[en] During the Juno orbit 34 Ganymede encounter, the ultraviolet spectrograph mapped UV sunlight reflected by Ganymede from a closest approach altitude of 1,044 km, allowing us to study spatial variations
in Ganymede's far ultraviolet reflectance at higher resolution than has previously been possible. We find that a characteristic signature of water ice seen around 165 nm in laboratory spectra is absent over much of
the observed area, but is detectable in the north high latitude region. We suggest that the spectral difference between the high latitudes and other icy regions, such as Tros crater, may be explained by the presence of
additional UV-absorbing contaminants such as NH3 at lower latitudes. We also note a decrease in the relative reflectance of the high latitude regions at wavelengths >190 nm, which may be the start of a previously observed ozone absorption feature.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Molyneux, P. M. ; Southwest Research Institute San Antonio TX USA
Greathouse, T. K. ; Southwest Research Institute San Antonio TX USA
Gladstone, G. R. ; Southwest Research Institute San Antonio TX USA ; University of Texas at San Antonio San Antonio TX USA
Versteeg, M. H. ; Southwest Research Institute San Antonio TX USA
Hue, V. ; Southwest Research Institute San Antonio TX USA
Kammer, J. ; Southwest Research Institute San Antonio TX USA
Davis, M. W. ; Southwest Research Institute San Antonio TX USA
Bolton, S. J. ; Southwest Research Institute San Antonio TX USA
Giles, R. ; Southwest Research Institute San Antonio TX USA
Connerney, J. E. P. ; Space Research Corporation Annapolis MD USA
Gérard, Jean-Claude ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Grodent, Denis ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Becker, T. M., Retherford, K. D., Roth, L., Hendrix, A. R., McGrath, M. A., & Saur, J. (2018). The far-UV albedo of Europa from HST observations. Journal of Geophysical Research, 123(5), 1327–1342. https://doi.org/10.1029/2018je005570
Bolton, S. J., Lunine, J., Stevenson, D., Connerney, J. E. P., Levin, S., Owen, T. C., et al. (2017). The Juno mission. Space Science Reviews, 213(1), 5–37. https://doi.org/10.1007/s11214-017-0429-6
Bradley, E. T., Colwell, J. E., Esposito, L. W., Cuzzi, J. N., Tollerud, H., & Chambers, L. (2010). Far ultraviolet spectral properties of Saturn’s rings from Cassini UVIS. Icarus, 206(2), 458–466. https://doi.org/10.1016/j.icarus.2009.12.021
Brown, R. H., Cruikshank, D. P., Tokunaga, A. T., Smith, R. G., & Clark, R. N. (1988). Search for volatiles on icy satellites. 1. Europa. Icarus, 74(2), 262–271. https://doi.org/10.1016/0019-1035(88)90041-3
Cassidy, T. A., Paranicas, C. P., Shirley, J. H., Dalton, J. B., Teolis, B. D., Johnson, R. E., et al. (2013). Magnetospheric ion sputtering and water ice grain size at Europa. Planetary and Space Science, 77, 64–73. https://doi.org/10.1016/j.pss.2012.07.008
Clark, R. N., Fanale, F. P., & Zent, A. P. (1983). Frost grain size metamorphism: Implications for remote sensing of planetary surfaces. Icarus, 55(2), 233–245. https://doi.org/10.1016/0019-1035(83)90036-2
Coddington, O., Lean, J. L., Pilewskie, P., Snow, M., & Lindholm, D. (2016). A solar irradiance climate data record. Bulletin of the American Meteorological Society, 97(7), 1265–1282. https://doi.org/10.1175/BAMS-D-14-00265.1
Cuzzi, J. N., French, R. G., Hendrix, A. R., Olson, D. M., Roush, T., & Vahidinia, S. (2018). HST-STIS spectra and the redness of Saturn’s rings. Icarus, 209, 363–388. https://doi.org/10.1016/j.icarus.2018.02.025
Davis, M. W., Gladstone, G. R., Giles, R. S., Greathouse, T. K., Molyneux, P. M., Raut, U., et al. (2020). Ground calibration results of the JUICE ultraviolet spectrograph. Proceedings of SPIE, 11444. https://doi.org/10.1117/12.2562986
Dawes, A., Pascual, N., Mason, N. J., Gärtner, S., Hoffman, S. V., & Jones, N. C. (2018). Probing the interaction between solid benzene and water using vacuum ultraviolet and infrared spectroscopy. Physical Chemistry Chemical Physics, 20(22), 15273–15287. https://doi.org/10.1039/c8cp01228h
Gladstone, G. R., Persyn, S. C., Eterno, J. S., Walther, B. C., Slater, D. C., Davis, M. W., et al. (2017). The ultraviolet spectrograph on NASA's Juno mission. Space Science Reviews, 213(1–4), 447–473. https://doi.org/10.1007/s11214-014-0040-z
Grasset, O., Dougherty, M. K., Coustenis, A., Bunce, E. J., Erd, C., Titov, D., et al. (2013). JUpiter ICy moons Explorer (JUICE): An ESA mission to orbit Ganymede and to characterise the Jupiter system. Planetary and Space Science, 78, 1–21. https://doi.org/10.1016/j.pss.2012.12.002
Greathouse, T. K., Gladstone, G. R., Davis, M. W., Slater, D. C., Versteeg, M. H., Persson, K. B., et al. (2013). Performance results from in-flight commissioning of the Juno ultraviolet spectrograph (Juno-UVS). Proceedings of SPIE, 8859. https://doi.org/10.1117/12.2024537
Greathouse, T. K., Gladstone, G. R., Molyneux, P. M., Versteeg, M. H., Hue, V., Kammer, J., et al. (2022). UVS observations of Ganymede’s aurora during Juno orbits 34 and 35. Geophysical Research Letters, 49, e2022GL099794. https://doi.org/10.1029/2022GL099794
Hapke, B. (1981). Bidirectional reflectance spectroscopy. 1. Theory. Journal of Geophysical Research, 86(B4), 3039–3054. https://doi.org/10.1029/jb086ib04p03039
Hapke, B. (1984). Bidirectional reflectance spectroscopy. 3. Correction for macroscopic roughness. Icarus, 59(1), 41–59. https://doi.org/10.1016/0019-1035(84)90054-x
Hapke, B. (1986). Bidirectional reflectance spectroscopy. 4. The extinction coefficient and the opposition effect. Icarus, 67(2), 264–280. https://doi.org/10.1016/0019-1035(86)90108-9
Hendrix, A. R., Barth, C. A., & Hord, C. W. (1999). Ganymede’s ozone-like absorber: Observations by the Galileo ultraviolet spectrometer. Journal of Geophysical Research, 104(E6), 14169–14178. https://doi.org/10.1029/1999je900001
Hendrix, A. R., Cassidy, T. A., Burratti, B. J., Paranicas, C., Hansen, C. J., Teolis, B., et al. (2012). Mimas’ far-UV albedo: Spatial variations. Icarus, 220(2), 922–931. https://doi.org/10.1016/j.icarus.2012.06.012
Hendrix, A. R., Filacchione, G., Paranicas, C., Schenk, P., Clark, R., & Scipioni, F. (2018). Icy Saturnian satellites: Disk-integrated UV-IR spectral characteristics and links to exogenic processes. Icarus, 200, 103–114. https://doi.org/10.1016/j.icarus.2017.08.037
Hendrix, A. R., & Hansen, C. J. (2008a). The albedo dichotomy of Iapetus measured at UV wavelengths. Icarus, 193(2), 344–351. https://doi.org/10.1016/j.icarus.2007.07.025
Hendrix, A. R., & Hansen, C. J. (2008b). Ultraviolet observations of Phoebe from the Cassini UVIS. Icarus, 193(2), 323–333. https://doi.org/10.1016/j.icarus.2007.06.030
Hendrix, A. R., Hansen, C. J., & Holsclaw, G. M. (2010). The ultraviolet reflectance of Enceladus: Implications for surface composition. Icarus, 206(2), 608–617. https://doi.org/10.1016/j.icarus.2009.11.007
Johnson, R. E. (1985). Polar frost formation on Ganymede. Icarus, 62(2), 344–347. https://doi.org/10.1016/0019-1035(85)90130-7
Johnson, R. E. (1997). Polar “caps” on Ganymede and Io revisited. Icarus, 128(2), 469–471. https://doi.org/10.1006/icar.1997.5746
Kersten, E., Zubarev, A. E., Roatsch, T., & Matz, K.-D. (2021). Controlled global Ganymede mosaic from voyager and Galileo images. Planetary and Space Science, 206, 105310. https://doi.org/10.1016/j.pss.2021.105310
Khurana, K. K., Pappalardo, R. T., Murphy, N., & Denk, T. (2007). The origin of Ganymede’s polar caps. Icarus, 191(1), 193–202. https://doi.org/10.1016/j.icarus.2007.04.022
Kivelson, M. G., Khurana, K. K., Russell, C. T., Walker, R. J., Warnecke, J., Coroniti, F. V., et al. (1996). Discovery of Ganymede's magnetic field by the Galileo spacecraft. Nature, 384(6609), 537–541. https://doi.org/10.1038/384537a0
Kuiper, G. P. (1957). Infrared observations of planets and satellites. The Astronomical Journal, 62, 245. https://doi.org/10.1086/107539
Ligier, N., Paranicas, C., Carter, J., Poulet, F., Calvin, W. M., Nordheim, T. A., et al. (2019). Surface composition and properties of Ganymede: Updates from ground-based observations with the near-infrared imaging spectrometer SINFONI/VLT/ESO. Icarus, 333, 496–515. https://doi.org/10.1016/j.icarus.2019.06.013
Mason, N. J., Dawes, A., Holtom, P. D., Mukerji, R. J., Davis, M. P., Sivaraman, B., et al. (2006a). VUV spectroscopy and photo-processing of astrochemical ices: An experimental study. Faraday Discussions, 133, 311–329. https://doi.org/10.1039/b518088k
Mason, N. J., Dawes, A., Holtom, P. D., Mukerji, R. J., Davis, M. P., Sivaraman, B., et al. (2006b). VUV spectroscopy of extraterrestrial ices. AIP Conference Proceedings, 855, 128.
Molyneux, P. M., Nichols, J. D., Becker, T. M., Raut, U., & Retherford, K. D. (2020). Ganymede's far-ultraviolet reflectance: Constraining impurities in the surface ice. Journal of Geophysical Research: Planets, 125(9), e2020JE006476. https://doi.org/10.1029/2020je006476
Moroz, V. I. J. A. Z. (1965). Infrared Spectrophotometry of the Moon and the Galilean Satellites of Jupiter. Astronomicheskii Zhurnal, 42, 1287.
Mura, A., Adriani, A., Sordini, R., Sindoni, G., Plainaki, C., Tosi, F., et al. (2020). Infrared observations of Ganymede from the Jovian InfraRed auroral mapper on Juno. Journal of Geophysical Research: Planets, 125(12), e2020JE006508. https://doi.org/10.1029/2020je006508
Noll, K. S., Johnson, R. E., Lane, A. L., Domingue, D. L., & Weaver, H. A. (1996). Detection of ozone on Ganymede. Science, 273(5273), 341–343. https://doi.org/10.1126/science.273.5273.341
Pilcher, C. B., Ridgway, S. T., & McCord, T. B. (1972). Galilean satellites: Identification of water frost. Science, 178(4065), 1087–1089. https://doi.org/10.1126/science.178.4065.1087
Pollack, J. B., Witteborn, F. C., Erickson, E. F., Strecker, D. W., Baldwin, B. J., & Bunch, T. E. (1978). Near-infrared spectra of the Galilean satellites: Observations and compositional implications. Icarus, 36(3), 271–303. https://doi.org/10.1016/0019-1035(78)90110-0
Poppe, A. R., Fatemi, S., & Khurana, K. K. (2018). Thermal and energetic ion dynamics in Ganymede’s magnetosphere. Journal of Geophysical Research: Space Physics, 123(6), 4614–4637. https://doi.org/10.1029/2018ja025312
Royer, E. M., & Hendrix, A. R. (2014). First far-ultraviolet disk-integrated phase curve analysis of Mimas, Tethys, and Dione from the Cassini-UVIS data sets. Icarus, 242, 158–171. https://doi.org/10.1016/j.icarus.2014.07.026
Smith, B. A., Soderblom, L. A., Beebe, R., Boyce, J., Briggs, G., Carr, M., et al. (1979). The Galilean satellites and Jupiter: Voyager 2 imaging science results. Science, 206(4421), 927–950. https://doi.org/10.1126/science.206.4421.927
Spencer, J. R., Calvin, W. M., & Person, M. J. (1995). Charge-coupled device spectra of the Galilean satellites: Molecular oxygen on Ganymede. Journal of Geophysical Research, 100(E9), 19049–19056. https://doi.org/10.1029/95je01503
Stephan, K., Hibbitts, C. A., & Jaumann, R. (2020). H2O-ice particle size variations across Ganymede's and Callisto's surface. Icarus, 337, 113440. https://doi.org/10.1016/j.icarus.2019.113440
Trantham, B. (2014). Juno J UVS reduced data record V1.0. In NASA planetary data System. https://doi.org/10.17189/1518951
Wagener, R., & Caldwell, J. (1988). On the abundance of micron-sized particles in Saturn’s A and B rings. ESA, A Decade of UV Astronomy with the IUE Satellite, 1, 85–88.
Warren, S. G., & Brandt, R. E. (2008). Optical constants of ice from the ultraviolet to the microwave: A revised compilation. Journal of Geophysical Research, 113(D14), D14220. https://doi.org/10.1029/2007jd009744
Weiss, J. W. (2004). Appendix 2 – Planetary parameters. In F. Bagenal, T. Dowling, & W. B. McKinnon (Eds.), Jupiter: The planet, satellites and magnetosphere, chapter 20 (pp. 699–706). Cambridge University Press.
Domingue, D. L., Lane, A. L., & Beyer, R. A. (1998). IUE’s detection of tenuous SO2 frost on Ganymede and its rapid time variability. Geophysical Research Letters, 25(16), 3117–3120. https://doi.org/10.1029/98gl02386
Hendrix, A. R., Barth, C. A., Stewart, A. I. F., Hord, C. W., & Lane, A. L. (1999). Hydrogen peroxide on the icy Galilean satellites. In Lunar and planetary science conference abstracts.1540.
McCord, T. B., Carlson, R. W., Smythe, W. D., Hansen, G. B., Clark, R. N., Hibbitts, C. A., et al. (1997). Organics and other molecules in the surfaces of Callisto and Ganymede. Science, 278(5336), 271–275. https://doi.org/10.1126/science.278.5336.271
McCord, T. B., Hansen, G. B., Clark, R. N., Martin, P. D., Hibbitts, C. A., Fanale, F. P., et al. (1998). Non-water-ice constituents in the surfaces of the icy Galilean satellites from the Galileo near-infrared mapping spectrometer investigation. Journal of Geophysical Research, 103(E4), 8603–8626. https://doi.org/10.1029/98je00788
Prockter, L. M., Head, J. W., Pappalardo, R. T., Senske, D. A., Neukum, G., Wagner, R., et al. (1998). Dark terrain on Ganymede: Geological mapping and interpretation of Galileo Regio at high resolution. Icarus, 135(1), 317–344. https://doi.org/10.1006/icar.1998.5981
Spencer, J. R. (1987). Icy Galilean satellite reflectance spectra: Less ice on Ganymede and Callisto? Icarus, 70(1), 99–110. https://doi.org/10.1016/0019-1035(87)90077-7
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.