Soil macroinvertebrates; soil biodiversity; soil fertility; soil health; land use change; Tropical mountain systems; Ecuador
Abstract :
[en] Land use changes cause soil degradation and loss of biodiversity, thereby affecting ecological processes and soil-associated ecosystem services. However, land use change impacts on soil health have received little attention in the highland landscapes of the tropics. In this research, using the soil health framework, we assessed the impact of native forest conversion to anthropic systems (planted forests, pastures, and monocultures) on two ecosystem services: biodiversity conservation and soil fertility in the highlands of northern Ecuador. The biological dimension of our assessment focused on the diversity, abundance, and biomass of soil macroinvertebrate communities as proxies to soil functions, whereas soil chemical parameters were used to describe the soil fertility. The soil invertebrate communities and soil chemical parameters were studied in topsoil samples using 25 × 25 × 10 cm monoliths, obtained from 10 sampling sites randomly selected in each land use category. We hypothesized that native forests would present more diverse and even soil macroinvertebrate communities, and together with their soil chemical properties would indicate better soil quality than anthropic environments. Our results showed that the structure and composition of the edaphic macroinvertebrate communities significantly differed among the studied land use categories. As predicted, native forests presented greater values for richness, evenness and diversity of soil biota than did the other categories, demonstrating a significant loss of taxonomic biodiversity at order and genus levels. We also found a significant reduction of trophic diversity in native forests converted to anthropic environments. More trophic groups with greater abundances were found in native forests, where predators and detritivores stood out as dominant groups, indicating the good quality of the soil. The results from the soil chemical parameters also confirmed the distinction in soil health between native forests and anthropic environments. Our results highlight the risk associated with current trends of native forest loss and conversion to anthropic systems in high mountain ecosystems in the tropics, illustrating how these alterations could cause biodiversity loss and degradation of the chemical attributes of soil health. The findings of this research could contribute to the conservation and sustainable management of mountain agricultural landscapes in the study region
Disciplines :
Environmental sciences & ecology
Author, co-author :
Guarderas Valverde, Adriana Paulina ; Université de Liège - ULiège > TERRA Research Centre ; Université de Liège - ULiège > Gembloux Agro-Bio Tech > Doct. sc. agro. & ingé. biol. (Paysage) ; Universidad Central del Ecuador > Biological Sciences Department
Travez, Kerly; Universidad Central del Ecuador > Biological Sciences Department
Boeraeve, Fanny ; Université de Liège - ULiège > TERRA Research Centre > Biodiversité et Paysage
Cornelis, Jean-Thomas ; Université de Liège - ULiège > Département GxABT > Echanges Eau - Sol - Plantes
Dufrêne, Marc ; Université de Liège - ULiège > Département GxABT > Biodiversité et Paysage
Language :
English
Title :
Native forest conversion alters soil macroinvertebrate diversity and soil quality in tropical mountain landscapes of northern Ecuador
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Araneda A. (2016). Uso de la lombriz de tierra como organismo indicador del impacto de pesticidas en el agrosistema (Concepción: Repositorio Dspace).
Baillie I. C. Anderson J. M. Ingram J. S. I. (1990). Tropical soil biology and fertility: a handbook of methods. J. Ecol. 78, 547. 10.2307/2261129
Bardgett R. D. Van Der Putten W. H. (2014). Belowground biodiversity and ecosystem functioning. Nature. 515, 505–511. 10.1038/nature1385525428498
Brown G. G. Fragoso C. Barois I. Rojas P. Patrón J. C. Bueno J. Moreno A. G. Lavelle P. Ordaz V. y Rodríguez C. (2001). Diversidad y rol funcional de la macrofauna edáfica en los ecosistemas tropicales mexicanos, ACTA ZOOLÓGICA MEXICANA (N.S.), pp. 79–110. 10.21829/azm.2001.8401847
Brussaard L. Aanen D. K. Briones M. J. I. Decaëns T. Deyn G. B. De Fayle T. M. et al. (2013). Biogeography and phylogenetic community structure, in Soil Ecology and Ecosystem Services, eds Wall D. H. Bardgett R. Behan-Pelletier V. Herrick J. E. Jones T. H. Ritz K. Strong D. R. van der Putten W. H. (Oxford: Oxford Academic). 10.1093/acprof:oso/9780199575923.003.0018, (accessed September 20, 2022). 36389024
Bünemann E. K. Bongiorno G. Bai Z. Creamer R. E. De Deyn G. de Goede R. et al. (2018). Soil quality – a critical review. Soil Biol. Biochem. 120, 105–125. 10.1016/j.soilbio.2018.01.03029398743
Cabrera G. (2014). Manual práctico sobre la macrofauna edáfica como indicador biológico de la calidad del suelo, según resultados en Cuba., ed. The Rofford Cuba. Habana: Fundación Rufford.
Cabrera G. López I. (2018). Ecological characterization of soil macrofauna in two evergreen forest sites at el salón, sierra del rosario, Cuba. Bosque. 39, 363–373. 10.4067/S0717-92002018000300363
Cáceres-Arteaga N. Ayala-Campaña O. Rosero-Vaca D. D. Lane K. (2018). ¿Que nos depara el futuro? Análisis climático histórico y proyección de escenarios climáticos futuros para el cantón andino de Pedro Moncayo, Ecuador. Rev. Geográfica América Cent. 3, 297–318. 10.15359/rgac.61-3.15
Chao A. Chiu C. H. Jost L. (2014). Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through hill numbers. Annu. Rev. Ecol. Evol. Syst. 45, 297–324. 10.1146/annurev-ecolsys-120213-091540
Coca-Salazar A. Cornelis J. T. Carnol M. (2021). Soil properties and microbial processes in response to land-use change in agricultural highlands of the Central Andes. Eur. J. Soil Sci. 72, 2292–2307. 10.1111/ejss.13110
Colwell R. (2013). EstimateS: biodiversity estimation. Available at: http://viceroy.eeb.uconn.edu/estimates/ (accessed May 10, 2019).
Colwell R. K. Coddington J. A. (1994). Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society of London B—Biological Sciences, 345, 101–118. https://doi.org/10.1098/rstb.1994.0091
Comerford N. B. Franzluebbers A. J. Stromberger M. E. Morris L. Markewitz D. Moore R. (2013). Assessment and evaluation of soil ecosystem services. Soil Horizons. 54, 1–14. 10.2136/sh12-10-0028
De Valença A. W. Vanek S. J. Meza K. Ccanto R. Olivera E. Scurrah M. et al. (2017). Land use as a driver of soil fertility and biodiversity across an agricultural landscape in the Central Peruvian Andes. Ecol. Appl. 27, 1138–1154. 10.1002/eap.150828117908
Decaëns T. Jiménez J. J. Gioia C. Measey G. J. Lavelle P. (2006). The values of soil animals for conservation biology. Eur. J. Soil Biol. 42, S23–S38. 10.1016/j.ejsobi.2006.07.001
Delelegn Y. T. Purahong W. Blazevic A. Yitaferu B. Wubet T. Göransson H. et al. (2017). Changes in land use alter soil quality and aggregate stability in the highlands of northern Ethiopia. Sci. Rep. 7, 1–12. 10.1038/s41598-017-14128-y29051610
Díaz S. Fargione J. Chapin F. Tilman D. (2006). Biodiversity loss threatens human well-being. PLoS Biol. 4, e277. 10.1371/journal.pbio.004027716895442
Dominati E. Mackay A. Patterson M. (2010). Modelling the provision of ecosystem services from soil natural capital. World Congr. Soil Sci. 32–35. Available online at: https://www.iuss.org/19th%20WCSS/Symposium/pdf/1841.pdf
Duddigan S. Fraser T. Green I. Diaz A. Sizmur T. Tibbett M. (2021). Plant, soil and faunal responses to a contrived pH gradient. Plant Soil 462, 505–524. 10.1007/s11104-021-04879-z
Eisenhauer N. Antunes P. M. Bennett A. E. Birkhofer K. Bissett A. Bowker M. A. et al. (2017). Priorities for research in soil ecology. Pedobiologia (Jena). 63, 1–7. 10.1016/j.pedobi.2017.05.00329129942
Eisenhauer N. Antunes P. M. Bennett A. E. Birkhofer K. Bowker M. A. Caruso T. et al. (2018). Europe PMC Funders Group Priorities for research in soil ecology. 63, 1–7.
Ernst G. Emmerling C. (2009). Impact of five different tillage systems on soil organic carbon content and the density, biomass, and community composition of earthworms after a ten year period. Eur. J. Soil Biol. 45, 247–251. 10.1016/j.ejsobi.2009.02.002
Escobar A. Filella J. González V. Noel A. (2017). Estudio comparativo macrofauna del suelo en sistema agroforestal, potrero tradicional y bosque latifoliado en microcuenca del trópico seco, Tomabú, Nicaragua. Rev. Científica FAREM-Estelí. 22, 39–49. 10.5377/farem.v0i22.4520
Farley K. A. (2007). Grasslands to tree plantations: forest transition in the Andes of Ecuador. Ann. Assoc. Am. Geogr. 97, 755–771. 10.1111/j.1467-8306.2007.00581.x
Foley J. A. DeFries R. Asner G. P. Barford C. Bonan G. Carpenter S. R. et al. (2005). Global consequences of land use. Science. 309, 570–574. 10.1126/science.111177216040698
Food and Agriculture Organization (2015). Intergovernmental technical panel on soils status of the world's soil resources, in Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils (Italia).
Food and Agriculture Organization of the United Nations. (2015). Suelos y Biodiversidad. 1 ed. Italia: Roma,
GAD Municipal Pedro Moncayo. (2015). GAD Municipal Pedro Moncayo. Available online at: http://sitp.pichincha.gob.ec/repositorio/diseno_paginas/archivos/PDOTLAESPERANZA2015.pdf (accessed March 28, 2019).
Gaglio M. Aschonitis V. G. Mancuso M. M. Puig J. P. R. Moscoso F. Castaldelli G. et al. (2017). Changes in land use and ecosystem services in tropical forest areas: a case study in Andes mountains of Ecuador. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 13, 264–279. 10.1080/21513732.2017.1345980
Gehlhausen S. M. Schwartz M. W. Augspurger C. K. (2000). Vegetation and microclimatic edge effects in two mixed-mesophytic forest fragments
Goulding K. W. T. (2016). Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use Manag. 32, 390–399. 10.1111/sum.1227027708478
GraphPad Software. (1995). Estadísticas de GraphPad. San Diego, CA: GraphPad.
Guamán Trávez K. Guarderas P. (In press). Land use affects the local climate of a tropical mountain landscape in Northern Ecuador. Mt. Re. Dev.
Guangbin Y. Xiaodong Y. (2007). Characteristics of litter and soil arthropod communities at different suc-cessional stages of tropical forests. Biodivers. Sci. 15, 188. 10.1360/biodiv.060292
Guarderas P. Smith F. Dufrene M. (2022). Land use and land cover change in a tropical mountain landscape of northern Ecuador: altitudinal patterns and driving forces. PLoS ONE. 17, 1–26. 10.1371/journal.pone.026019135895625
Halffter G. Arellano L. (2002). Response of dung beetle diversity to human-induced changes in a tropical landscape. Biotropica. 34, 144–154. 10.1111/j.1744-7429.2002.tb00250.x
Hammer Ø. Harper D. Ryan P. (2001). Past: Paleontological Statistics Software Package for Education and Data Analysis. Oslo: Palaeontological Association.
Hao T. Zhu Q. Zeng M. Shen J. Shi X. Liu X. et al. (2020). Impacts of nitrogen fertilizer type and application rate on soil acidification rate under a wheat-maize double cropping system. J. Environ. Manage. 270, 110888. 10.1016/j.jenvman.2020.11088832721326
Heitkamp F. Sylvester S. P. Kessler M. Sylvester M. D. P. V. Jungkunst H. F. (2014). Inaccessible Andean sites reveal human-induced weathering in grazed soils. Prog. Phys. Geogr. 38, 576–601. 10.1177/0309133314544918
JASP Team. (2020). Jasp Version 0.11.1. Comput. Softw. Available online at: https://jasp-stats.org/faq/how-do-i-cite-jasp/ (accessed May 10, 2019).
Jiménez-Valverde A. Hortal J. (2003). Las curvas de acumulación de especies y la necesidad de evaluar la calidad de los inventarios biológicos. Rev. Ibérica Aracnol. 8, 151–116. Available online at: https://jhortal.com/pubs/2003-Jimenez-Valverde&Hortal_Rev_Ib_Aracnol.pdf
Jost L. (2006). Entropy and diversity. Oikos. 113, 363–375. 10.1111/j.2006.0030-1299.14714.x
Karlen D. L. Ditzler C. A. Andrews S. S. (2003). Soil quality: why and how? Geoderma. 114, 145–156. 10.1016/S0016-7061(03)00039-9
Kitching R. (2000). Food webs and container habitats: the natural history and ecology of phytotelmata. J. Ecol. 89, 461. 10.1046/j.0022-0477.2001.00593-4.x
Košulič O. Michalko R. Hula V. (2016). Impact of canopy openness on spider communities: implications for conservation management of formerly coppiced oak forests. PLoS ONE. 11, 1–18. 10.1371/journal.pone.014858526845431
Landis D. A. (2016). Designing agricultural landscapes for biodiversity-based ecosystem services. Basic Appl. Ecol. 18, 1–12. 10.1016/j.baae.2016.07.005
Lauber C. L. Strickland M. S. Bradford M. A. Fierer N. (2008). The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol. Biochem. 40, 2407–2415. 10.1016/j.soilbio.2008.05.021
Lavelle P. Rodríguez N. Arguello O. Bernal J. Botero C. Chaparro P. et al. (2014). Soil ecosystem services and land use in the rapidly changing orinoco river basin of colombia. Agric. Ecosyst. Environ. 185, 106–117. 10.1016/j.agee.2013.12.020
Le Bayon R.-C. Milleret R. (2009). Effects of earthworms on phosphorus dynamics – a review. Dyn. Soil, Dyn. Plant. Glob. Sci. Books. 3, 21–27. Available online at: http://www.globalsciencebooks.info/Online/GSBOnline/images/0906/DSDP_3(SI2)/DSDP_3(SI2)21-27o.pdf
Lehmann J. Bossio D. A. Kögel-Knabner I. Rilling M. C. (2020). The concept and future prospects of soil health. Nat. Rev. Earth. Environ. 1, 544–553. 10.1038/s43017-020-0080-833015639
Leibensperger L. B. (2016). Herbert Walter Levi (1921–2014) and Lorna Levi (1928–2014). Breviora. 551, 1–37. 10.3099/mcz28.1
Lema N. (2016). Determinación de la macrofauna edáfica en distintos usos de suelos en tres agroecosistemas de la comunidad de Naubug. Ecuador: Riobamba: Escuela Superior Politécnica de Chimborazo.
Lemenih M. Karltun E. Olsson M. (2005). Assessing soil chemical and physical property responses to deforestation and subsequent cultivation in smallholders farming system in Ethiopia. Agric. Ecosyst. Environ. 105, 373–386. 10.1016/j.agee.2004.01.046
Letourneau D. K. Armbrecht I. Rivera B. S. Lerma J. Carmona E. J. Daza M. C. et al. (2011). Does plant diversity benefit agroecosystems? A synthetic review. Ecol. Appl. 21, 9–21. 10.1890/09-2026.121516884
Liang J. Reynolds T. Wassie A. Collins C. Wubalem A. (2016). Effects of exotic Eucalyptus spp. plantations on soil properties in and around sacred natural sites in the northern Ethiopian Highlands. AIMS Agric. Food. 1, 175–193. 10.3934/agrfood.2016.2.175
Lukina N. V. Orlova M. A. Isaeva L. G. (2011). Forest soil fertility: the base of relationships between soil and vegetation. Contemp. Probl. Ecol. 4, 725–733. 10.1134/S1995425511070046
Magurran A. (2004). Measuring Biological Diversity. Oxford: Blackwell.
Manhães C. M. C. Gama-Rodrigues E. F. Silva Moço M. K. Gama-Rodrigues A. C. (2013). Meso- and macrofauna in the soil and litter of leguminous trees in a degraded pasture in Brazil. Agrofor. Syst. 87, 993–1004. 10.1007/s10457-013-9614-0
Mann C. Lynch D. Fillmore S. Mills A. (2019). Relationships between field management, soil health, and microbial community composition. Appl. Soil Ecol. 144, 12–21. 10.1016/j.apsoil.2019.06.01233663956
McGavin G. (2000). Manual de Identificacion de Insectos, Arañas y Otros Artropodos Terrestres. Barcelona: Omega S. A.
Merrit R. W. (1996). An introduction to the aquatic insects of North America. Kendall/Hunt Pub. Co
Millennium Ecosystem Assessment. (2005). Ecosystems and Human Well-Being: Synthesis. Washington, DC: Island Press
Ministerio de Agricultura y Ganadería. (2017). Mapa de órdenes de suelos del Ecuador. Quito: SIGTIERRAS (Sistema Nac. Inf. y Gestión Tierras Rural. e Infraestruct. Tecnológica). 15.
Ministerio del Ambiente del Ecuador. (2013). Sistema de Clasificación de los Ecosistemas del Ecuador Continental, in Subsecretaría de Patrimonio Natural (Ecuador).
Ministerio del Ambiente del Ecuador. (2016). Análisis de la deforestación en el Ecuador Continental 1990 - 2014. Quito: Ecuador
Montejo-Kovacevich G. Marsh C. J. Smith S. H. Peres C. A. Edwards D. P. (2022). Riparian reserves protect butterfly communities in selectively logged tropical forest. J. Appl. Ecol. 59, 1524–1535. 10.1111/1365-2664.14162
Moreno C. E. (2011). M&T-Manuales y Tesis SEA. 1st ed. España: Gorfi.
Natural Resources Conservation Service. (2022). Soil health. Washington, DC: U.S. DEPARTMENT OF AGRICULTURE.
Nielsen U. N. Wall D. H. Six J. (2015). Soil biodiversity and the environment. Annu. Rev. Environ. Resour. 40, 63–90. 10.1146/annurev-environ-102014-021257
Nieminen M. Ketoja E. Mikola J. Terhivuo J. Sirén T. Nuutinen V. (2011). Local land use effects and regional environmental limits on earthworm communities in finnish arable landscapes. Ecol. Appl. 21, 3162–3177. 10.1890/10-1801.1
Oksanen J. Blanchet F. G. Friendly M. Kindt R. Legendre P. McGlinn D. et al. (2019). Vegan: Community Ecology Package. Oulu: Benjamin Cummings.
Phillips H. R. P. Guerra C. A. Bartz M. L. C. Briones M. J. I. Brown G. Crowther T. W. et al. (2019). Global distribution of earthworm diversity. Science (80-.). 366, 480–485. 10.1126/science.aax485131649197
Reed M. S. Hubacek K. Bonn A. Burt T. P. Holden J. Stringer L. C. et al. (2013). Anticipating and managing future trade-offs and complementarities between ecosystem services. Ecol. Soc. 18, 1–21. 10.5751/ES-04924-180105
Rousseau L. Fonte S. J. Téllez O. Van Der Hoek R. Lavelle P. (2013). Soil macrofauna as indicators of soil quality and land use impacts in smallholder agroecosystems of western Nicaragua. Ecol. Indic. 27, 71–82. 10.1016/j.ecolind.2012.11.020
Ruiz D. Bueno-Villegas J. Feijoo-Martínez A. (2010). Uso de la tierra y diversidades alfa, beta y gamma de diplópodos en la cuenca del río Otún, Colombia. Univ. Sci. 15, 59–67. 10.11144/javeriana.sc15-1.luaa
Shrewsbury P. M. Raupp M. J. (2006). Do top-down or bottom-up forces determine Stephanitis pyrioides abundance in urban landscapes? Ecol. Appl. 16, 262–272. 10.1890/04-134716705978
Soliveres S. Van Der Plas F. Manning P. Prati D. Gossner M. M. Renner S. C. et al. (2016). Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536, 456–459. 10.1038/nature1909227533038
Solórzano Flores A. (2020). Comparación de la diversidad vegetal y calidad orgánica del suelo entre un remanente de bosque nativo y vegetación introducida, Parroquia La Esperanza, Cantón Pedro Moncayo. Pichincha: Ecuador.
Suquilanda M. B. (2008). El deterioro de los suelos en el Ecuador y la producción agricola. Ecuador: Universidad Central del Ecuador.
Sylvain Z. A. Wall D. H. (2011). Linking soil biodiversity and vegetation: implications for a changing planet. Am. J. Bot. 98, 517–527. 10.3732/ajb.100030521613143
The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. (2018). The assessment report on land degradation and restoration. 1–44
Thiele-Bruhn S. Bloem J. de Vries F. T. Kalbitz K. Wagg C. (2012). Linking soil biodiversity and agricultural soil management. Curr. Opin. Environ. Sustain. 4, 523–528. 10.1016/j.cosust.2012.06.004
Tibbett M. Fraser T. D. Duddigan S. (2020). Identifying potential threats to soil biodiversity. PeerJ 8, e9271. 10.7717/peerj.927132566399
Triplehorn C. Johnson N. Borror D. (2005). Borror and DeLong's Introduction to the Study of Insects. Minnesota: Thompson Brooks.
Urrego B. (1996). La reforestación con coniferas y sus efectos sobre la acidificación, podsolización y perdida de fertilidad de los suelos. Smurfit Cartón de Colombia Colombia.
Veldkamp E. Schmidt M. Powers J. S. Corre M. D. (2020). Deforestation and reforestation impacts on soils in the tropics. Nat. Rev. Earth Environ. 1, 590–605. 10.1038/s43017-020-0091-528708878
Villarreal H. Álvarez M. Córdoba S. Escobar F. Fagua F. Gast F. et al. (2006). Manual de métodos para el desarrollo de inventarios de biodiversidad. 2nd ed. Colombia: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.
Whittaker R. (1972). Evolution and measurement of species diversity. Taxon. 21, 213–251. 10.2307/1218190
Whittaker R. Willis J. Field R. (2001). Scale and species richness: towards a general, hierarchical theory of species diversity. J. Biogeogr. 28, 453–470. 10.1046/j.1365-2699.2001.00563.x
Winkler K. Fuchs R. Rounsevell M. Herold M. (2021). Global land use changes are four times greater than previously estimated. Nat. Commun. 12, 1–10. 10.1038/s41467-021-22702-233976120
Yitaferu B. Abewa A. Amare T. (2013). Expansion of eucalyptus woodlots in the fertile soils of the highlands of ethiopia: could it be a treat on future cropland use? J. Agric. Sci. 5, 1–12. 10.5539/jas.v5n8p97
Zarafshar M. Bazot S. Matinizadeh M. Bordbar S. K. Rousta M. J. Kooch Y. et al. (2020). Do tree plantations or cultivated fields have the same ability to maintain soil quality as natural forests? Appl. Soil Ecol. 151, 103536. 10.1016/j.apsoil.2020.103536
Zegeye H. Teketay D. Kelbessa E. (2011). Diversity and regeneration status of woody species in Tara Gedam and Abebaye forests, northwestern Ethiopia. J. For. Res. 22, 315–328. 10.1007/s11676-011-0176-6
Zhang X. Zhao G. Zhang X. Li X. Yu Z. Liu Y. et al. (2017). Ground beetle (coleoptera: carabidae) diversity and body-size variation in four land use types in a mountainous area near Beijing, China. Coleopt. Bull. 71, 402–412. 10.1649/0010-065X-71.2.402
Zhou Y. Liu C. Ai N. Tuo X. Zhang Z. Gao R. et al. (2022). Characteristics of soil macrofauna and its coupling relationship with environmental factors in the loess area of Northern Shaanxi. Sustain. 14, 1–14. 10.3390/su14052484
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.