Article (Scientific journals)
Critical properties of the Anderson transition on random graphs: Two-parameter scaling theory, Kosterlitz-Thouless type flow, and many-body localization
García-Mata, I.; Martin, John; Giraud, O. et al.
2022In Physical Review. B, 106 (21)
Peer Reviewed verified by ORBi
 

Files


Full Text
PRB106_214202(2022).pdf
Publisher postprint (3.66 MB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Anderson transition; Random graphs; Many-body localization
Abstract :
[en] The Anderson transition in random graphs has raised great interest, partly out of the hope that its analogy with the many-body localization (MBL) transition might lead to a better understanding of this hotly debated phenomenon. Unlike the latter, many results for random graphs are now well established, in particular, the existence and precise value of a critical disorder separating a localized from an ergodic delocalized phase. However, the renormalization group flow and the nature of the transition are not well understood. In turn, recent works on the MBL transition have made the remarkable prediction that the flow is of Kosterlitz-Thouless type. In this paper, we show that the Anderson transition on graphs displays the same type of flow. Our work attests to the importance of rare branches along which wave functions have a much larger localization length ξ∥ than the one in the transverse direction ξ⊥. Importantly, these two lengths have different critical behaviors: ξ∥ diverges with a critical exponent ν∥ = 1, while ξ⊥ reaches a finite universal value ξ⊥c at the transition point Wc. Indeed,ξ^−1≈ξc^−1+ξ^−1, with ξ∼(W−W)^(−ν⊥) associated with a new critical exponent ν =1. The delocalized phase inherits the strongly nonergodic properties of the critical regime at short scales, but is ergodic at large scales, with a unique critical exponent ν = 1/2. This shows a very strong analogy with the MBL transition: the behavior of ξ⊥ is identical to that recently predicted for the typical localization length of MBL in a phenomenological renormalization group flow. We demonstrate these important properties for a small-world complex network model and show the universality of our results by considering different network parameters and different key observables of Anderson localization.
Disciplines :
Physics
Author, co-author :
García-Mata, I. 
Martin, John  ;  Université de Liège - ULiège > Département de physique
Giraud, O.
Georgeot, B. 
Dubertrand, R.
Lemarié, G.
Language :
English
Title :
Critical properties of the Anderson transition on random graphs: Two-parameter scaling theory, Kosterlitz-Thouless type flow, and many-body localization
Publication date :
05 December 2022
Journal title :
Physical Review. B
ISSN :
2469-9950
eISSN :
2469-9969
Publisher :
American Physical Society (APS)
Volume :
106
Issue :
21
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
CONICET - Consejo Nacional de Investigaciones Científicas y Técnicas
ANPCyT - Agencia Nacional de Promoción Científica y Tecnológica
Funding text :
Consortium des Equipements de Calcul Intensif (CECI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.- FNRS) under Grant No. 2.5020.11
Available on ORBi :
since 08 December 2022

Statistics


Number of views
50 (8 by ULiège)
Number of downloads
3 (2 by ULiège)

Scopus citations®
 
25
Scopus citations®
without self-citations
21
OpenCitations
 
3
OpenAlex citations
 
36

Bibliography


Similar publications



Contact ORBi