Critical properties of the Anderson transition on random graphs: Two-parameter scaling theory, Kosterlitz-Thouless type flow, and many-body localization
Anderson transition; Random graphs; Many-body localization
Abstract :
[en] The Anderson transition in random graphs has raised great interest, partly out of the hope that its analogy with the many-body localization (MBL) transition might lead to a better understanding of this hotly debated phenomenon. Unlike the latter, many results for random graphs are now well established, in particular, the existence and precise value of a critical disorder separating a localized from an ergodic delocalized phase. However, the renormalization group flow and the nature of the transition are not well understood. In turn, recent works on the MBL transition have made the remarkable prediction that the flow is of Kosterlitz-Thouless
type. In this paper, we show that the Anderson transition on graphs displays the same type of flow. Our work attests to the importance of rare branches along which wave functions have a much larger localization length ξ∥ than the one in the transverse direction ξ⊥. Importantly, these two lengths have different critical behaviors: ξ∥ diverges with a critical exponent ν∥ = 1, while ξ⊥ reaches a finite universal value ξ⊥c at the transition point Wc. Indeed,ξ^−1≈ξc^−1+ξ^−1, with ξ∼(W−W)^(−ν⊥) associated with a new critical exponent ν =1. The delocalized phase inherits the strongly nonergodic properties of the critical regime at short scales, but is ergodic at large scales, with a unique critical exponent ν = 1/2. This shows a very strong analogy with the MBL transition: the behavior of ξ⊥ is identical to that recently predicted for the typical localization length of MBL in a phenomenological renormalization group flow. We demonstrate these important properties for a small-world complex network model and show the universality of our results by considering different network parameters and different key observables of Anderson localization.
Disciplines :
Physics
Author, co-author :
García-Mata, I.
Martin, John ; Université de Liège - ULiège > Département de physique
Giraud, O.
Georgeot, B.
Dubertrand, R.
Lemarié, G.
Language :
English
Title :
Critical properties of the Anderson transition on random graphs: Two-parameter scaling theory, Kosterlitz-Thouless type flow, and many-body localization
Publication date :
05 December 2022
Journal title :
Physical Review. B
ISSN :
2469-9950
eISSN :
2469-9969
Publisher :
American Physical Society (APS)
Volume :
106
Issue :
21
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
F.R.S.-FNRS - Fonds de la Recherche Scientifique CONICET - Consejo Nacional de Investigaciones Científicas y Técnicas ANPCyT - Agencia Nacional de Promoción Científica y Tecnológica
Funding text :
Consortium des Equipements de Calcul Intensif (CECI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.- FNRS) under Grant No. 2.5020.11
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
R. Abou-Chacra, D. Thouless, and P. Anderson, A selfconsistent theory of localization, J. Phys. C: Solid Stae Phys. 6, 1734 (1973) 0022-3719 10.1088/0022-3719/6/10/009.
M. R. Zirnbauer, Localization transition on the bethe lattice, Phys. Rev. B 34, 6394 (1986) 0163-1829 10.1103/PhysRevB.34.6394.
Y. V. Fyodorov and A. D. Mirlin, Localization in Ensemble of Sparse Random Matrices, Phys. Rev. Lett. 67, 2049 (1991) 0031-9007 10.1103/PhysRevLett.67.2049.
A. D. Mirlin and Y. V. Fyodorov, Distribution of local densities of states, order parameter function, and critical behavior near the Anderson transition, Phys. Rev. Lett. 72, 526 (1994) 0031-9007 10.1103/PhysRevLett.72.526.
C. Monthus and T. Garel, Anderson localization on the Cayley tree: multifractal statistics of the transmission at criticality and off criticality, J. Phys. A: Math. Theor. 44, 145001 (2011) 1751-8113 10.1088/1751-8113/44/14/145001.
G. Biroli, A. C. Ribeiro-Teixeira, and M. Tarzia, Difference between level statistics, ergodicity and localization transitions on the Bethe lattice, arXiv:1211.7334.
A. De Luca, B. L. Altshuler, V. E. Kravtsov, and A. Scardicchio, Anderson Localization on the Bethe Lattice: Nonergodicity of Extended States, Phys. Rev. Lett. 113, 046806 (2014) 0031-9007 10.1103/PhysRevLett.113.046806.
V. Kravtsov, I. Khaymovich, E. Cuevas, and M. Amini, A random matrix model with localization and ergodic transitions, New J. Phys. 17, 122002 (2015) 1367-2630 10.1088/1367-2630/17/12/122002.
B. L. Altshuler, E. Cuevas, L. B. Ioffe, and V. E. Kravtsov, Nonergodic Phases in Strongly Disordered Random Regular Graphs, Phys. Rev. Lett. 117, 156601 (2016) 0031-9007 10.1103/PhysRevLett.117.156601.
D. Facoetti, P. Vivo, and G. Biroli, From non-ergodic eigenvectors to local resolvent statistics and back: A random matrix perspective, Europhys. Lett. 115, 47003 (2016) 0295-5075 10.1209/0295-5075/115/47003.
K. S. Tikhonov, A. D. Mirlin, and M. A. Skvortsov, Anderson localization and ergodicity on random regular graphs, Phys. Rev. B 94, 220203 (R) (2016) 2469-9950 10.1103/PhysRevB.94.220203.
K. S. Tikhonov and A. D. Mirlin, Fractality of wave functions on a cayley tree: Difference between tree and locally treelike graph without boundary, Phys. Rev. B 94, 184203 (2016) 2469-9950 10.1103/PhysRevB.94.184203.
M. Sonner, K. S. Tikhonov, and A. D. Mirlin, Multifractality of wave functions on a cayley tree: From root to leaves, Phys. Rev. B 96, 214204 (2017) 2469-9950 10.1103/PhysRevB.96.214204.
I. García-Mata, O. Giraud, B. Georgeot, J. Martin, R. Dubertrand, and G. Lemarié, Scaling Theory of the Anderson Transition in Random Graphs: Ergodicity and Universality, Phys. Rev. Lett. 118, 166801 (2017) 0031-9007 10.1103/PhysRevLett.118.166801.
G. Biroli and M. Tarzia, Delocalized glassy dynamics and many-body localization, Phys. Rev. B 96, 201114 (R) (2017) 2469-9950 10.1103/PhysRevB.96.201114.
C. Monthus, Multifractality of eigenstates in the delocalized non-ergodic phase of some random matrix models: Wigner-Weisskopf approach, J. Phys. A: Math. Theor. 50, 295101 (2017) 1751-8113 10.1088/1751-8121/aa77e1.
E. Tarquini, G. Biroli, and M. Tarzia, Critical properties of the Anderson localization transition and the high-dimensional limit, Phys. Rev. B 95, 094204 (2017) 2469-9950 10.1103/PhysRevB.95.094204.
V. Kravtsov, B. Altshuler, and L. Ioffe, Non-ergodic delocalized phase in Anderson model on Bethe lattice and regular graph, Ann. Phys. 389, 148 (2018) 0003-4916 10.1016/j.aop.2017.12.009.
E. Bogomolny and M. Sieber, Eigenfunction distribution for the rosenzweig-porter model, Phys. Rev. E 98, 032139 (2018) 2470-0045 10.1103/PhysRevE.98.032139.
E. Bogomolny and M. Sieber, Power-law random banded matrices and ultrametric matrices: Eigenvector distribution in the intermediate regime, Phys. Rev. E 98, 042116 (2018) 2470-0045 10.1103/PhysRevE.98.042116.
S. Bera, G. De Tomasi, I. M. Khaymovich, and A. Scardicchio, Return probability for the Anderson model on the random regular graph, Phys. Rev. B 98, 134205 (2018) 2469-9950 10.1103/PhysRevB.98.134205.
K. S. Tikhonov and A. D. Mirlin, Statistics of eigenstates near the localization transition on random regular graphs, Phys. Rev. B 99, 024202 (2019) 2469-9950 10.1103/PhysRevB.99.024202.
K. S. Tikhonov and A. D. Mirlin, Critical behavior at the localization transition on random regular graphs, Phys. Rev. B 99, 214202 (2019) 2469-9950 10.1103/PhysRevB.99.214202.
G. Parisi, S. Pascazio, F. Pietracaprina, V. Ros, and A. Scardicchio, Anderson transition on the Bethe lattice: an approach with real energies, J. Phys. A: Math. Theor. 53, 014003 (2020) 1751-8113 10.1088/1751-8121/ab56e8.
I. García-Mata, J. Martin, R. Dubertrand, O. Giraud, B. Georgeot, and G. Lemarié, Two critical localization lengths in the anderson transition on random graphs, Phys. Rev. Res. 2, 012020 (R) (2020) 2643-1564 10.1103/PhysRevResearch.2.012020.
V. E. Kravtsov, I. M. Khaymovich, B. L. Altshuler, and L. B. Ioffe, Localization transition on the random regular graph as an unstable tricritical point in a log-normal Rosenzweig-Porter random matrix ensemble, arXiv:2002.02979.
G. De Tomasi, S. Bera, A. Scardicchio, and I. M. Khaymovich, Subdiffusion in the Anderson model on the random regular graph, Phys. Rev. B 101, 100201 (R) (2020) 2469-9950 10.1103/PhysRevB.101.100201.
S. Roy and D. E. Logan, Localization on Certain Graphs with Strongly Correlated Disorder, Phys. Rev. Lett. 125, 250402 (2020) 0031-9007 10.1103/PhysRevLett.125.250402.
I. M. Khaymovich, V. E. Kravtsov, B. L. Altshuler, and L. B. Ioffe, Fragile extended phases in the log-normal Rosenzweig-Porter model, Phys. Rev. Res. 2, 043346 (2020) 2643-1564 10.1103/PhysRevResearch.2.043346.
G. Biroli, A. K. Hartmann, and M. Tarzia, Critical behavior of the anderson model on the bethe lattice via a large-deviation approach, Phys. Rev. B 105, 094202 (2022) 2469-9950 10.1103/PhysRevB.105.094202.
G. Biroli and M. Tarzia, Lévy-rosenzweig-porter random matrix ensemble, Phys. Rev. B 103, 104205 (2021) 2469-9950 10.1103/PhysRevB.103.104205.
J. Alt, R. Ducatez, and A. Knowles, Delocalization transition for critical Erdos-Rényi graphs, Commun. Math. Phys. 388, 507 (2021) 0010-3616 10.1007/s00220-021-04167-y.
K. S. Tikhonov and A. D. Mirlin, From Anderson localization on random regular graphs to many-body localization, Ann. Phys. 435, 168525 (2021) 0003-4916 10.1016/j.aop.2021.168525.
L. Colmenarez, D. J. Luitz, I. M. Khaymovich, and G. De Tomasi, Sub-diffusive Thouless time scaling in the Anderson model on random regular graphs, Phys. Rev. B 105, 174207 (2022) 2469-9950 10.1103/PhysRevB.105.174207.
I. M. Khaymovich and V. E. Kravtsov, Dynamical phases in a "multifractal" Rosenzweig-Porter model, SciPost Phys. 11, 045 (2021) 2542-4653 10.21468/SciPostPhys.11.2.045.
D. M. Basko, I. L. Aleiner, and B. L. Altshuler, Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states, Ann. Phys. 321, 1126 (2006) 0003-4916 10.1016/j.aop.2005.11.014.
I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, Interacting Electrons in Disordered Wires: Anderson Localization and Low-(Equation presented) Transport, Phys. Rev. Lett. 95, 206603 (2005) 0031-9007 10.1103/PhysRevLett.95.206603.
B. L. Altshuler, Y. Gefen, A. Kamenev, and L. S. Levitov, Quasiparticle Lifetime in a Finite System: A Nonperturbative Approach, Phys. Rev. Lett. 78, 2803 (1997) 0031-9007 10.1103/PhysRevLett.78.2803.
R. Nandkishore and D. A. Huse, Many-body Localization and Thermalization in Quantum Statistical Mechanics, Annu. Rev. Condens. Matter Phys. 6, 15 (2015) 1947-5454 10.1146/annurev-conmatphys-031214-014726.
F. Alet and N. Laflorencie, Many-body localization: An introduction and selected topics, C. R. Phys. 19, 498 (2018) 1631-0705 10.1016/j.crhy.2018.03.003.
D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Colloquium: Many-body localization, thermalization, and entanglement, Rev. Mod. Phys. 91, 021001 (2019) 0034-6861 10.1103/RevModPhys.91.021001.
A. Morningstar, L. Colmenarez, V. Khemani, D. J. Luitz, and D. A. Huse, Avalanches and many-body resonances in many-body localized systems, Phys. Rev. B 105, 174205 (2022) 2469-9950 10.1103/PhysRevB.105.174205.
D. Sels, Bath-induced delocalization in interacting disordered spin chains, Phys. Rev. B 106, L020202 (2022) 2469-9950 10.1103/PhysRevB.106.L020202.
D. M. Long, P. J. D. Crowley, V. Khemani, and A. Chandran, Phenomenology of the prethermal many-body localized regime, arXiv:2207.05761.
P. Sierant, M. Lewenstein, and A. Scardicchio, Universality in Anderson localization on random graphs with varying connectivity, arXiv:2205.14614.
T. Thiery, F. Huveneers, M. Müller, and W. De Roeck, Many-Body Delocalization as a Quantum Avalanche, Phys. Rev. Lett. 121, 140601 (2018) 0031-9007 10.1103/PhysRevLett.121.140601.
A. Goremykina, R. Vasseur, and M. Serbyn, Analytically Solvable Renormalization Group for the Many-Body Localization Transition, Phys. Rev. Lett. 122, 040601 (2019) 0031-9007 10.1103/PhysRevLett.122.040601.
P. T. Dumitrescu, A. Goremykina, S. A. Parameswaran, M. Serbyn, and R. Vasseur, Kosterlitz-thouless scaling at many-body localization phase transitions, Phys. Rev. B 99, 094205 (2019) 2469-9950 10.1103/PhysRevB.99.094205.
A. Morningstar and D. A. Huse, Renormalization-group study of the many-body localization transition in one dimension, Phys. Rev. B 99, 224205 (2019) 2469-9950 10.1103/PhysRevB.99.224205.
A. Morningstar, D. A. Huse, and J. Z. Imbrie, Many-body localization near the critical point, Phys. Rev. B 102, 125134 (2020) 2469-9950 10.1103/PhysRevB.102.125134.
W. De Roeck and F. Huveneers, Stability and instability towards delocalization in many-body localization systems, Phys. Rev. B 95, 155129 (2017) 2469-9950 10.1103/PhysRevB.95.155129.
S. Roy and D. E. Logan, Fock space correlations and the origins of many-body localization, Phys. Rev. B 101, 134202 (2020) 2469-9950 10.1103/PhysRevB.101.134202.
F. Pietracaprina and N. Laflorencie, Hilbert-space fragmentation, multifractality, and many-body localization, Ann. Phys. 435, 168502 (2021) 0003-4916 10.1016/j.aop.2021.168502.
N. Macé, F. Alet, and N. Laflorencie, Multifractal Scalings Across the Many-Body Localization Transition, Phys. Rev. Lett. 123, 180601 (2019) 0031-9007 10.1103/PhysRevLett.123.180601.
M. Tarzia, Many-body localization transition in Hilbert space, Phys. Rev. B 102, 014208 (2020) 2469-9950 10.1103/PhysRevB.102.014208.
R. K. Panda, A. Scardicchio, M. Schulz, S. R. Taylor, and M. Žnidarič, Can we study the many-body localisation transition Europhys. Lett. 128, 67003 (2020) 1286-4854 10.1209/0295-5075/128/67003.
D. Abanin, J. Bardarson, G. De Tomasi, S. Gopalakrishnan, V. Khemani, S. Parameswaran, F. Pollmann, A. Potter, M. Serbyn, and R. Vasseur, Distinguishing localization from chaos: Challenges in finite-size systems, Ann. Phys. 427, 168415 (2021) 0003-4916 10.1016/j.aop.2021.168415.
N. Laflorencie, G. Lemarié, and N. Macé, Chain breaking and Kosterlitz-Thouless scaling at the many-body localization transition in the random-field Heisenberg spin chain, Phys. Rev. Res. 2, 042033 (R) (2020) 2643-1564 10.1103/PhysRevResearch.2.042033.
M. Tarzia, Fully localized and partially delocalized states in the tails of Erdos-Rényi graphs in the critical regime, Phys. Rev. B 105, 174201 (2022) 2469-9950 10.1103/PhysRevB.105.174201.
P. W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109, 1492 (1958) 0031-899X 10.1103/PhysRev.109.1492.
F. Evers and A. D. Mirlin, Anderson transitions, Rev. Mod. Phys. 80, 1355 (2008) 0034-6861 10.1103/RevModPhys.80.1355.
E. Abrahams, 50 Years of Anderson Localization (World Scientific, Singapore, 2010), Vol. 24.
E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions, Phys. Rev. Lett. 42, 673 (1979) 0031-9007 10.1103/PhysRevLett.42.673.
J.-L. Pichard and G. Sarma, Finite size scaling approach to Anderson localisation, J. Phys. C: Solid State Phys. 14, L127 (1981) 0022-3719 10.1088/0022-3719/14/6/003.
A. MacKinnon and B. Kramer, One-Parameter Scaling of Localization Length and Conductance in Disordered Systems, Phys. Rev. Lett. 47, 1546 (1981) 0031-9007 10.1103/PhysRevLett.47.1546.
K. Slevin and T. Ohtsuki, Corrections to Scaling at the Anderson Transition, Phys. Rev. Lett. 82, 382 (1999) 0031-9007 10.1103/PhysRevLett.82.382.
A. Rodriguez, L. J. Vasquez, K. Slevin, and R. A. Römer, Multifractal finite-size scaling and universality at the Anderson transition, Phys. Rev. B 84, 134209 (2011) 1098-0121 10.1103/PhysRevB.84.134209.
M. Lopez, J.-F. Clément, P. Szriftgiser, J.-C. Garreau, and D. Delande, Experimental Test of Universality of the Anderson Transition, Phys. Rev. Lett. 108, 095701 (2012) 0031-9007 10.1103/PhysRevLett.108.095701.
C. Castellani and L. Peliti, Multifractal wavefunction at the localisation threshold, J. Phys. A: Math. Gen. 19, L429 (1986) 0305-4470 10.1088/0305-4470/19/8/004.
E. Cuevas and V. E. Kravtsov, Two-eigenfunction correlation in a multifractal metal and insulator, Phys. Rev. B 76, 235119 (2007) 1098-0121 10.1103/PhysRevB.76.235119.
A. D. Mirlin and Y. V. Fyodorov, Universality of level correlation function of sparse random matrices, J. Phys. A: Math. Gen. 24, 2273 (1991) 0305-4470 10.1088/0305-4470/24/10/016.
Y. V. Fyodorov, A. D. Mirlin, and H.-J. Sommers, A novel field theoretical approach to the Anderson localization: sparse random hopping model, J. Phys. I (France) 2, 1571 (1992) 1155-4304 10.1051/jp1:1992229.
P. A. Nosov, I. M. Khaymovich, A. Kudlis, and V. E. Kravtsov, Statistics of Green's functions on a disordered Cayley tree and the validity of forward scattering approximation, SciPost Phys. 12, 048 (2022) 2542-4653 10.21468/SciPostPhys.12.2.048.
B. Derrida and H. Spohn, Polymers on disordered trees, spin glasses, and traveling waves, J. Stat. Phys. 51, 817 (1988) 0022-4715 10.1007/BF01014886.
C. Monthus and T. Garel, Anderson transition on the Cayley tree as a traveling wave critical point for various probability distributions, J. Phys. A: Math. Theor. 42, 075002 (2009) 1751-8113 10.1088/1751-8113/42/7/075002.
C. Monthus, Revisiting classical and quantum disordered systems from the unifying perspective of large deviations, Eur. Phys. J. B 92, 149 (2019) 1434-6028 10.1140/epjb/e2019-100151-9.
J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, J. Phys. C: Solid State Phys. 6, 1181 (1973) 0022-3719 10.1088/0022-3719/6/7/010.
G. Biroli and M. Tarzia, Delocalization and ergodicity of the Anderson model on Bethe lattices, arXiv:1810.07545.
A. M. García-García and E. Cuevas, Dimensional dependence of the metal-insulator transition, Phys. Rev. B 75, 174203 (2007) 1098-0121 10.1103/PhysRevB.75.174203.
Y. Ueoka and K. Slevin, Dimensional dependence of critical exponent of the Anderson transition in the orthogonal universality class, J. Phys. Soc. Jpn. 83, 084711 (2014) 0031-9015 10.7566/JPSJ.83.084711.
H. J. Mard, J. A. Hoyos, E. Miranda, and V. Dobrosavljević, Strong-disorder approach for the Anderson localization transition, Phys. Rev. B 96, 045143 (2017) 2469-9950 10.1103/PhysRevB.96.045143.
M. Schreiber and H. Grussbach, Dimensionality Dependence of the Metal-Insulator Transition in the Anderson Model of Localization, Phys. Rev. Lett. 76, 1687 (1996) 0031-9007 10.1103/PhysRevLett.76.1687.
B. Derrida and G. Rodgers, Anderson model on a Cayley tree: the density of states, J. Phys. A: Math. Gen. 26, L457 (1993) 0305-4470 10.1088/0305-4470/26/9/004.
G. Biroli, G. Semerjian, and M. Tarzia, Anderson model on Bethe lattices: density of states, localization properties and isolated eigenvalue, Prog. Theor. Phys. Suppl. 184, 187 (2010) 0375-9687 10.1143/PTPS.184.187.
S. Milgram, The small world problem, Psychol. Today 2, 60 (1967).
D. J. Watts and S. H. Strogatz, Collective dynamics of "small-world" networks, Nature (London) 393, 440 (1998) 0028-0836 10.1038/30918.
M. E. J. Newman, C. Moore, and D. J. Watts, Mean-Field Solution of the Small-World Network Model, Phys. Rev. Lett. 84, 3201 (2000) 0031-9007 10.1103/PhysRevLett.84.3201.
A. D. Chepelianskii and D. L. Shepelyansky, Quantum chaos in quantum networks, https://www.quantware.ups-tlse.fr/talks-posters/chepelianskii2001.pdf.
O. Giraud, B. Georgeot, and D. L. Shepelyansky, Quantum computing of delocalization in small-world networks, Phys. Rev. E 72, 036203 (2005) 1539-3755 10.1103/PhysRevE.72.036203.
B. Bollobás and W. Fernandez de la Vega, The diameter of random regular graphs, Combinatorica 2, 125 (1982) 0209-9683 10.1007/BF02579310.
E. Tarquini, G. Biroli, and M. Tarzia, Level Statistics and Localization Transitions of Lévy Matrices, Phys. Rev. Lett. 116, 010601 (2016) 0031-9007 10.1103/PhysRevLett.116.010601.
O. Schenk, M. Bollhöfer, and R. A. Römer, On large-scale diagonalization techniques for the Anderson model of localization, SIAM Rev. 50, 91 (2008) 0036-1445 10.1137/070707002.
D. J. Luitz, N. Laflorencie, and F. Alet, Many-body localization edge in the random-field Heisenberg chain, Phys. Rev. B 91, 081103 (R) (2015) 1098-0121 10.1103/PhysRevB.91.081103.
F. Pietracaprina, N. Macé, D. J. Luitz, and F. Alet, Shift-invert diagonalization of large many-body localizing spin chains, SciPost Phys. 5, 045 (2018) 10.21468/SciPostPhys.5.5.045.
M. Bollhöfer and Y. Notay, Jadamilu: a software code for computing selected eigenvalues of large sparse symmetric matrices, Comput. Phys. Commun. 177, 951 (2007) 0010-4655 10.1016/j.cpc.2007.08.004.
B. B. Mandelbrot, Les Objets Fractals: Forme, Hasard et Dimension (Flammarion, Paris, 1975), Vol. 17.
H. G. E. Hentschel and I. Procaccia, The infinite number of generalized dimensions of fractals and strange attractors, Phys. D (Amsterdam) 8, 435 (1983) 0167-2789 10.1016/0167-2789(83)90235-X.
K. Falconer, Fractal Geometry: Mathematical Foundations and Applications (Wiley, Hoboken, NJ, 2004).
J. T. Chalker, Scaling and eigenfunction correlations near a mobility edge, Phys. A (Amsterdam) 167, 253 (1990) 0378-4371 10.1016/0378-4371(90)90056-X.
T. Brandes, B. Huckestein, and L. Schweitzer, Critical dynamics and multifractal exponents at the Anderson transition in 3d disordered systems, Ann. Phys. 508, 633 (1996) 0003-3804 10.1002/andp.2065080803.
M. Schreiber and H. Grussbach, Multifractal wave functions at the Anderson transition, Phys. Rev. Lett. 67, 607 (1991) 0031-9007 10.1103/PhysRevLett.67.607.
M. Janssen, Multifractal analysis of broadly-distributed observables at criticality, Int. J. Mod. Phys. B 08, 943 (1994) 0217-9792 10.1142/S021797929400049X.
J. T. Chalker and G. J. Daniell, Scaling, Diffusion, and the Integer Quantized Hall Effect, Phys. Rev. Lett. 61, 593 (1988) 0031-9007 10.1103/PhysRevLett.61.593.
T. Brandes, L. Schweitzer, and B. Kramer, Multifractal wave functions and inelastic scattering in the integer quantum Hall effect, Phys. Rev. Lett. 72, 3582 (1994) 0031-9007 10.1103/PhysRevLett.72.3582.
A. D. Mirlin, Y. V. Fyodorov, F.-M. Dittes, J. Quezada, and T. H. Seligman, Transition from localized to extended eigenstates in the ensemble of power-law random banded matrices, Phys. Rev. E 54, 3221 (1996) 1063-651X 10.1103/PhysRevE.54.3221.
V. E. Kravtsov and K. A. Muttalib, New Class of Random Matrix Ensembles with Multifractal Eigenvectors, Phys. Rev. Lett. 79, 1913 (1997) 0031-9007 10.1103/PhysRevLett.79.1913.
N. Meenakshisundaram and A. Lakshminarayan, Multifractal eigenstates of quantum chaos and the Thue-Morse sequence, Phys. Rev. E 71, 065303 (R) (2005) 1539-3755 10.1103/PhysRevE.71.065303.
J. Martin, O. Giraud, and B. Georgeot, Multifractality and intermediate statistics in quantum maps, Phys. Rev. E 77, 035201 (R) (2008) 1539-3755 10.1103/PhysRevE.77.035201.
J. P. Keating and H. Ueberschär, Multifractal eigenfunctions for a singular quantum billiard, Commun. Math. Phys. 389, 543 (2022) 0010-3616 10.1007/s00220-021-04214-8.
A. M. Bilen, B. Georgeot, O. Giraud, G. Lemarié, and I. García-Mata, Symmetry violation of quantum multifractality: Gaussian fluctuations versus algebraic localization, Phys. Rev. Res. 3, L022023 (2021) 2643-1564 10.1103/PhysRevResearch.3.L022023.
A. D. Mirlin, Y. V. Fyodorov, A. Mildenberger, and F. Evers, Exact Relations between Multifractal Exponents at the Anderson Transition, Phys. Rev. Lett. 97, 046803 (2006) 0031-9007 10.1103/PhysRevLett.97.046803.
J. D. Miller and B. Derrida, Weak-disorder expansion for the Anderson model on a tree, J. Stat. Phys. 75, 357 (1994) 0022-4715 10.1007/BF02186867.
A. M. Somoza, M. Ortuño, and J. Prior, Universal Distribution Functions in Two-Dimensional Localized Systems, Phys. Rev. Lett. 99, 116602 (2007) 0031-9007 10.1103/PhysRevLett.99.116602.
F. Pietracaprina, V. Ros, and A. Scardicchio, Forward approximation as a mean-field approximation for the Anderson and many-body localization transitions, Phys. Rev. B 93, 054201 (2016) 2469-9950 10.1103/PhysRevB.93.054201.
G. Lemarié, Glassy Properties of Anderson Localization: Pinning, Avalanches, and Chaos, Phys. Rev. Lett. 122, 030401 (2019) 0031-9007 10.1103/PhysRevLett.122.030401.
J. Cook and B. Derrida, Directed polymers in a random medium: (Equation presented) expansion, Europhys. Lett. 10, 195 (1989) 0295-5075 10.1209/0295-5075/10/3/002.
M. V. Feigel'man, L. B. Ioffe, and M. Mézard, Superconductor-insulator transition and energy localization, Phys. Rev. B 82, 184534 (2010) 1098-0121 10.1103/PhysRevB.82.184534.
V. Oganesyan and D. A. Huse, Localization of interacting fermions at high temperature, Phys. Rev. B 75, 155111 (2007) 1098-0121 10.1103/PhysRevB.75.155111.
K. Kudo and T. Deguchi, Finite-size scaling with respect to interaction and disorder strength at the many-body localization transition, Phys. Rev. B 97, 220201 (R) (2018) 2469-9950 10.1103/PhysRevB.97.220201.
Y. Y. Atas, E. Bogomolny, O. Giraud, and G. Roux, Distribution of the Ratio of Consecutive Level Spacings in Random Matrix Ensembles, Phys. Rev. Lett. 110, 084101 (2013) 0031-9007 10.1103/PhysRevLett.110.084101.
Y. Atas, E. Bogomolny, O. Giraud, P. Vivo, and E. Vivo, Joint probability densities of level spacing ratios in random matrices, J. Phys. A: Math. Theor. 46, 355204 (2013) 1751-8113 10.1088/1751-8113/46/35/355204.
C. L. Bertrand and A. M. García-García, Anomalous Thouless energy and critical statistics on the metallic side of the many-body localization transition, Phys. Rev. B 94, 144201 (2016) 2469-9950 10.1103/PhysRevB.94.144201.
B. Fan and A. M. García-García, Superconductivity at the three-dimensional anderson metal-insulator transition, Phys. Rev. B 102, 184507 (2020) 10.1103/PhysRevB.102.184507.
O. Valba and A. Gorsky, Mobility Edge in the Anderson model on partially disordered random regular graphs, JETP Lett. 116, 398 (2022) 10.1134/S0021364022601750.
B. I. Shklovskii, B. Shapiro, B. R. Sears, P. Lambrianides, and H. B. Shore, Statistics of spectra of disordered systems near the metal-insulator transition, Phys. Rev. B 47, 11487 (1993) 0163-1829 10.1103/PhysRevB.47.11487.
E. B. Bogomolny, U. Gerland, and C. Schmit, Models of intermediate spectral statistics, Phys. Rev. E 59, R1315 (1999) 1063-651X 10.1103/PhysRevE.59.R1315.
M. Aizenman and S. Warzel, Absence of mobility edge for the Anderson random potential on tree graphs at weak disorder, Europhys. Lett. 96, 37004 (2011) 0295-5075 10.1209/0295-5075/96/37004.
M. Aizenman and S. Warzel, Extended States in a Lifshitz Tail Regime for Random Schrödinger Operators on Trees, Phys. Rev. Lett. 106, 136804 (2011) 0031-9007 10.1103/PhysRevLett.106.136804.
G. Lemarié, J. Chabé, P. Szriftgiser, J. C. Garreau, B. Grémaud, and D. Delande, Observation of the Anderson metal-insulator transition with atomic matter waves: Theory and experiment, Phys. Rev. A 80, 043626 (2009) 1050-2947 10.1103/PhysRevA.80.043626.
G. Lemarié, B. Grémaud, and D. Delande, Universality of the Anderson transition with the quasiperiodic kicked rotor, Europhys. Lett. 87, 37007 (2009) 0295-5075 10.1209/0295-5075/87/37007.
M. Sade, T. Kalisky, S. Havlin, and R. Berkovits, Localization transition on complex networks via spectral statistics, Phys. Rev. E 72, 066123 (2005) 1539-3755 10.1103/PhysRevE.72.066123.
F. J. Dyson, A Brownian-motion model for the eigenvalues of a random matrix, J. Math. Phys. 3, 1191 (1962) 0022-2488 10.1063/1.1703862.
C. Monthus, Level repulsion exponent (Equation presented) for many-body localization transitions and for Anderson localization transitions via Dyson Brownian motion, J. Stat. Mech. (2016) 033113 1742-5468 10.1088/1742-5468/2016/03/033113.
K. S. Tikhonov and A. D. Mirlin. Eigenstate correlations around the many-body localization transition. Phys. Rev. B 103, 064204 (2021) 10.1103/PhysRevB.103.064204.
J. T. Chalker, I. V. Lerner, and R. A. Smith, Random Walks through the Ensemble: Linking Spectral Statistics with Wave-Function Correlations in Disordered Metals, Phys. Rev. Lett. 77, 554 (1996) 0031-9007 10.1103/PhysRevLett.77.554.
M. Serbyn and J. E. Moore, Spectral statistics across the many-body localization transition, Phys. Rev. B 93, 041424 (R) (2016) 2469-9950 10.1103/PhysRevB.93.041424.
S. J. Garratt, S. Roy, and J. T. Chalker, Local resonances and parametric level dynamics in the many-body localized phase, Phys. Rev. B 104, 184203 (2021) 2469-9950 10.1103/PhysRevB.104.184203.
V. Kravtsov (private communication) (2019).
J. M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43, 2046 (1991) 1050-2947 10.1103/PhysRevA.43.2046.
M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50, 888 (1994) 1063-651X 10.1103/PhysRevE.50.888.
M. Rigol, V. Dunjko, and M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems, Nature (London) 452, 854 (2008) 0028-0836 10.1038/nature06838.
M. Aizenman and M. Aizenman, Resonant delocalization for random Schrödinger operators on tree graphs, J. Eur. Math. Soc. 15, 1167 (2013) 1435-9855 10.4171/JEMS/389.
G. De Tomasi, I. M. Khaymovich, F. Pollmann, and S. Warzel, Rare thermal bubbles at the many-body localization transition from the Fock space point of view, Phys. Rev. B 104, 024202 (2021) 2469-9950 10.1103/PhysRevB.104.024202.
J. M. Kosterlitz, Kosterlitz-Thouless physics: a review of key issues, Rep. Prog. Phys. 79, 026001 (2016) 0034-4885 10.1088/0034-4885/79/2/026001.
S. Roy and D. E. Logan, Fock-space anatomy of eigenstates across the many-body localization transition, Phys. Rev. B 104, 174201 (2021) 2469-9950 10.1103/PhysRevB.104.174201.
J. Sutradhar, S. Ghosh, S. Roy, D. E. Logan, S. Mukerjee, and S. Banerjee, Scaling of the Fock-space propagator and multifractality across the many-body localization transition, Phys. Rev. B 106, 054203 (2022) 2469-9950 10.1103/PhysRevB.106.054203.
D. J. Luitz, F. Huveneers, and W. De Roeck, How a Small Quantum Bath Can Thermalize Long Localized Chains, Phys. Rev. Lett. 119, 150602 (2017) 0031-9007 10.1103/PhysRevLett.119.150602.
M. Goihl, J. Eisert, and C. Krumnow, Exploration of the stability of many-body localized systems in the presence of a small bath, Phys. Rev. B 99, 195145 (2019) 2469-9950 10.1103/PhysRevB.99.195145.
P. J. D. Crowley and A. Chandran, Avalanche induced coexisting localized and thermal regions in disordered chains, Phys. Rev. Res. 2, 033262 (2020) 2643-1564 10.1103/PhysRevResearch.2.033262.
J. Léonard, M. Rispoli, A. Lukin, R. Schittko, S. Kim, J. Kwan, D. Sels, E. Demler, and M. Greiner, Signatures of bath-induced quantum avalanches in a many-body-localized system, arXiv:2012.15270.
J.-M. Stéphan, S. Furukawa, G. Misguich, and V. Pasquier, Shannon and entanglement entropies of one-and two-dimensional critical wave functions, Phys. Rev. B 80, 184421 (2009) 1098-0121 10.1103/PhysRevB.80.184421.
Y. Y. Atas and E. Bogomolny, Multifractality of eigenfunctions in spin chains, Phys. Rev. E 86, 021104 (2012) 1539-3755 10.1103/PhysRevE.86.021104.
D. J. Luitz, F. Alet, and N. Laflorencie, Universal Behavior beyond Multifractality in Quantum Many-Body Systems, Phys. Rev. Lett. 112, 057203 (2014) 0031-9007 10.1103/PhysRevLett.112.057203.
J. Lindinger, A. Buchleitner, and A. Rodríguez, Many-Body Multifractality throughout Bosonic Superfluid and Mott Insulator Phases, Phys. Rev. Lett. 122, 106603 (2019) 0031-9007 10.1103/PhysRevLett.122.106603.
S. H. Tekur, U. T. Bhosale, and M. S. Santhanam, Higher-order spacing ratios in random matrix theory and complex quantum systems, Phys. Rev. B 98, 104305 (2018) 2469-9950 10.1103/PhysRevB.98.104305.
S. H. Tekur and M. Santhanam, Symmetry deduction from spectral fluctuations in complex quantum systems, Phys. Rev. Res. 2, 032063 (R) (2020) 2643-1564 10.1103/PhysRevResearch.2.032063.
P. Rao, M. Vyas, and N. D. Chavda, Distribution of higher order spacing ratios in one-plus two-body random matrix ensembles with spin symmetry, Eur. Phys. J.: Spec. Top. 229, 2603 (2020) 1951-6355 10.1140/epjst/e2020-000145-6.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.