha-amylase level: a pilot study. Front. Hum. Neurosci. 12:202. 10.3389/fnhum.2018.0020229977196
Verkuil B., Burger A. M., (2019). Transcutaneous vagus nerve stimulation does not affect attention to fearful faces in high worriers. Behav. Res. Ther. 113, 25–31. 10.1016/j.brat.2018.12.00930583233
Vieira A., Reis A. M., Matos L. C., Machado J., Moreira A., (2018). Does auriculotherapy have therapeutic effectiveness? an overview of systematic reviews. Complement. Ther. Clin. Pract. 33, 61–70. 10.1016/j.ctcp.2018.08.00530396628
von Elm E., Altman D. G., Egger M., Pocock S. J., Gøtzsche P. C., Vandenbroucke J. P., et al. (2008). The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. J. Clin. Epidemiol. 61, 344–349. 10.1016/j.jclinepi.2007.11.00825046131
Wang D.-W., Yin Y.-M., Yao Y.-M., (2016). Vagal modulation of the inflammatory response in sepsis. Int. Rev. Immunol. 35, 415–433. 10.3109/08830185.2015.112736927128144
Wang Z., Zhou X., Sheng X., Yu L., Jiang H., (2015a). Unilateral low-level transcutaneous electrical vagus nerve stimulation: a novel noninvasive treatment for myocardial infarction. Int. J. Cardiol. 190, 9–10. 10.1016/j.ijcard.2015.04.08725912108
Wang Z., Zhou X., Sheng X., Yu L., Jiang H., (2015b). Noninvasive vagal nerve stimulation for heart failure: was it practical or just a stunt? Int. J. Cardiol. 187, 637–638. 10.1016/j.ijcard.2015.03.43025863739
Wang Z.engjian, Fang, J., Liu J., Rong P., Jorgenson K., Park J., Lang C., et al. (2018). Frequency-dependent functional connectivity of the nucleus accumbens during continuous transcutaneous vagus nerve stimulation in major depressive disorder. J. Psychiatric Res. 102, 123–131. 10.1016/j.jpsychires.2017.12.01829674268
Warren C. M., Tona K. D., Ouwerkerk L., van Paridon J., Poletiek F., van Steenbergen H., et al. (2019). The neuromodulatory and hormonal effects of transcutaneous vagus nerve stimulation as evidenced by salivary alpha amylase, salivary cortisol, pupil diameter, and the P3 event-related potential. Brain Stimul. 12, 635–642. 10.1016/j.brs.2018.12.22430591360
Warren C. M., van den Brink R. L., Nieuwenhuis S., Bosch J. A., (2017). Norepinephrine transporter blocker atomoxetine increases salivary alpha amylase. Psychoneuroendocrinology 78, 233–236. 10.1016/j.psyneuen.2017.01.02928232237
Weise D., Adamidis M., Pizzolato F., Rumpf J.-J., Fricke C., Classen J., (2015). Assessment of brainstem function with auricular branch of vagus nerve stimulation in Parkinson's disease. PLoS ONE 10:e0120786. 10.1371/journal.pone.012078625849807
Woodbury D. M. Woodbury J. W. (1990), Effects of vagal stimulation on experimentally induced seizures in rats. Epilepsia 31, S7–S19. 10.1111/j.1528-1157.1990.tb05852.x
Woods A. J., Antal A., Bikson M., Boggio P. S., Brunoni A. R., Celnik P., et al. (2016). A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin. Neurophysiol. 127, 1031–1048. 10.1016/j.clinph.2015.11.01226652115
Wostyn S., Staljanssens W., De Taeye L., Strobbe G., Gadeyne S., Van Roost D., et al. (2017). EEG derived brain activity reflects treatment response from vagus nerve stimulation in patients with epilepsy. Int. J. Neural Syst. 27:1650048. 10.1142/S012906571650048927712133
Xiong J., Xue F. S., Liu J. H., Xu Y. C., Liao X., Zhang Y. M., et al. (2009). Transcutaneous vagus nerve stimulation may attenuate postoperative cognitive dysfunction in elderly patients. Med. Hypoth. 73, 938–941. 10.1016/j.mehy.2009.06.03319631475
Yakunina N., Kim S. S., Nam E.-C., (2017). Optimization of transcutaneous vagus nerve stimulation using functional MRI. Neuromodulation 20, 290−300. 10.1111/ner.1254127898202
Yakunina N., Kim S. S., Nam E.-C., (2018). BOLD fMRI effects of transcutaneous vagus nerve stimulation in patients with chronic tinnitus. PLoS ONE 13:e0207281. 10.1371/journal.pone.020728130485375
Yang G., Xue F., Sun C., Liao X., Liu J., (2017). Vagal nerve stimulation: a potentially useful adjuvant to treatment of sepsis. J Anesth Perioper Med. (2017). 10.24015/JAPM.2017.0012
Yao G., Kang L., Li J., Long Y., Wei H., Ferreira C. A., et al. (2018). Effective weight control via an implanted self-powered vagus nerve stimulation device. Nat. Commun. 9:5349. 10.1038/s41467-018-07764-z30559435
Yavich L., Jäkälä P., Tanila H., (2005). Noradrenaline overflow in mouse dentate gyrus following locus coeruleus and natural stimulation: real-time monitoring by in vivo voltammetry. J. Neurochem. 95, 641–650. 10.1111/j.1471-4159.2005.03390.x16248883
Ye R., Rua C., O'Callaghan C., Jones P. S., Hezemans F., Kaalund S. S., et al. (2020). An in vivo probabilistic atlas of the human locus coeruleus at ultra-high field. BioRxiv [Preprint]. 932087. 10.1101/2020.02.03.93208733164875
Ylikoski J., Lehtimäki J., Pirvola U., Mäkitie A., Aarnisalo A., Hyvärinen P., et al. (2017). Non-invasive vagus nerve stimulation reduces sympathetic preponderance in patients with tinnitus. Acta Oto Laryngol. 137, 426–431. 10.1080/00016489.2016.126919728084177
Yoo P. B., Liu H., Hincapie J. G., Ruble S. B., Hamann J. J., Grill W. M., (2016). Modulation of heart rate by temporally patterned vagus nerve stimulation in the anesthetized dog. Physiol. Rep. 4:e12689. 10.14814/phy2.1268926811057
Yu L., Huang B., Po S. S., Tan T., Wang M., Zhou L., et al. (2017). Low-level tragus stimulation for the treatment of ischemia and reperfusion injury in patients with ST-segment elevation myocardial infarction: a proof-of-concept study. JACC Cardiovasc. Interv. 10, 1511–1520. 10.1016/j.jcin.2017.04.03628797427
Yuan H., Silberstein S. D., (2016a). Vagus nerve and vagus nerve stimulation, a comprehensive review: Part I. Headache 56, 71–78. 10.1111/head.1264726381725
Yuan H., Silberstein S. D., (2016b). Vagus nerve and vagus nerve stimulation, a comprehensive review: Part II. Headache 56, 259–266. 10.1111/head.1265026381725
Zabara J., (1985). Time course of seizure control to brief, repetitive stimuli. Epilepsia 28:604.
Zabara J., (1992). Inhibition of experimental seizures in canines by repetitive vagal stimulation. Epilepsia 33, 1005–1012. 10.1111/j.1528-1157.1992.tb01751.x1464256
Zhang S., Song Y., Jia J., Xiao G., Yang L., Sun M., et al. (2016). “An implantable microelectrode array for dopamine and electrophysiological recordings in response to L-dopa therapy for Parkinson's disease,” in Conference Proceedings: …Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference (Orlando), 2016, 1922–1925. 10.1109/EMBC.2016.759109828268703
Zhang S., Song Y., Wang M., Xiao G., Gao F., Li Z., et al. (2018). Real-time simultaneous recording of electrophysiological activities and dopamine overflow in the deep brain nuclei of a non-human primate with Parkinson's disease using nano-based microelectrode arrays. Microsyst. Nanoeng. 4, 1–9. 10.1038/micronano.2017.70
Zhang Y., Liu J., Li H., Yan Z., Liu X., Cao J., et al. (2019). Transcutaneous auricular vagus nerve stimulation at 1 Hz modulates locus coeruleus activity and resting state functional connectivity in patients with migraine: an fMRI study. Neuroimage Clin. 24:101971. 10.1016/j.nicl.2019.101971
Ziemann U., Tam A., Bütefisch C., Cohen L. G., (2002). Dual modulating effects of amphetamine on neuronal excitability and stimulation-induced plasticity in human motor cortex. Clin. Neurophysiol. 113, 1308–1315. 10.1016/S1388-2457(02)00171-212140012