Biological control; Greenhouse; Incompatible insect technique; Integrated pest management; Spotted wing Drosophila; Ecology, Evolution, Behavior and Systematics; Ecology; Agronomy and Crop Science; Plant Science; Insect Science
Abstract :
[en] Drosophila suzukii, a vinegar fly originated from Southeast Asia, has recently invaded western countries, and it has been recognized as an important threat of a wide variety of several commercial soft fruits. This review summarizes the current information about the biology and dispersal of D. suzukii and discusses the current status and prospects of control methods for the management of this pest. We highlight current knowledge and ongoing research on innovative environmental-friendly control methods with emphasis on the sterile insect technique (SIT) and the incompatible insect technique (IIT). SIT has been successfully used for the containment, suppression or even eradication of populations of insect pests. IIT has been proposed as a stand-alone tool or in conjunction with SIT for insect pest control. The principles of SIT and IIT are reviewed, and the potential value of each approach in the management of D. suzukii is analyzed. We thoroughly address the challenges of SIT and IIT, and we propose the use of SIT as a component of an area-wide integrated pest management approach to suppress D. suzukii populations. As a contingency plan, we suggest a promising alternative avenue through the combination of these two techniques, SIT/IIT, which has been developed and is currently being tested in open-field trials against Aedes mosquito populations. All the potential limiting factors that may render these methods ineffective, as well as the requirements that need to be fulfilled before their application, are discussed.
Disciplines :
Entomology & pest control Environmental sciences & ecology
Author, co-author :
Nikolouli, Katerina; 1Department of Forest and Soil Sciences, Boku, University of Natural Resources and Life Sciences, Vienna, Austria ; Insect Pest Control Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Wagramerstrasse 5, PO Box 100, 1400 Vienna, Austria
Colinet, Hervé; 2UMR ECOBIO CNRS 6553, Université de Rennes, 1, 263 AVE du Général Leclerc, 35042 Rennes Cedex, France
Renault, David; 2UMR ECOBIO CNRS 6553, Université de Rennes, 1, 263 AVE du Général Leclerc, 35042 Rennes Cedex, France ; 3Institut Universitaire de France, 1 rue Descartes, 75231 Paris, Cedex 05, France
Enriquez, Thomas ; Université de Liège - ULiège > Département GxABT > Gestion durable des bio-agresseurs ; 2UMR ECOBIO CNRS 6553, Université de Rennes, 1, 263 AVE du Général Leclerc, 35042 Rennes Cedex, France
Mouton, Laurence; 4Laboratoire de Biométrie et Biologie Evolutive, Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, 69100 Villeurbanne, France
Gibert, Patricia; 4Laboratoire de Biométrie et Biologie Evolutive, Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, 69100 Villeurbanne, France
Sassu, Fabiana; 1Department of Forest and Soil Sciences, Boku, University of Natural Resources and Life Sciences, Vienna, Austria ; Insect Pest Control Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Wagramerstrasse 5, PO Box 100, 1400 Vienna, Austria
Cáceres, Carlos; Insect Pest Control Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Wagramerstrasse 5, PO Box 100, 1400 Vienna, Austria
Stauffer, Christian; 1Department of Forest and Soil Sciences, Boku, University of Natural Resources and Life Sciences, Vienna, Austria
Pereira, Rui; Insect Pest Control Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Wagramerstrasse 5, PO Box 100, 1400 Vienna, Austria
Bourtzis, Kostas; Insect Pest Control Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Wagramerstrasse 5, PO Box 100, 1400 Vienna, Austria
Language :
English
Title :
Sterile insect technique and Wolbachia symbiosis as potential tools for the control of the invasive species Drosophila suzukii.
Adrion JR, Kousathanas A, Pascual M, Burrack HJ, Haddad NM, Bergland AO, Machado H, Sackton TB, Schlenke TA, Watada M, Wegmann D, Singh ND (2014) Drosophila suzukii: the genetic footprint of a recent, worldwide invasion. Mol Biol Evol 31:3148–3163. https://doi.org/10.1093/molbev/msu246
Alam U, Medlock J, Brelsfoard C, Pais R, Lohs C, Balmand S, Carnogursky J, Heddi A, Takac P, Galvani A, Aksoy S (2011) Wolbachia symbiont infections induce strong cytoplasmic incompatibility in the tsetse fly Glossina morsitans. PLoS Pathog 7:e1002415. https://doi.org/10.1371/journal.ppat.1002415
Asplen MK, Anfora G, Biondi A et al (2015) Invasion biology of spotted wing Drosophila (Drosophila suzukii): a global perspective and future priorities. J Pest Sci 88(469):494. https://doi.org/10.1007/s10340-015-0681-z
Atyame CM, Delsuc F, Pasteur N, Weill M, Duron O (2011) Diversification of Wolbachia endosymbiont in the Culex pipiens mosquito. Mol Biol Evol 28:2761–2772. https://doi.org/10.1093/molbev/msr083
Atyame CM, Cattel J, Lebon C, Flores O, Dehecq JS et al (2015) Wolbachia-based population control strategy targeting Culex quinquefasciatus mosquitoes proves efficient under semi-field conditions. PLoS ONE 10:e0119288. https://doi.org/10.1371/journal.pone.0119288
Augustinos AA, Kyritsis GA, Papadopoulos NT, Abd-Alla AMM, Cáceres C et al (2015) Exploitation of the Medfly gut microbiota for the enhancement of sterile insect technique: use of Enterobacter sp. in larval diet-based probiotic applications. PLoS ONE 10:e0136459. https://doi.org/10.1371/journal.pone.0136459
Bahder BW, Bahder LD, Hamby KA, Walsh DB, Zalom FG (2015) Microsatellite variation of two Pacific coast Drosophila suzukii (Diptera: Drosophilidae) populations. Environ Entomol 44:1449–1453. https://doi.org/10.1093/ee/nvv117
Barnes BN, Hofmeyr JH, Groenewald S, Conlong DE, Wohlfarter M (2015) The sterile insect technique in agricultural crops in South Africa: a metamorphosis…. but will it fly? Afr Entomol 23:1–18. https://doi.org/10.4001/003.023.0103
Ben Ami E, Yuval B, Jurkevitch E (2010) Manipulation of the microbiota of mass-reared Mediterranean fruit flies Ceratitis capitata (Diptera: Tephritidae) improves sterile male sexual performance. ISME J 4:28–37. https://doi.org/10.1038/ismej.2009.82
Berasategui A, Shukla S, Salem H, Kaltenpoth M (2016) Potential applications of insect symbionts in biotechnology. Appl Microbiol Biotechnol 100:1567–1577. https://doi.org/10.1007/s00253-015-7186-9
Bian G, Joshi D, Dong Y, Lu P, Zhou G, Pan X, Xu Y, Dimopoulos G, Xi Z (2013) Wolbachia invades Anopheles stephensi populations and induces refractoriness to Plasmodium infection. Science 340:748–751. https://doi.org/10.1126/science.1236192
Bolda M, Goodhue R, Zalom FG (2010) Spotted wing Drosophila: potential economic impact of a newly established pest. Agric Resour Econ Update 13:5–8
Bourtzis K (2008) Wolbachia-based technologies for insect pest population control. In: Aksoy S (ed) Transgenesis and the management of vector-borne disease, vol 627. Springer, New York, pp 104–113
Bourtzis K, Miller TA (2003) Insect symbiosis, vol 1. CRC Press, Boca Raton
Bourtzis K, Miller TA (2006) Insect symbiosis, vol 2. CRC Press, Boca Raton
Bourtzis K, Miller TA (2009) Insect symbiosis, vol 3. CRC Press, Boca Raton
Bourtzis K, Robinson AS (2006) Insect pest control using Wolbachia and/or radiation. In: Bourtzis K, Miller TA (eds) Insect symbiosis, vol 2. CRC Press, Boca Raton, pp 225–246
Bourtzis K, Dobson SL, Braig HR, O’Neill SL (1998) Rescuing Wolbachia have been overlooked. Nature 391(6670):852–853
Bourtzis K, Dobson SL, Xi Z, Rasgon JL, Calvitti M, Moreira LA et al (2014) Harnessing mosquito-Wolbachia symbiosis for vector and disease control. Acta Trop 132(Suppl):S150–S163. https://doi.org/10.1016/j.actatropica.2013.11.004
Bourtzis K, Lees RS, Hendrichs J, Vreysen MJ (2016) More than one rabbit out of the hat: radiation, transgenic and symbiont-based approaches for sustainable management of mosquito and tsetse fly populations. Acta Trop 157:115–130. https://doi.org/10.1016/j.actatropica.2016.01.009
Brelsfoard CL, St Clair W, Dobson SL (2009) Integration of irradiation with cytoplasmic incompatibility to facilitate a lymphatic filariasis vector elimination approach. Parasit Vectors 2:38. https://doi.org/10.1186/1756-3305-2-38
Broderick NA, Lemaitre B (2012) Gut-associated microbes of Drosophila melanogaster. Gut Microbes 3:307–321
Calabria G, Máca J, Bachli G, Serra L, Pascual M (2012) First records of the potential pest species Drosophila suzukii (Diptera: Drosophilidae) in Europe. J Appl Entomol 136:139–147. https://doi.org/10.1111/j.1439-0418.2010.01583.x
Calla B, Hall B, Hou S, Geib SM (2014) A genomic perspective to assessing quality of mass-reared SIT flies used in Mediterranean fruit fly (Ceratitis capitata) eradication in California. BMC Genom 15:98. https://doi.org/10.1186/1471-2164-15-98
Cattel J, Kaur R, Gibert P, Martinez J, Fraimout A, Jiggins F, Andrieux T, Siozios S, Anfora G, Miller W, Rota-Stabelli O, Mouton L (2016a) Wolbachia in European populations of the invasive pest Drosophila suzukii: regional variation in infection frequencies. PLoS ONE 11:e0147766. https://doi.org/10.1371/journal.pone.0147766
Cattel J, Martinez J, Jiggins F, Mouton L, Gibert P (2016b) Wolbachia-mediated protection against viruses in the invasive pest Drosophila suzukii. Insect Mol Biol 25:595–603. https://doi.org/10.1111/imb.12245
Chabert S, Allemand R, Poyet M, Eslin P, Gibert P (2012) Ability of European parasitoids (Hymenoptera) to control a new invasive Asiatic pest, Drosophila suzukii. Biol. Control 63:40–47. https://doi.org/10.1016/j.biocontrol.2012.05.005
Chandler JA, Lang JM, Bhatnagar S, Eisen JA, Kopp A (2011) Bacterial communities of diverse Drosophila species: ecological context of a host–microbe model system. PLoS Genet 7:e1002272. https://doi.org/10.1371/journal.pgen.1002272
Chireceanu C, Chiriloaie A, Teodoru A (2015) First record of spotted wing drosophila Drosophila suzukii (Diptera: Drosophilidae) in Romania. Rom J Plant Prot 8:86–95
Cini A, Ioriatti C, Anfora G (2012) A review of the invasion of Drosophila suzukii in Europe and a draft research agenda for integrated pest management. Bull Insectol 65:149–160
Colinet H, Boivin G (2011) Insect parasitoids cold storage: a comprehensive review of factors of variability and consequences. Biol Control 58:83–95. https://doi.org/10.1016/j.biocontrol.2011.04.014
Colinet H, Hoffmann AA (2012) Comparing phenotypic effects and molecular correlates of developmental, gradual and rapid cold acclimation responses in Drosophila melanogaster. Funct Ecol 26:84–93. https://doi.org/10.1111/j.1365-2435.2011.01898.x
Corby-Harris V, Pontaroli AC, Shimkets LJ, Bennetzen JL, Habel KE, Promislow DEL (2007) Geographical distribution and diversity of bacteria associated with natural populations of Drosophila. Appl Environ Microbiol 73:3470–3479
Daane KM, Wang XG, Biondi A et al (2016) First exploration of parasitoids of Drosophila suzukii in South Korea as potential classical biological agents. Pest Sci 89:823–835. https://doi.org/10.1007/s10340-016-0740-0
Dalton DT, Walton VM, Shearer PW, Walsh DB, Caprile J, Isaacs R (2011) Laboratory survival of Drosophila suzukii under simulated winter conditions of the Pacific northwest and seasonal field trapping in five primary regions of small and stone fruit production in the United States. Pest Manag Sci 67:1368–1374. https://doi.org/10.1002/ps.2280
De Ro M (2016) IPMDROS: Integrated pest management strategies against Drosophila suzukii. Poster session presented at 66th session of EPPO Council, Paris, France
Deprá M, Poppe JL, Schmitz HJ, De Toni DC, Valente VLS (2014) The first records of the invasive pest Drosophila suzukii in the South American continent. J Pest Sci 87:379–383. https://doi.org/10.1007/s10340-014-0591-5
Diepenbrock LM, Burrack HJ (2017) Variation of within-crop microhabitat use by Drosophila suzukii (Diptera: Drosophilidae) in blackberry. J Appl Entomol 141:1–7. https://doi.org/10.1111/jen.12335
Douglas AE (2011) Lessons from studying insect symbioses. Cell Host Microbe 10:359–367. https://doi.org/10.1016/j.chom.2011.09.001
Dyck VA, Hendrichs J, Robinson AS (2005) Sterile insect technique: principles and practice in area-wide integrated pest management. Springer, The Netherlands, p 787p
Eleftherianos I, Atri J, Accetta J, Castillo JC (2013) Endosymbiotic bacteria in insects: guardians of the immune system? Front Physiol 4:46. https://doi.org/10.3389/fphys.2013.00046
Engel P, Moran NA (2013) The gut microbiota of insects—diversity in structure and function. FEMS Microbiol Rev 37:699–735. https://doi.org/10.1111/1574-6976.12025
Engelstädter J, Hurst GDD (2009) The ecology and evolution of microbes that manipulate host reproduction. Annu Rev Ecol Evol Syst 40:127–149. https://doi.org/10.1146/annurev.ecolsys.110308.120206
Enkerlin W (2007) Guidance for packing, shipping, holding and release of sterile flies in area-wide fruit fly control programmes. FAO Plant production and protection paper 190
Enriquez T, Colinet H (2017) Basal tolerance to heat and cold exposure of the spotted wing Drosophila, Drosophila suzukii. PeerJ 5:e3112. https://doi.org/10.7717/peerj.3112
EPPO (2010) First record of Drosophila suzukii in Italy: addition to the EPPO Alert List. http://archives.eppo.int/EPPOReporting/2010/Rse-1001.pdf. Accessed 22 Aug 2017
Erkosar B, Storelli G, Defaye A, Leulier F (2013) Host-intestinal microbiota mutualism: learning on the fly. Cell Host Microbe 13:8–14. https://doi.org/10.1016/j.chom.2012.12.004
FAO/IAEA (2013) World-Wide Directory of SIT Facilities (DIR-SIT). https://nucleus.iaea.org/sites/naipc/dirsit/SitePages/World-Wide%20Directory%20of%20SIT%20Facilities%20(DIR-SIT).aspx Accessed 22 Feb 2017
FAO/IAEA/USDA (2014) Product quality control for sterile mass-reared and released tephritid fruit flies, Version 6.0. http://www-naweb.iaea.org/nafa/ipc/public/QualityControl.pdf Accessed 22 Feb 2017
Fleury F, Gibert P, Ris N, Allemand R (2009) Ecology and life history evolution of frugivorous Drosophila parasitoids. Adv Parasitol 70:3–44. https://doi.org/10.1016/S0065-308X(09)70001-6
Flint M, Dreistadt SH (1998) Natural enemies handbook: the illustrated guide to biological pest control. Univ Calif Div Agric Nat Res Publ, Oakland, p 3386
Follett PA, Swedman A, Price DK (2014) Postharvest irradiation treatment for quarantine control of Drosophila suzukii (Diptera: Drosophilidae) in fresh commodities. J Econ Entomol 107:964–969
Fraimout A, Debat V, Fellous S, Hufbauer RA, Foucaud J et al (2017) Deciphering the routes of invasion of Drosophila suzukii by means of ABC random forest. Mol Biol Evol 34:980–996. https://doi.org/10.1093/molbev/msx050
Fytrou A, Schofield PG, Kraaijeveld AR, Hubbard SF (2006) Wolbachia infection suppresses both host defence and parasitoid counter-defence. Proc Biol Sci 273:791–796
Gavriel S, Jurkevitch E, Gazit Y, Yuval B (2011) Bacterially enriched diet improves sexual performance of sterile male Mediterranean fruit flies. J App Entomol 135:564–573. https://doi.org/10.1111/j.1439-0418.2010.01605.x
Gilchrist AS, Cameron EC, Sved JA, Meats AW (2012) Genetic consequences of domestication and mass rearing of pest fruit fly Bactrocera tryoni (Diptera: Tephritidae). J Econ Entomol 10:1051–1056
Gilligan DM, Frankham R (2003) Dynamics of genetic adaptation to captivity. Conserv Genet 4:189–197. https://doi.org/10.1023/A:1023391905158
Godfray HCJ (1994) Parasitoids: behavioral and evolutionary ecology. Princeton University Press, Princeton
Goodhue RE, Bolda M, Farnsworth D, Williams JC, Zalom FG (2011) Spotted wing Drosophila infestation of California strawberries and raspberries: economic analysis of potential revenue losses and control costs. Pest Manag Sci 67:1396–1402. https://doi.org/10.1002/ps.2259
Grant JA, Sial AA (2016) Potential of muscadine grapes as a viable Host of Drosophila suzukii (Diptera: Drosophilidae) in blueberry-producing regions of the southeastern United States. J Econ Entomol 109:1261–1266
Grassi A, Giongo L, Palmieri L (2011) Drosophila (Sophophora) suzukii (Matsumura), new pest of soft fruits in Trentino (North-Italy) and in Europe. IOBC/WPRS Bull 70:121–128
Hamden H, Guerfali MM, Fadhl S, Saidi M, Chevrier C (2013) Fitness improvement of mass-reared sterile males of Ceratitis capitata (Vienna 8 strain) (Diptera: Tephritidae) after gut enrichment with probiotics. J Econ Entomol 106:641–647
Hamm CA, Begun DJ, Vo A, Smith CC, Saelao P, Shaver AO, Jaenike J, Turelli M (2014) Wolbachia do not live by reproductive manipulation alone: infection polymorphism in Drosophila suzukii and D. subpulchrella. Mol Ecol 23(19):4871–4885. https://doi.org/10.1111/mec.12901
Hauser MS, Gaimari MD (2009) Drosophila suzukii new to North America. Fly Times 43:12–15
Hoffmann AA, Clancy D, Duncan J (1996) Naturally-occurring Wolbachia infection in Drosophila simulans that does not cause cytoplasmic incompatibility. Heredity (Edinb) 76:1–8
Hoffmann AA, Hallas R, Sinclair C, Partridge L (2001) Rapid loss of stress resistance in Drosophila melanogaster under adaptation to laboratory culture. Evolution 55:436–438
Ioriatti C, Walton V, Dalton D, Anfora G, Grassi A, Maistri S, Mazzoni V (2015) Drosophila suzukii (Diptera: Drosophilidae) and its potential impact to wine grapes during harvest in two cool climate wine grape production regions. J Econ Entomol 108:1148–1155. https://doi.org/10.1093/jee/tov042
Jakobs R, Gariepy TD, Sinclair BJ (2015) Adult plasticity of cold tolerance in a continental-temperate population of Drosophila suzukii. J Insect Physiol 79:1–9
Kacsoh BZ, Schlenke TA (2012) High hemocyte load is associated with increased resistance against parasitoids in Drosophila suzukii, a relative of D. melanogaster. PLoS ONE 7:e34721. https://doi.org/10.1371/journal.pone.0034721
Kambris Z, Blagborough AM, Pinto SB, Blagrove MS, Godfray HC, Sinden RE, Sinkins SP (2010) Wolbachia stimulates immune gene expression and inhibits plasmodium development in Anopheles gambiae. PLoS Pathog 6:e1001143. https://doi.org/10.1371/journal.ppat.1001143
Kanzawa T (1936) Studies on Drosophila suzukii Mats. J Plant Prot (Tokyo) 23:66–70, 127–132, 183–191. In: Rev Appl Entomol 24:315
Kasuya N, Mitsui H, Ideo S, Watada M, Kimura M (2013) Ecological, morphological and molecular studies on Ganaspis individuals (Hymenoptera: Figitidae) attacking Drosophila suzukii (Diptera: Drosophilidae). Appl Entomol Zool 48:87–92
Kim J, Kim J, Park CG (2016) X-ray radiation and developmental inhibition of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae). Int J Radiat Biol 92:849–854
Kimura MT (2004) Cold and heat tolerance of drosophilid flies with reference to their latitudinal distributions. Oecol 140:442–449
Knipling EF (1979) The basic principles of insect population suppression and management. Agriculture Handbook. USDA No.512 pp.ix + 659 pp
Koukou K, Pavlikaki H, Kilias G, Werren JH, Bourtzis K, Alahiotis SN (2006) Influence of antibiotic treatment and Wolbachia curing on sexual isolation among Drosophila melanogaster cage populations. Evolution 60:87–96
Lasa R, Tadeo E (2015) Invasive drosophilid pests Drosophila suzukii and Zaprionus indianus (Diptera: Drosophilidae) in Veracruz, Mexico. Fla Entomol 98:987–988
Laven H (1967) A possible model for speciation by cytoplasmic isolation in the Culex pipiens complex. Bull World Health Organ 37:263–266
Lavrinienko A, Kesäniemi J, Watts PC et al (2017) First record of the invasive pest Drosophila suzukii in Ukraine indicates multiple sources of invasion. J Pest Sci 90:421–429. https://doi.org/10.1007/s10340-016-0810-3
Lee JC, Bruck DJ, Curry H, Edwards D, Haviland DR, Van Steenwyk RA, Yorgey BM (2011a) The susceptibility of small fruits and cherries to the spotted-wing drosophila, Drosophila suzukii. Pest Manag Sci 67:1358–1367. https://doi.org/10.1002/ps.2225
Lee JC, Bruck DJ, Dreves AJ, Ioriatti C, Vogt H, Baufeld P (2011b) In focus: spotted wing drosophila, Drosophila suzukii, across perspectives. Pest Manag Sci 67:1349–1351. https://doi.org/10.1002/ps.2271
Lee JC, Dreves AJ, Cave AM, Kawai S, Isaacs R, Miller JC, Van Timmeren S, Bruck DJ (2015) Infestation of wild and ornamental noncrop fruits by Drosophila suzukii (Diptera: Drosophilidae). Ann Entomol Soc Am 108:117–129
Lees RS, Gilles JR, Hendrichs J, Vreysen MJ, Bourtzis K (2015) Back to the future: the sterile insect technique against mosquito disease vectors. Curr Opin Insect Sci 10:156–162
Lengyel GD, Orosz S, Kiss B, Lupták R, Kárpáti Z (2015) New records and present status of the invasive spotted wing drosophila, Drosophila suzukii (Matsumura, 1931) (Diptera) in Hungary. Acta Zool Acad Sci Hung 61:73–80
LePage D, Bordenstein SR (2013) Wolbachia: can we save lives with a great pandemic? Trends Parasitol 29:385–393. https://doi.org/10.1016/j.pt.2013.06.003
López-Martínez G, Hahn DA (2014) Early life hormetic treatments decrease irradiation-induced oxidative damage, increase longevity, and enhance sexual performance during old age in the Caribbean fruit fly. PLoS ONE 9:e88128. https://doi.org/10.1371/journal.pone.0088128
Lue C-H, Mottern JL, Walsh GC, Buffington ML (2017) New record for the invasive spotted wing Drosophila, Drosophila suzukii (Matsumura, 1931) (Diptera: Drosophilidae) in Anillaco, Western Argentina. Proc Entomol Soc Wash 119:146–150
Martinez J, Duplouy A, Woolfit M, Vavre F, O’Neill SL, Varaldi J (2012) Influence of the virus LbFV and of Wolbachia in a host–parasitoid interaction. PLoS ONE 7:e35081. https://doi.org/10.1371/journal.pone.0035081
Martinez J, Longdon B, Bauer S, Chan YS, Miller WJ, Bourtzis K, Teixeira L, Jiggins FM (2014) Symbionts commonly provide broad spectrum resistance to viruses in insects: a comparative analysis of Wolbachia strains. PLoS Pathog 10:e1004369. https://doi.org/10.1371/journal.ppat.1004369
Miller WJ, Ehrman L, Schneider D (2010) Infectious speciation revisited: impact of symbiont-depletion on female fitness and mating behavior of Drosophila paulistorum. PLoS Pathog 6:e1001214. https://doi.org/10.1371/journal.ppat.1001214
Miller B, Anfora G, Buffington M, Daane KM, Dalton DT, Hoelmer K, Stacconi MVR, Grassi A, Ioriatti C, Loni A et al (2015) Seasonal occurrence of resident parasitoids associated with Drosophila suzukii in two small fruit production regions of Italy and the USA. Bull Insectol 68:255–263
Mitsui H, Van Achterberg K, Nordlander G, Kimura MT (2007) Geographical distributions and host associations of larval parasitoids of frugivorous Drosophilidae in Japan. J Nat Hist 41:1731–1738
Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M, Hugo LE, Johnson KN, Kay BH, McGraw EA, van den Hurk AF, Ryan PA, O’Neill SL (2009) A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and Plasmodium. Cell 139:1268–1278. https://doi.org/10.1016/j.cell.2009.11.042
Mouton L, Henri H, Boulétreau M, Vavre F (2006) Effect of temperature on Wolbachia density and consequences on cytoplasmic incompatibility. Parasitology 132:49–56
Mouton L, Henri H, Charif D, Boulétreau M, Vavre F (2007) Interaction between host genotype and environmental conditions affects bacterial density in Wolbachia symbiosis. Biol Lett 3:210–213
Munhenga G, Brooke BD, Gilles JR, Slabbert K, Kemp A, Dandalo LC, Wood OR, Lobb LN, Govender D, Renke M, Koekemoer LL (2016) Mating competitiveness of sterile genetic sexing strain males (GAMA) under laboratory and semi-field conditions: steps towards the use of the sterile insect technique to control the major malaria vector Anopheles arabiensis in South Africa. Parasit Vectors. 9:122. https://doi.org/10.1186/s13071-016-1385-9
Neelakanta G, Sultana H, Fish D, Anderson JF, Fikrig E (2010) Anaplasma phagocytophilum induces Ixodes scapularis ticks to express an antifreeze glycoprotein gene that enhances their survival in the cold. J Clin Invest. 120:3179–3190. https://doi.org/10.1172/JCI42868
Neuenschwander P, Russ K, Hoebaus E, Michelakis S (1983) Ecological studies on Rhagoletis cerasi in Crete for the use of the incompatible insect technique. In: Calvalloro R (ed) Fruit flies of economic importance. Proceedings of the CEC/IOBC international symposium Athens, Nov 1982. Balkema, Rotterdam, pp 366–370
O’Connor L, Plichart C, Sang AC, Brelsfoard CL, Bossin HC, Dobson SL (2012) Open release of male mosquitoes infected with a Wolbachia biopesticide: field performance and infection containment. PLoS Negl Trop Dis 6:e1797. https://doi.org/10.1371/journal.pntd.0001797
Ometto L, Cestaro A, Ramasamy S, Grassi A, Revadi S, Siozios S, Moretto M, Fontana P, Varotto C, Pisani D, Dekker T, Wrobel N, Viola R, Pertot I, Cavalieri D, Blaxter M, Anfora G, Rota-Stabelli O (2013) Linking genomics and ecology to investigate the complex evolution of an invasive Drosophila pest. Genome Biol Evol 5:745–757. https://doi.org/10.1093/gbe/evt034
Orhan A, Aslantaş R, Önder BŞ, Tozlu G (2016) First record of the invasive vinegar fly Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) from eastern Turkey. Turk J Zool 40:290–293. https://doi.org/10.3906/zoo-1412-25
Pereira R, Yuval B, Liedo P, Teal PEA, Shelly TE, McInnis DO, Hendrichs J (2013) Improving sterile male performance in support of programmes integrating the sterile insect technique against fruit flies. J Appl Entomol 137:178–190. https://doi.org/10.1111/j.1439-0418.2011.01664.x
Pimentel D, Lach L, Zuniga R, Morrison D (2000) Environmental and economic costs of non-indigenous species in the United States. Bioscience 50:53–65. https://doi.org/10.1641/0006-3568(2000)050[0053:EAECON]2.3.CO;2
Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52:273–288
Plantamp C, Salort K, Gibert P, Dumet A, Mialdea G, Mondy N, Voituron Y (2016) All or nothing: survival, reproduction and oxidative balance in spotted wing Drosophila (Drosophila suzukii) in response to cold. J Insect Physiol 89:28–36. https://doi.org/10.1016/j.jinsphys.2016.03.009
Poyet M, Havard S, Prevost G, Chabrerie O, Doury G, Gibert P, Eslin P (2013) Resistance of Drosophila suzukii to the larval parasitoids Leptopilina heterotoma and Asobara japonica is related to haemocyte load. Physiol Entomol 38:45–53. https://doi.org/10.1111/phen.12002
Poyet M, Eslin P, Héraude M, Le Roux V, Prévost G, Gibert G, Gibert P (2014) Invasive host for invasive pest: when the Asiatic cherry fly (Drosophila suzukii) meets the American black cherry (Prunusserotina) in Europe. Agric For Entomol 16:251–259. https://doi.org/10.1111/afe.12052
Poyet M, Le Roux V, Gibert P, Meirland A, Prevost G, Eslin P, Chabrerie O (2015) The wide potential trophic niche of theAsiatic fruit fly Drosophila suzukii: the key of its invasive success in temperate Europe? PLoS ONE 10:e0142785. https://doi.org/10.1371/journal.pone.0142785
Raphael KA, Shearman DCA, Gilchrist AS, Sved JA, Morrow JL, Sherwin WB, Riegler M, Frommer M (2014) Australian endemic pest tephritids: genetic, molecular and microbial tools for improved sterile insect technique. BMC Genet 15(Suppl 2):S9
Rendon P, McInnis D, Lance D, Stewart J (2000) Comparison of Medfly male-only and bisexual releases in large scale field trials. In: Area-wide control of fruit flies and other insect pests. Joint proceedings of the international conference on area-wide control of insect pests, 28 May–2 June, 1998 and the fifth international symposium on fruit flies of economic importance, Penang, Malaysia, 1–5 June, 1998 2000, pp 517–525
Rogers MA, Burkness EC, Hutchison WD (2016) Evaluation of high tunnels for management of Drosophila suzukii in fall-bearing red raspberries: potential for reducing insecticide use. J Pest Sci 89:815–821. https://doi.org/10.1007/s10340-016-0731-1
Rossi Stacconi MV, Buffington M, Daane KM, Dalton DT, Grassi A et al (2015) Host stage preference, efficacy and fecundity of parasitoids attacking Drosophila suzukii in newly invaded areas. Biol Control 84:28–35. https://doi.org/10.1016/j.biocontrol.2015.02.003
Rossi-Stacconi MV, Grassi A, Dalton DT, Miller B, Ouantar M, Loni A, Ioriatti C, Walton VM, Anfora G (2013) First field records of Pachycrepoideus vindemiae as a parasitoid of Drosophila suzukii in European and Oregon small fruit production areas. Entomologia 1:e3
Rossi-Stacconi MV, Kaur R, Mazzoni V et al (2016) Multiple lines of evidence for reproductive winter diapause in the invasive pest Drosophila suzukii: useful clues for control strategies. J Pest Sci 89:689. https://doi.org/10.1007/s10340-016-0753-8
Rota-Stabelli O, Blaxter M, Anfora G (2013) Drosophila suzukii. Curr Biol 23:R8–R9. https://doi.org/10.1016/j.cub.2012.11.021
Ryan GD, Emiljanowicz L, Wilkinson F, Kornya M, Newman JA (2016) Thermal tolerances of the spotted-wing drosophila Drosophila suzukii. J Econ Entomol 109:746–752
Saridaki A, Bourtzis K (2010) Wolbachia: more than just a bug in insects genitals. Curr Opin Microbiol 13:67–72. https://doi.org/10.1016/j.mib.2009.11.005
Servicio Agrícola y Ganadero (SAG) (2017). Resolución exenta No: 3672/2017: Establece medidas fitosanitarias de emergencia provisionales para la plaga drosófila de alas Manchadas, Drosophila suzukii (Matsumura). Diptera: Drosophilidae. http://www.sag.gob.cl/sites/default/files/res_3672_13jun2017.pdf. Accessed 22 Aug 2017
Sharon G, Segal D, Ringo JM, Hefetz A, Zilber-Rosenberg I, Rosenberg E (2010) Commensal bacteria play a role in mating preference of Drosophila melanogaster. PNAS 107:20051–20056. https://doi.org/10.1073/pnas.1009906107
Shearer PW, West JD, Walton VM, Brown PH, Svetec N, Chiu JC (2016) Seasonal cues induce phenotypic plasticity of Drosophila suzukii to enhance winter survival. BMC Ecol 16:11. https://doi.org/10.1186/s12898-016-0070-3
Siozios S, Cestaro A, Kaur R, Pertot I, Rota-Stabelli O, Anfora G (2013) Draft genome sequence of the Wolbachia endosymbiont of Drosophila suzukii. Genome Announc 1:e00032. https://doi.org/10.1128/genomeA.00032-13
Staubach F, Baines JF, Künzel S, Bik EM, Petrov DA (2013) Host species and environmental effects on bacterial communities associated with Drosophila in the laboratory and in the natural environment. PLoS ONE 8:e70749. https://doi.org/10.1371/journal.pone.0070749
Teixeira L, Ferreira A, Ashburner M (2008) The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol 6:e2. https://doi.org/10.1371/journal.pbio.1000002
Tochen S, Dalton DT, Wiman N, Hamm C, Shearer PW, Walton VM (2014) Temperature-related development and population parameters for Drosophila suzukii (Diptera: Drosophilidae) on cherry and blueberry. Environ Entomol 43:501–510. https://doi.org/10.1603/EN13200
Vilela CR, Mori L (2014) The invasive spotted-wing Drosophila (Diptera, Drosophilidae) has been found in the city of São Paulo (Brazil). Revista Brasileira de Entomologia 58:371–375
Vreysen MJB, Hendrichs J, Enkerlin WR (2006) The sterile insect technique as a component of sustainable area-wide integrated pest management of selected horticultural insect pests. Research Institute of Pomology and Floriculture in Journal of Fruit and Ornamental Plant Research 14; 107–132; Pest and weed control in sustainable fruit production by Research Institute of Pomology and Floriculture
Vreysen MJB, Saleh K, Mramba F, Parker A, Feldmann U, Dyck VA (2014) Sterile insects to enhance agricultural development: the case of sustainable tsetse eradication on Unguja Island, Zanzibar, using an area-wide integrated pest management approach. PLoS Negl Trop Dis 8:e2857. https://doi.org/10.1371/journal.pntd.0002857
Wallingford AK, Loeb GM (2016) Developmental acclimation of Drosophila suzukii (Diptera: Drosophilidae) and its effect on diapause and winter stress tolerance. Environ Entomol 45:1081–1089. https://doi.org/10.1093/ee/nvw088
Wallingford AK, Lee JC, Loeb GM (2016) The influence of temperature and photoperiod on the reproductive diapause and cold tolerance of spotted-wing drosophila, Drosophila suzukii. Entomol Exp Appl 159:327–337. https://doi.org/10.1111/eea.12443
Walsh DB, Bolda MP, Goodhue RE, Dreves AJ, Lee J, Bruck DJ, Walton VM, O’Neal SD, Zalom FG (2011) Drosophila suzukii (Diptera: Drosophilidae): invasive pest of ripening soft fruit expanding its geographic range and damage potential. J Integr Pest Manag 2:G1–G7. https://doi.org/10.1603/IPM10010
Wang XG, Kaçar G, Biondi A, Daane KM (2016) Foraging efficiency and outcomes of interactions of two pupal parasitoids attacking the invasive spotted wing Drosophila. Biol Control 96:64–71
Weiss B, Aksoy S (2011) Microbiome influences on insect host vector competence. Trends Parasitol 27:514–522. https://doi.org/10.1016/j.pt.2011.05.001
Werren JH (1997) Biology of Wolbachia. Annu Rev Entomol 42:587–609
Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6:741–751. https://doi.org/10.1038/nrmicro1969
Woltz JM, Donahue KM, Bruck DJ, Lee JC (2015) Efficacy of commercially available predators, nematodes and fungal entomopathogens for augmentative control of Drosophila suzukii. J Appl Entomol 139:759–770
Wong AC, Chaston JM, Douglas AE (2013) The inconstant gut microbiota of Drosophila species revealed by 16S rRNA gene analysis. ISME J 7:1922–1932. https://doi.org/10.1038/ismej.2013.86
Yun JH, Roh SW, Whon TW, Jung MJ, Kim MS, Park DS, Yoon C, Nam YD, Kim YJ, Choi JH, Kim JY, Shin NR, Kim SH, Lee WJ, Bae JW (2014) Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl Environ Microbiol 80:5254–5264. https://doi.org/10.1128/AEM.01226-14
Zabalou S, Riegler M, Theodorakopoulou M, Stauffer C, Savakis C, Bourtzis K (2004) Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. Proc Natl Acad Sci USA 101:15042–15045
Zabalou S, Apostolaki A, Pattas S, Veneti Z, Paraskevopoulos C, Livadaras I, Markakis G, Brissac T, Merçot H, Bourtzis K (2008) Multiple rescue factors within a Wolbachia strain. Genetics 178:2145–2160. https://doi.org/10.1534/genetics.107.086488
Zabalou S, Apostolaki A, Livadaras I, Franz G, Robinson A, Savakis C, Bourtzis K (2009) Incompatible insect technique: incompatible males from a Ceratitis capitata genetic sexing strain. Entomol Exp Appl 132:232–240. https://doi.org/10.1111/j.1570-7458.2009.00886.x
Zchori-Fein E, Bourtzis K (2011) Manipulative tenants-bacteria associated with arthropods. CRC Press, Boca Raton
Zerulla FN, Schmidt S, Streitberger M, Zebitz CPW, Zelger R (2015) On the overwintering ability of Drosophila suzukii in South Tyrol. J Berry Res 5:41–48. https://doi.org/10.3233/JBR-150089
Zhai Y, Lin Q, Zhang J, Zhang F, Zheng L, Yu Y (2016) Adult reproductive diapause in Drosophila suzukii females. J Pest Sci 89:679–688
Zhang D, Lees RS, Xi Z, Gilles JR, Bourtzis K (2015a) Combining the sterile insect technique with Wolbachia-based approaches: II—a safer approach to Aedes albopictus population suppression programmes, designed to minimize the consequences of inadvertent female release. PLoS ONE 10:e0135194. https://doi.org/10.1371/journal.pone.0135194
Zhang D, Zheng X, Xi Z, Bourtzis K, Gilles JR (2015b) Combining the sterile insect technique with the incompatible insect technique: I-impact of Wolbachia infection on the fitness of triple- and double-infected strains of Aedes albopictus. PLoS ONE 10:e0121126. https://doi.org/10.1371/journal.pone.0121126
Zhang D, Lees RS, Xi Z, Bourtzis K, Gilles JR (2016) Combining the sterile insect technique with the incompatible insect technique: III- Robust mating competitiveness of irradiated triple Wolbachia-infected Aedes albopictus males under semi-field conditions. PLoS ONE 11:e0151864
Zindel R, Gottlieb Y, Aebi A (2011) Arthropod symbioses: a neglected parameter in pest- and disease-control programmes. J Appl Ecol 48:864–872. https://doi.org/10.1111/j.1365-2664.2011.01984.x
Zug R, Hammerstein P (2015) Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts. Biol Rev 90:89–111
Zygouridis NE, Argov Y, Nemny-Lavy E, Augustinos AA, Nestel D, Mathiopoulos KD (2014) Genetic changes during laboratory domestication of an olive fly SIT strain. J Appl Entomol 138:423–432. https://doi.org/10.1111/jen.12042