[en] The invasive fruit fly pest, Drosophila suzukii, is a chill susceptible species, yet it is capable of overwintering in rather cold climates, such as North America and North Europe, probably thanks to a high cold tolerance plasticity. Little is known about the mechanisms underlying cold tolerance acquisition in D. suzukii. In this study, we compared the effect of different forms of cold acclimation (at juvenile or at adult stage) on subsequent cold tolerance. Combining developmental and adult cold acclimation resulted in a particularly high expression of cold tolerance. As found in other species, we expected that cold-acclimated flies would accumulate cryoprotectants and would be able to maintain metabolic homeostasis following cold stress. We used quantitative target GC-MS profiling to explore metabolic changes in four different phenotypes: control, cold acclimated during development or at adult stage or during both phases. We also performed a time-series GC-MS analysis to monitor metabolic homeostasis status during stress and recovery. The different thermal treatments resulted in highly distinct metabolic phenotypes. Flies submitted to both developmental and adult acclimation were characterized by accumulation of cryoprotectants (carbohydrates and amino acids), although concentrations changes remained of low magnitude. After cold shock, non-acclimated chill-susceptible phenotype displayed a symptomatic loss of metabolic homeostasis, correlated with erratic changes in the amino acids pool. On the other hand, the most cold-tolerant phenotype was able to maintain metabolic homeostasis after cold stress. These results indicate that cold tolerance acquisition of D. suzukii depends on physiological strategies similar to other drosophilids: moderate changes in cryoprotective substances and metabolic robustness. In addition, the results add to the body of evidence supporting that mechanisms underlying the different forms of acclimation are distinct.
Disciplines :
Entomology & pest control Anatomy (cytology, histology, embryology...) & physiology Environmental sciences & ecology
Author, co-author :
Enriquez, Thomas ; Université de Liège - ULiège > Département GxABT > Gestion durable des bio-agresseurs ; ECOBIO - UMR 6553, Université de Rennes 1, CNRS, Rennes, France
Renault, David; ECOBIO - UMR 6553, Université de Rennes 1, CNRS, Rennes, France ; Institut Universitaire de France, Paris, France
Charrier, Maryvonne; ECOBIO - UMR 6553, Université de Rennes 1, CNRS, Rennes, France
Colinet, Hervé; ECOBIO - UMR 6553, Université de Rennes 1, CNRS, Rennes, France
Language :
English
Title :
Cold Acclimation Favors Metabolic Stability in Drosophila suzukii.
Andersen, M. K., Folkersen, R., MacMillan, H. A., and Overgaard, J. (2016). Cold-acclimation improves chill tolerance in the migratory locust through preservation of ion balance and membrane potential. J. Exp. Biol. 220, 487-496. doi:10.1242/jeb.150813
Angilletta, M. J. (2009). Thermal Adaptation. A Theoretical and Empirical Synthesis. Oxford: Oxford University Press. doi:10.1093/acprof:oso/9780198570875.001.1
Arakawa, T., and Timasheff, S. N. (1982). Stabilization of protein structure by sugars. Biochemistry 21, 6536-6544. doi:10.1021/bi00268a033
Arnó, J., Solà, M., Riudavets, J., and Gabarra, R. (2016). Population dynamics, non-crop hosts, and fruit susceptibility of Drosophila suzukii in Northeast Spain. J. Pest Sci. 89, 713-723. doi:10.1007/s10340-016-0774-3
Asplen, M. K., Anfora, G., Biondi, A., Choi, D. S., Chu, D., and Daane., K. M., et al. (2015). Invasion biology of spotted wing Drosophila (Drosophila suzukii): a global perspective and future priorities. J. Pest Sci. 88, 469-494. doi:10.1007/s10340-015-0681-z
Bauerfeind, S. S., Kellermann, V., Moghadam, N. N., Loeschcke, V., and Fischer, K. (2014). Temperature and photoperiod affect stress resistance traits in Drosophila melanogaster. Physiol. Entomol. 39, 237-246. doi:10.1111/phen.12068
Baust, J. G., and Edwards, J. S. (1979). Mechanisms of freezing tolerance in an Antarctic midge, Belgica antarctica. Physiol. Entomol. 4, 1-5. doi:10.1111/j.1365-3032.1979.tb00171.x
Blanca, M., Alarcón, R., Arnau, J., Bono, R., and Bendayan, R. (2017). Non-normal data: is ANOVA still a valid option? Psicothema 29, 552-557. doi:10.7334/psicothema2016.383
Cacela, C., and Hincha, D. K. (2006). Low amounts of sucrose are sufficient to depress the phase transition temperature of dry phosphatidylcholine, but not for lyoprotection of liposomes. Biophys. J. 90, 2831-2842. doi:10.1529/biophysj.105.074427
Calabria, G., Máca, J., Bächli, G., Serra, L., and Pascual, M. (2012). First records of the potential pest species Drosophila suzukii (Diptera: Drosophilidae) in Europe. J. Appl. Entomol. 136, 139-147. doi:10.1111/j.1439-0418.2010.01583.x
Carpenter, J. F., and Crowe, J. H. (1988). The mechanism of cryoprotection of proteins by solutes. Cryobiology 25, 244-255. doi:10.1016/0011-2240(88)90032-6
Chong, J., Soufan, O., Li, C., Caraus, I., Li, S., Bourque, G., et al. (2018). MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucl. Acids Res. 46, W486-W494. doi:10.1093/nar/gky310
Chown, S. L., and Gaston, K. J. (1999). Exploring links between physiology and ecology at macro-scales: the role of respiratory metabolism in insects. Biol. Rev. 74, 87-120. doi:10.1111/j.1469-185X.1999.tb00182.x
Chown, S. L., and Nicolson, S. W. (2004). Insect Physiological Ecology: Mechanisms and Patterns. Oxford: Oxford University Press. doi:10.1093/acprof:oso/9780198515494.001.0001
Colinet, H., and Hoffmann, A. A. (2012). Comparing phenotypic effects and molecular correlates of developmental, gradual and rapid cold acclimation responses in Drosophila melanogaster. Funct. Ecol. 26, 84-93. doi:10.1111/j.1365-2435.2011.01898.x
Colinet, H., Larvor, V., Laparie, M., and Renault, D. (2012). Exploring the plastic response to cold acclimation through metabolomics. Funct. Ecol. 26, 711-722. doi:10.1111/j.1365-2435.2012.01985.x
Colinet, H., and Renault, D. (2012). Metabolic effects of CO2 anesthesia in Drosophila melanogaster. Biol. Lett. 8, 1050-1054. doi:10.1098/rsbl.2012.0601
Colinet, H., and Renault, D. (2018). Post-stress metabolic trajectories in young and old flies. Exp. Gerontol. 102, 43-50. doi:10.1016/j.exger.2017.08.021
Colinet, H., Renault, D., Javal, M., Berková, P., Šimek, P., and Koštál, V. (2016). Uncovering the benefits of fluctuating thermal regimes on cold tolerance of drosophila flies by combined metabolomic and lipidomic approach. Biochim. Biophys. Acta - Mol. Cell Biol. Lipids 1861, 1736-1745. doi:10.1016/j.bbalip.2016.08.008
Cottam, D. M., and Tucker., J. B., Rogers-Bald, M. M., Mackie, J. B., Macintyre, J., Scarborough, J. A, et al. (2006). Non-centrosomal microtubule-organising centres in cold-treated cultured Drosophila cells. Cell Motil. Cytoskel. 63, 88-100. doi:10.1002/cm.20103
Crosthwaite, J. C., Sobek, S., Lyons, D. B., and Bernards., M. A., and Sinclair, B. J. (2011). The overwintering physiology of the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae). J. Insect Physiol. 57, 166-173. doi:10.1016/j.jinsphys.2010.11.003
Crowe, J. H., and Crowe., L. M., Carpenter, J. F., Rudolph, A. S., and Wistrom., C. A., Spargo, B. J., et al. (1988). Interactions of sugars with membranes. Biochim. Biophys. Acta 947, 367-384. doi:10.1016/0304-4157(88)90015-9
Dalton, D. T., and Walton., V. M., Shearer, P. W., Walsh, D. B., Caprile, J., and Isaacs, R. (2011). Laboratory survival of Drosophila suzukii under simulated winter conditions of the Pacific Northwest and seasonal field trapping in five primary regions of small and stone fruit production in the United States. Pest. Manage. Sci. 67, 1368-1374. doi:10.1002/ps.2280
David, R. J., Gibert, P., Pla, E., Petavy, G., Karan, D., and Moreteau, B. (1998). Cold stress tolerance in Drosophila: analysis of chill coma recovery in D. melanogaster. J. Therm. Biol. 23, 291-299. doi:10.1016/S0306-4565(98)00020-5
Davidson, A. M., Jennions, M., and Nicotra, A. B. (2011). Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecol. Lett. 14, 419-431. doi:10.1111/j.1461-0248.2011.01596.x
Denlinger, D. L., and Lee, R. E. Jr. (2010). Low Temperature Biology of Insects. Cambridge: Cambridge University Press. doi:10.1017/CBO9780511675997
Des Marteaux, L. E., McKinnon, A. H., Udaka, H., Toxopeus, J., and Sinclair, B. J. (2017). Effects of cold-acclimation on gene expression in Fall field cricket (Gryllus pennsylvanicus) ionoregulatory tissues. BMC Genomics 18:357. doi:10.1186/s12864-017-3711-9
Ditrich, T., and Koštál, V. (2011). Comparative analysis of overwintering physiology in nine species of semi-aquatic bugs (Heteroptera: Gerromorpha). Physiol. Entomol. 36, 261-270. doi:10.1111/j.1365-3032.2011.00794.x
Dolédec, S., and Chessel, D. (1991). Recent developments in linear ordination methods for environmental sciences. Adv. Ecol. 1, 133-155.
Dray, S., and Dufour, A. B. (2007). The ade4 package: implementing the duality diagram for ecologists. J. Statist. Softw. 22, 1-20. doi:10.18637/jss.v022.i04
Enriquez, T., and Colinet, H. (2017). Basal tolerance to heat and cold exposure of the spotted wing drosophila, Drosophila suzukii. Peer J 5:e3112. doi:10.7717/peerj.3112
Everman, E. R., and Freda., P. J., Brown, M., Schieferecke, A. J., and Ragland., G. J., and Morgan, T. J. (2018). Ovary development and cold tolerance of the invasive pest Drosophila suzukii (Matsumura) in the central plains of kansas, United States. Environ. Entomol. 47, 1013-1023. doi:10.1093/ee/nvy074
Fields, P. G., Fleurat-Lessard, F., Lavenseau, L., Febvay, G., Peypelut, L., and Bonnot, G. (1998). The effect of cold acclimation and deacclimation on cold tolerance, trehalose and free amino acid levels in Sitophilus granarius and Cryptolestes ferrugineus (Coleoptera). J. Insect Pysiol. 44, 955-965. doi:10.1016/S0022-1910(98)00055-9
Fischer, K., Dierks, A., Franke, K., Geister, T. L., Liszka, M., Winter, S., et al. (2010). Environmental effects on temperature stress resistance in the tropical butterfly Bicyclus anynana. PLoS One 5:e15284. doi:10.1371/journal.pone.0015284
Foray, V., Desouhant, E., Voituron, Y., Larvor, V., Renault, D., Colinet, H., et al. (2013). Does cold tolerance plasticity correlate with the thermal environment and metabolic profiles of a parasitoid wasp? Comp. Biochem. Phys. A. 164, 77-83. doi:10.1016/j.cbpa.2012.10.018
Fox, J., and Weisberg, S. (2011). An {R} Companion to Applied Regression, 2nd Edn. Thousand Oaks, CA: Sage.
Geister, T. L., and Fischer, K. (2007). Testing the beneficial acclimation hypothesis: temperature effects on mating success in a butterfly. Behav. Ecol. 18, 658-664. doi:10.1093/beheco/arm024
Gekko, K., and Timasheff, S. N. (1981). Mechanism of protein stabilization by glycerol: preferential hydration in glycerol-water mixtures. Biochemistry 20, 4667-4676. doi:10.1021/bi00519a023
Gerken, A. R., and Eller., O. C., Hahn, D. A., and Morgan, T. J. (2015). Constraints, independence, and evolution of thermal plasticity: probing genetic architecture of long-and short-term thermal acclimation. Proc. Ncatl. Acad. Sci. U.S.A. 112, 4399-4404. doi:10.1073/pnas.1503456112
Gibert, J. M., Peronnet, F., and Schlötterer, C. (2007). Phenotypic plasticity in Drosophila pigmentation caused by temperature sensitivity of a chromatin regulator network. PLoS Genet. 3:e30. doi:10.1371/journal.pgen.0030030
Gibert, P., Moreteau, B., and David, J. R. (2000). Developmental constraints on an adaptive plasticity: reaction norms of pigmentation in adult segments of Drosophila melanogaster. Evol. Dev. 2, 249-260. doi:10.1046/j.1525-142x.2000.00064.x
Gill, S. S., and Tuteja, N. (2010). Polyamines and abiotic stress tolerance in plants. Plant Signal. Behav. 5, 26-33. doi:10.4161/psb.5.1.10291
Goodhue, R. E., Bolda, M., Farnsworth, D., Williams, J. C., and Zalom, F. G. (2011). Spotted wing drosophila infestation of California strawberries and raspberries: economic analysis of potential revenue losses and control costs. Pest Manage. Sci. 67, 1396-1402. doi:10.1002/ps.2259
Hamby, K. A., and Bellamy., D. E., Chiu, J. C., Lee, J. C., and Walton., V. M., Wiman, N. G., et al. (2016). Biotic and abiotic factors impacting development, behavior, phenology, and reproductive biology of Drosophila suzukii. J. Pest Sci. 89, 605-619. doi:10.1007/s10340-016-0756-5
Hanzal, R., and Jegorov, A. (1991). Changes in free amino acid composition in haemolymph of larvae of the wax moth, Galleria mellonella L., during cold acclimation. Compar. Biochem. Physiol. A 100, 957-962. doi:10.1016/0300-9629(91)90322-4
Hauser, M. (2011). A historic account of the invasion of Drosophila suzukii in the continental United States, with remarks on their identification. Pest Manage. Sci. 67, 1352-1357. doi:10.1002/ps.2265
Hazel, J. R., and Prosser, C. L. (1974). Molecular mechanisms of temperature compensation in poikilotherms. Physiol. Rev. 54, 620-677. doi:10.1152/physrev.1974.54.3.620
Hochachka, P. W., and Somero, G. N. (2002). Biochemical Adaptation: Mechanism and Process in Physiological Evolution, 3rd Edn. Oxford: Oxford University Press.
Isobe, K., Takahashi, A., and Tamura, K. (2013). Cold tolerance and metabolic rate increased by cold acclimation in Drosophila albomicans from natural populations. Genes Genet. Syst. 88, 289-300. doi:10.1266/ggs.88.289
Jakobs, R., and Gariepy., T. D., and Sinclair, B. J. (2015). Adult plasticity of cold tolerance in a continental-temperate population of Drosophila suzukii. J. Insect. Pysiol. 79, 1-9. doi:10.1016/j.jinsphys.2015.05.003
Kanzawa, T. (1936). Studies on Drosophila suzukii Matsumara. J. Plant Prot. 23, 66-191.
Kelty, J. D., and Lee, R. E. (2001). Rapid cold-hardening of Drosophila melanogaster (Diptera: Drosophiladae) during ecologically based thermoperiodic cycles. J. Exp. Biol. 204, 1659-1666.
Kenis, M., Tonina, L., Eschen, R., van der Sluis, B., Sancassani, M., Mori, N., et al. (2016). Non-crop plants used as hosts by Drosophila suzukii in Europe. J. Pest Sci. 89, 735-748. doi:10.1007/s10340-016-0755-6
Kimura, M. T. (1982). Inheritance of cold hardiness and sugar contents in two closely related species, Drosophila takahashii and Drosophila lutescens. Jpn. J. Genet. 57, 575-580. doi:10.1266/jjg.57.575
Kimura, M. T. (2004). Cold and heat tolerance of drosophilid flies with reference to their latitudinal distributions. Oecologia 140, 442-449. doi:10.1007/s00442-004-1605-4
Koštál, V., Korbelová, J., Poupardin, R, Moos, M., and Šimek, P. (2016a). Arginine and proline applied as food additives stimulate high freeze tolerance in larvae of Drosophila melanog aster. J. Exp. Biol. 219, 2358-2367. doi:10.1242/jeb.142158
Koštál, V., Korbelová, J., Štìtina, T., Poupardin, R, Colinet, H., Zahradníèková, H., et al. (2016b). Physiological basis for low-temperature survival and storage of quiescent larvae of the fruit fly Drosophila melanogaster. Sci. Rep. UK 6:32346. doi:10.1038/srep32346
Koštál, V., Korbelová, J., Rozsypal, J., Zahradníèková, H., Cimlová, J., Tomèala, A, et al. (2011a). Long-term cold acclimation extends survival time at 0 C and modifies the metabolomic profiles of the larvae of the fruit fly Drosophila melanogaster. PLoS One 6:e25025. doi:10.1371/journal.pone.0025025
Koštál, V., Renault, D., and Rozsypal, J. (2011b). Seasonal changes of free amino acids and thermal hysteresis in overwintering heteropteran insect, Pyrrhocoris apterus. Compar. Biochem. Physiol. A 160, 245-251. doi:10.1016/j.cbpa.2011.06.017
Koštál, V., Zahradníèková, H., and Šimek, P. (2011c). Hyperprolinemic larvae of the drosophilid fly, Chymomyza costata, survive cryopreservation in liquid nitrogen. Proc. Natl. Acad. Sci. U.S.A. 108, 13041-13046. doi:10.1073/pnas.1107060108
Koštál, V., Šimek, P., Zahradníèková, H., Cimlová, J., and Štìtina, T. (2012). Conversion of the chill susceptible fruit fly larva (Drosophila melanogaster) to a freeze tolerant organism. Proc. Natl. Acad. Sci. U.SA. 109, 3270-3274. doi:10.1073/pnas.1119986109
Koštál, V., Vambera, J., and Bastl, J. (2004). On the nature of pre-freeze mortality in insects: water balance, ion homeostasis and energy charge in adults of Pyrrhocoris apterus. J. Exp. Biol. 207, 1509-1521. doi:10.1242/jeb.00923
Lalouette, L., Koštál, V., Colinet, H., Gagneul, D., and Renault, D. (2007). Cold exposure and associated metabolic changes in adult tropical beetles exposed to fluctuating thermal regimes. FEBS J. 274, 1759-1767. doi:10.1111/j.1742-4658.2007.05723.x
Lalouette, L., and Williams., C. M., Hervant, F., Sinclair, B. J., and Renault, D. (2011). Metabolic rate and oxidative stress in insects exposed to low temperature thermal fluctuations. Comp. Biochem. Phys. A 158, 229-234. doi:10.1016/j.cbpa.2010.11.007
Lavagnino, N. J., Cichón, L. I., Garrido, S. A, and Fanara, J. J. (2018). New records of the invasive pest Drosophila suzukii (Matsumura)(Diptera: Drosophilidae) in the South American continent. Rev. Soc. Entomol. Argent. 77, 37-31. doi:10.25085/rsea.770105
Lavrinienko, A, Kesäniemi, J., Watts, P. C, Serga, S., Pascual, M., Mestres, F., et al. (2017). First record of the invasive pest Drosophila suzukii in Ukraine indicates multiple sources of invasion. J. Pest Sci. 90, 421-429. doi:10.1007/s10340-016-0810-3
Lee, R E. Jr., Damodaran, K, Yi, S. X., and Lorigan, G. A (2006). Rapid cold-hardening increases membrane fluidity and cold tolerance of insect cells. Cryobiology 52, 459-463. doi:10.1016/j.cryobiol.2006.03.003
Leopold, R. A. (2000). Short-term cold storage of house fly (Diptera: Muscidae) embryos: survival and quality of subsequent stages. Ann. Entomol. Soc. Am. 93. 884-889. doi:10.1603/0013-8746(2000)093[0884:STCSOH]2.0.CO;2
Li, Y., Zhang, L., Chen, H., Kostal, V., Simek, P., Moos, M., et al. (2015). Shifts in metabolomic profiles of the parasitoid Nasonia vitripennis associated with elevated cold tolerance induced by the parasitoid's diapause, host diapause and host diet augmented with proline. Insect Biochem. Mol. Biol. 63, 34-46. doi:10.1016/j.ibmb.2015.05.012
Lu, Y. X., Zhang, Q., and Xu, W. H. (2014). Global metabolomic analyses of the hemolymph and brain during the initiation, maintenance, and termination of pupal diapause in the cotton bollworm, Helicoverpa armigera. PLoS One 9:e99948. doi:10.1371/journal.pone.0099948
MacMillan, H. A., and Knee., J. M., Dennis, A. B., Udaka, H., Marshall, K. E., Merritt, T., et al. (2016). Cold acclimation wholly reorganizes the Drosophila melanogaster transcriptome and metabolome. Sci. Rep. 6:28999. doi:10.1038/srep28999
MacMillan, H. A., and Sinclair, B. J. (2011). Mechanisms underlying insect chill-coma. J. Insect. Physiol. 57, 12-20. doi:10.1016/j.jinsphys.2010.10.004
MacMillan, H. A., and Williams., C. M., Staples, J. F., and Sinclair, B. J. (2012). Reestablishment of ion homeostasis during chill-coma recovery in the cricket Gryllus pennsylvanicus. Proc. Natl. Acad. Sci. U.S.A. 109, 20750-20755. doi:10.1073/pnas.1212788109
Malmendal, A., Overgaard, J., Bundy, J. G., Sørensen, J. G., Nielsen, N. C., Loeschcke, V., et al. (2006). Metabolomic profiling of heat stress: hardening and recovery of homeostasis in Drosophila. Am. J. Physiol. Reg. I 291, R205-R212. doi:10.1152/ajpregu.00867.2005
Mazzetto, F., and Pansa., M. G., Ingegno, B. L., Tavella, L., and Alma, A. (2015). Monitoring of the exotic fly Drosophila suzukii in stone, pome and soft fruit orchards in NW Italy. J. Asia-Pac. Entomol. 18, 321-329. doi:10.1016/j.aspen.2015.04.001
Michaud, M. R., and Benoit., J. B., Lopez-Martinez, G., Elnitsky, M. A., Lee, R. E. Jr., and Denlinger, D. L. (2008). Metabolomics reveals unique and shared metabolic changes in response to heat shock, freezing and desiccation in the Antarctic midge, Belgica antarctica. J. Insect Pysiol. 54, 645-655. doi:10.1016/j.jinsphys.2008.01.003
Michaud, M. R., and Denlinger, D. L. (2007). Shifts in the carbohydrate, polyol, and amino acid pools during rapid cold-hardening and diapause-associated cold-hardening in flesh flies (Sarcophaga crassipalpis): a metabolomic comparison. J. Comp. Physiol. B. 177, 753-763. doi:10.1007/s00360-007-0172-5
Minois, N., Carmona-Gutierrez, D., Bauer, M. A., Rockenfeller, P., Eisenberg, T., Brandhorst, S., et al. (2012). Spermidine promotes stress resistance in Drosophila melanogaster through autophagy-dependent and-independent pathways. Cell Death Dis. 3:e401. doi:10.1038/cddis.2012.139
Morgan, T. D., and Chippendale, G. M. (1983). Free amino acids of the haemolymph of the southwestern corn borer and the European corn borer in relation to their diapause. J. Insect. Pysiol. 29, 735-740. doi:10.1016/0022-1910(83)90001-X
Overgaard, J., and MacMillan, H. A. (2016). The integrative physiology of insect chill tolerance. Annu. Rev. Physiol. 79, 187-208. doi:10.1146/annurev-physiol-022516-034142
Overgaard, J., Malmendal, A., Sørensen, J. G., Bundy, J. G., Loeschcke, V., and Nielsen., N. C., et al. (2007). Metabolomic profiling of rapid cold hardening and cold shock in Drosophila melanogaster. J. Insect Pysiol. 53, 1218-1232. doi:10.1016/j.jinsphys.2007.06.012
Overgaard, J., Sørensen, J. G., Petersen, S. O., Loeschcke, V., and Holmstrup, M. (2005). Changes in membrane lipid composition following rapid cold hardening in Drosophila melanogaster. J. Insect. Pysiol. 51, 1173-1182. doi:10.1016/j.jinsphys.2005.06.007
Overgaard, J., Tomèala, A., Sørensen, J. G., Holmstrup, M., Krogh, P. H., Šimek, P., et al. (2008). Effects of acclimation temperature on thermal tolerance and membrane phospholipid composition in the fruit fly Drosophila melanogaster. J. Insect Pysiol. 54, 619-629. doi:10.1016/j.jinsphys.2007.12.011
Piersma, T., and Drent, J. (2003). Phenotypic flexibility and the evolution of organismal design. Trends Ecol. Evol. 18, 228-233. doi:10.1016/S0169-5347(03)00036-3
Poyet, M., Le Roux, V., Gibert, P., Meirland, A, Prévost, G., Eslin, P., et al. (2015). The wide potential trophic niche of the asiatic fruit fly Drosophila suzukii: the key of its invasion success in temperate Europe? PLoS One 10:e0142785. doi:10.1371/journal.pone.0142785
R Core Team (2016). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
Rako, L., and Hoffmann, A. A. (2006). Complexity of the cold acclimation response in Drosophila melanogaster. J. Insect Pysiol. 52, 94-104. doi:10.1016/j.jinsphys.2005.09.007
Renault, D., Laparie, M., McCauley, S. J., and Bonte, D. (2018). Environmental adaptations, ecological filtering, and dispersal central to insect invasions. Annu. Rev. Entomol. 63, 345-368. doi:10.1146/annurev-ento-020117-043315
Rossi-Stacconi, M. V., Kaur, R, Mazzoni, V., Ometto, L., Grassi, A, Gottardello, A, et al. (2016). Multiple lines of evidence for reproductive winter diapause in the invasive pest Drosophila suzukii: useful clues for control strategies. J. Pest Sci. 89, 689-700. doi:10.1007/s10340-016-0753-8
Russell, L. (2018). emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.1.2. Available at: https://CRAN.R-project.org/package=emmeans
Ryan, G. D., Emiljanowicz, L., Wilkinson, F., Kornya, M., and Newman, J. A. (2016). Thermal tolerances of the spotted-wing drosophila Drosophila suzukii (Diptera: Drosophilidae). J. Econ. Entomol. 109, 746-752. doi:10.1093/jee/tow006
Salt, R. W. (1961). Principles of insect cold-hardiness. Annu. Rev. Entomol. 6, 55-74. doi:10.1146/annurev.en.06.010161.000415
Shearer, W. P., and West., J. D., Walton, V. M., Brown, P. H., Svetec, N., and Chiu, J. C. (2016). Seasonal cues induce phenotypic plasticity of Drosophila suzukii to enhance winter survival. BMC Ecol. 16:11. doi:10.1186/s12898-016-0070-3
Sinclair, B. J., and Roberts, S. P. (2005). Acclimation, shock and hardening in the cold. J. Therm. Biol. 30, 557-562. doi:10.1016/j.jtherbio.2005.07.002
Slotsbo, S., and Schou., M. F., Kristensen, T. N., Loeschcke, V., and Sørensen, J. G. (2016). Reversibility of developmental heat and cold plasticity is asymmetric and has long lasting consequences for adult thermal tolerance. J. Exp. Biol. 219, 2726-2732. doi:10.1242/jeb.143750
Smilde, A. K., and Jansen., J. J., Hoefsloot, H. C. J., Lamers, R., Van Der Greef, J., and Timmerman, M. E. (2005). ANOVA-simultaneous component analysis (ASCA): a new tool for analyzing designed metabolomics data. Bioinformatics 21, 3043-3048. doi:10.1093/bioinformatics/bti476
Sømme, L. (1982). Supercooling and winter survival in terrestrial arthropods. Comp. Biochem. Physiol. A. 73, 519-543. doi:10.1016/0300-9629(82)90260-2
Stephens, A. R., and Asplen., M. K., Hutchison, W. D., and Venette, R. C. (2015). Cold hardiness of winter acclimated Drosophila suzukii adults. Environ. Entomol. 44, 1619-1626. doi:10.1093/ee/nvv134
Storey, J. M., and Storey, K. B. (2005). "Cold hardiness and freeze tolerance," in Functional Metabolism: Regulation and Adaption, ed. K. B. Storey (Hoboken, NJ: John Wiley and Sons Inc.), 473-503. doi:10.1002/047167558X.ch17
Storey, K. B. (1983). Metabolism and bound water in overwintering insects. Cryobiology 20, 365-379. doi:10.1016/0011-2240(83)90025-1
Storey, K. B., and Storey, J. M. (1991). "Biochemistry of cryoprotectants," in Insects at Low Temperature, eds R. E. Lee and D. L. Denlinger (New York, NY: Chapman and Hall), 64-93. doi:10.1007/978-1-4757-0190-6-4
Teets, N. M., and Denlinger, D. L. (2013). Physiological mechanisms of seasonal and rapid cold-hardening in insects. Physiol. Entomol. 38, 105-116. doi:10.1111/phen.12019
Teets, N. M., and Peyton., J. T., Ragland, G. J., Colinet, H., Renault, D., and Hahn., D. A., et al. (2012). Combined transcriptomic and metabolomic approach uncovers molecular mechanisms of cold tolerance in a temperate flesh fly. Physiol. Genomics 44, 764-777. doi:10.1152/physiolgenomics.00042.2012
Terblanche, J. S., and Chown, S. L. (2006). The relative contributions of developmental plasticity and adult acclimation to physiological variation in the tsetse fly, Glossina pallidipes (Diptera, Glossinidae). J. Exp. Biol. 209, 1064-1073. doi:10.1242/jeb.02129
Terblanche, J. S., and Klok., C. J., and Chown, S. L. (2005). Temperature-dependence of metabolic rate in Glossina morsitans morsitans (Diptera, Glossinidae) does not vary with gender, age, feeding, pregnancy or acclimation. J. Insect Physiol. 51, 861-870. doi:10.1016/j.jinsphys.2005.03.017
Thistlewood, H. M., Gill, P., Beers, E. H., and Shearer., P. W., Walsh, D. B., Rozema, B. M., et al. (2018). Spatial analysis of seasonal dynamics and overwintering of Drosophila suzukii (Diptera: Drosophilidae) in the Okanagan-Columbia Basin, 2010-2014. Environ. Entomol. 47, 221-232. doi:10.1093/ee/nvx178
Tonina, L., Mori, N., Giomi, F., and Battisti, A. (2016). Development of Drosophila suzukii at low temperatures in mountain areas. J. Pest Sci. 89, 667-678. doi:10.1007/s10340-016-0730-2
Toxopeus, J., Jakobs, R., Ferguson, L. V., and Gariepy., T. D., and Sinclair, B. J. (2016). Reproductive arrest and stress resistance in winter-acclimated Drosophila suzukii. J. Insect Physiol. 89, 37-51. doi:10.1016/j.jinsphys.2016.03.006
Turnock, W. J., and Bodnaryk, R. P. (1991). Latent cold injury and its conditional expression in the bertha armyworm, Mamestra configurata (Noctuidae: Lepidoptera). Cryo-Letters 12, 377-384.
Vesala, L., and Salminen., T. S., Koštál, V., Zahradníèková, H., and Hoikkala, A. (2012). Myo-inositol as a main metabolite in overwintering flies: seasonal metabolomic profiles and cold stress tolerance in a northern drosophilid fly. J. Exp. Biol. 215, 2891-2897. doi:10.1242/jeb.069948
Wallingford, A. K., and Loeb, G. M. (2016). Developmental acclimation of Drosophila suzukii (Diptera: Drosophilidae) and its effect on diapause and winter stress tolerance. Environ. Entomol. 45, 1081-1089. doi:10.1093/ee/nvw088
Walsh, D. B., and Bolda., M. P., Goodhue, R. E., Dreves, A. J., Lee, J., and Bruck., D. J., et al. (2011). Drosophila suzukii (Diptera: Drosophilidae): invasive pest of ripening soft fruit expanding its geographic range and damage potential. J. Integr. Pest Manage. 2, G1-G7. doi:10.1603/IPM10010
Walters, K. R., Pan, Q., Serianni, A. S., and Duman, J. G. (2009). Cryoprotectant biosynthesis and the selective accumulation of threitol in the freeze tolerant alaskan beetle, Upis ceramboides. J. Biol. Chem. 284, 16822-16831. doi:10.1074/jbc.M109.013870
Wang, X. G., and Stewart., T. J., Biondi, A., Chavez, B. A., Ingels, C., Caprile, J., et al. (2016). Population dynamics and ecology of Drosophila suzukii in Central California. J. Pest Sci. 89, 701-712. doi:10.1007/s10340-016-0747-6
Williams, C. M., and McCue., M. D., Sunny, N. E., Szejner-Sigal, A., Morgan, T. J., and Allison., D. B., et al. (2016). Cold adaptation increases rates of nutrient flow and metabolic plasticity during cold exposure in Drosophila melanogaster. Proc. R. Soc. B 283:20161317. doi:10.1098/rspb.2016.1317
Williams, C. M., Watanabe, M., Guarracino, M. R., and Ferraro., M. B., Edison, A. S., Morgan, T. J., et al. (2014). Cold adaptation shapes the robustness of metabolic networks in Drosophila melanogaster. Evolution 68, 3505-3523. doi:10.1111/evo.12541
Yancey, P. H. (2005). Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J. Exp. Biol. 208, 2819-2830. doi:10.1242/jeb.01730
Yoder, J., and Benoit., J. B., Denlinger, D. L., and Rivers, D. B. (2006). Stress-induced accumulation of glycerol in the flesh fly, Sarcophaga bullata: evidence indicating anti-desiccant and cryoprotectant functions of this polyol and a role for the brain in coordinating the response. J. Insect. Physiol. 52, 202-214. doi:10.1016/j.jinsphys.2005.10.005
Zachariassen, K. E. (1985). Physiology of cold tolerance in insects. Physiol. Rev. 65, 799-832. doi:10.1152/physrev.1985.65.4.799
Zeng, J. P., Ge, F., Su, J. W., and Wang, Y. (2008). The effect of temperature on the diapause and cold hardiness of Dendrolimus tabulaeformis (Lepidoptera: Lasiocampidae). Eur. J. Entomol. 105:599. doi:10.14411/eje.2008.080
Zerulla, F. N., Schmidt, S., Streitberger, M., Zebitz, C. P., and Zelger, R. (2015). On the overwintering ability of Drosophila suzukii in South Tyrol. J. Berry Res. 5, 41-48. doi:10.3233/JBR-150089