electromigration; oxygen motion; YBa 2Cu 3O 7−δ; C axis oriented; c-Axis oriented; Direct visualization; Optical-; Oriented polycrystalline; Oxygen concentrations; Oxygen diffusion; Oxygen migration; Oxygen motion; YBa 2cu 3O 7−δ; Electronic, Optical and Magnetic Materials
Abstract :
[en] Combining direct visualization of current-induced oxygen migration through optical microscopy and finite element modeling of driven oxygen diffusion, it is possible to estimate the average activation energy of oxygen motion in the crystallographic ab-plane of c-axis oriented polycrystalline YBa2Cu3O7−δ films. Experiments and modeling are compared side-by-side for the case of constant current electromigration as well as for a train of current pulses of varying amplitude. The simulations reproduce the induced resistance changes after electromigration and confirm a high degree of spatial inhomogeneity in the stoichiometry. Assuming a temperature and oxygen concentration dependent resistivity, the authors are able to capture the change of superconducting critical temperature, normal state resistance, and the development of multistep transitions as a function of the electromigration history. The simulations are further applied to scrutinize the influence of activation energy, disorder in oxygen content, and initial oxygen concentration on the electromigration process. These results shed new light on the non-local modifications produced by the electromigration process on oxide conductors.
Disciplines :
Physics Chemistry
Author, co-author :
Collienne, Simon ✱; Université de Liège - ULiège > Département de physique > Physique expérimentale des matériaux nanostructurés
Marinkovic, Stefan ✱; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM)
Fernández-Rodríguez, Alejandro; Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, Spain
Mestres, Narcís; Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, Spain
Palau, Anna; Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, Spain
ERDF - European Regional Development Fund F.R.S.-FNRS - Fonds de la Recherche Scientifique COST - European Cooperation in Science and Technology MINECO - Gobierno de Espana. Ministerio de Economia y Competitividad ICREA - Institució Catalana de Recerca i Estudis Avançats
Funding text :
S.C. and S.M. contributed equally to this work. The authors thank Xavier Granados for useful discussions. This work was supported by the Fonds de la Recherche Scientifique ‐ FNRS under the grants CDR J.0151.19, EQP U.N027.18, and PDR T.0204.21 and the COST action NanoCoHybri (CA 16218). S.M. acknowledges support from FRS‐FNRS (Research Fellowship ASP). The authors acknowledge financial support from Spanish Ministry of Economy and Competitiveness through the “Severo Ochoa” Programme for Centers of Excellence in R& D (CEX2019‐000917‐S) and SuMaTe project (RTI2018‐095853‐B‐C21), cofinanced by the European Regional Development Fund, and from the Catalan Government (2017‐SGR‐ 1519).
B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, J. Zaanen, Nature 2015, 518, 179.
M. Ronay, P. Nordlander, Phys. C 1988, 153, 834.
K. Tu, N. Yeh, S. Park, C. Tsuei, Phys. Rev. B 1989, 39, 304.
S. J. Rothman, J. L. Routbort, J. E. Baker, Phys. Rev. B 1989, 40, 8852.
B. W. Veal, A. P. Paulikas, Y. Shi, H. Fang, J. W. Downey, Phys. Rev. B 1990, 42, 6305.
J. Choi, M. Sarikaya, I. A. Aksay, R. Kikuchi, Phys. Rev. B 1990, 42, 4244.
C. Krauns, H. Krebs, Z. Phys. B: Condens. Matter 1993, 92, 4346.
R. Baetzold, Phys. Rev. B 1990, 42, 56.
S. J. Rothman, J. L. Routbort, U. Welp, J. E. Baker, Phys. Rev. B 1991, 44, 2326.
B. H. Moeckly, D. K. Lathrop, R. A. Buhrman, Phys. Rev. B 1993, 47, 400.
J. LaGraff, D. Payne, Phys. Rev. B 1993, 47, 3380.
T. Wang, J. Cao, X. Gou, Appl. Surf. Sci. 2019, 480, 765.
S. Marinković, A. Fernández-Rodríguez, S. Collienne, S. B. Alvarez, S. Melinte, B. Maiorov, G. Rius, X. Granados, N. Mestres, A. Palau, A. V. Silhanek, ACS Nano 2020, 14, 11765.
E. Trabaldo, A. Kalaboukhov, R. Arpaia, E. Wahlberg, F. Lombardi, T. Bauch, Phys. Rev. Appl. 2022, 17, 024021.
J. Kircher, M. Kelly, S. Rashkeev, M. Alouani, D. Fuchs, M. Cardona, Phys. Rev. B 1991, 44, 217.
C. You, I. Sung, B. Joe, Appl. Phys. Lett. 2006, 89, 222513.
H. Fangohr, D. Chernyshenko, M. Franchin, T. Fischbacher, G. Meier, Phys. Rev. B 2011, 84, 5.
A. M. Perez-Muñoz, P. Schio, R. Poloni, A. Fernandez-Martinez, A. Rivera-Calzada, J. C. Cezar, E. Salas-Colera, G. R. Castro, J. Kinney, C. Leon, J. Santamaria, J. Garcia-Barriocanal, A. M. Goldman, Proc. Natl. Acad. Sci. USA 2017, 114, 215.
E. Trabaldo, A. Garibaldi, F. Lombardi, T. Bauch, Supercond. Sci. Technol. 2021, 34, 104001.
A. Paul, T. Laurila, V. Vuorinen, S. V. Divinski, in Thermodynamics, Diffusion and the Kirkendall Effect in Solids, Springer International Publishing, Berlin 2014, pp. 167–238.
V. Sadykov, N. N. Bulgakov, V. Muzykantov, T. Kuznetsova, G. Alikina, A. Lukashevich, Y. V. Potapova, V. Rogov, E. Burgina, V. Zaikovskii, E. Moroz, G. S. Litvak, I. S. Yakovleva, L. Isupova, V. Zyryanov, E. Kemnitz, S. Neophytides, Mixed Ionic Electronic Conducting Perovskites for Advanced Energy Systems, Springer, Netherlands 2004, pp. 53–74.
G. Cannelli, R. Cantelli, F. Cordero, F. Trequattrini, Supercond. Sci. Technol. 1992, 5, 247.
G. Cannelli, R. Cantelli, F. Trequattrini, F. Cordero, J. Adv. Sci. 1995, 7, 188.
H. Yoo, D. Lee, Phys. Chem. Chem. Phys. 2003, 5, 2212.
A. Schulman, C. Acha, J. Appl. Phys. 2013, 114, 243706.
T. Jacobs, Y. Simsek, Y. Koval, P. Muller, V. Krasnov, Phys. Rev. Lett. 2016, 116, 067001.
J. D. Jorgensen, B. W. Veal, A. P. Paulikas, L. J. Nowicki, G. W. Crabtree, H. Claus, W. K. Kwok, Phys. Rev. B 1990, 41, 1863.
A. Palau, A. Fernandez-Rodriguez, J. C. Gonzalez-Rosillo, X. Granados, M. Coll, B. Bozzo, R. Ortega-Hernandez, J. Suñé, N. Mestres, X. Obradors, T. Puig, ACS Appl. Mater. Interfaces 2018, 10, 30522.
K. Semba, A. Matsuda, Phys. Rev. Lett. 2001, 86, 496.
COMSOL Multiphysics v. 5.4. COMSOL AB, Stockholm, Sweden.
M. Nahum, S. Verghese, P. L. Richards, K. Char, Appl. Phys. Lett. 1991, 59, 2034.
S. K. Gupta, P. Berdahl, R. E. Russo, G. Briceño, A. Zettl, Phys. C 1993, 206, 335.
P. Michael, J. Trefny, B. Yarar, J. Appl. Phys. 1992, 72, 107.
A. Knizhnik, G. E. Shter, G. S. Grader, G. M. Reisner, Y. Eckstein, Phys. C 2003, 400, 25.
I. Grekhov, L. Delimova, I. Liniichuk, A. Lyublinsky, I. Veselovsky, A. Titkov, M. Dunaevsky, V. Sakharov, Phys. C 1999, 324, 39.
N. E. Phillips, J. P. Emerson, R. A. Fisher, J. E. Gordon, B. F. Woodfield, D. A. Wright, J. Supercond. 1994, 7, 251.
H. Fujishiro, M. Ikebe, T. Naito, K. Noto, S. Kohayashi, S. Yoshizawa, Jpn. J. Appl. Phys. 1994, 33, 4965.