techniques: radial velocities; stars: activity; (stars:) binaries:; spectroscopic; stars: fundamental parameters; Astrophysics - Solar and; Stellar Astrophysics; Astrophysics - Earth and Planetary Astrophysics; Astrophysics - Astrophysics of Galaxies; Astrophysics - Instrumentation; and Methods for Astrophysics
Abstract :
[en] Our main aim is to test the non-variability of the radial velocity (RV) of a sample of 2351 standard stars used for wavelength calibration of the Radial Velocity Spectrometer (RVS) instrument onboard Gaia. In this paper, we present the spectroscopic analysis of these stars with the determination of their physical parameters by matching observed and synthetic spectra. We estimate the offset between different instruments after determining the shift between measured and archived RVs since the instrument pipelines use various numerical masks. Through the confirmation of the stability of the target RVs, we find 68 stars with a long-term variation having an acceleration that exceeds $10 \, \rm {m\, s^{-1}\,yr^{-1}}$. This suggests a barycentric reflex motion caused by a companion. As activity phenomena may be the source of periodic and trend-like RV variations in stars with putative planetary companions, we analysed various activity indicators in order to check their correlations to the RV changes. Among the trend stars, 18 have a trend model scatter greater than $100 \, \rm {m\, s^{-1}}$ over a time span from 10 to 12 yr. We also confirm that six stars with known substellar companions have a total model scatter, 3σ, exceeding the threshold set by Gaia, that is, $300 \, \rm {m\, s^{-1}}$. In addition, TYC8963-01543-1, an SB2 star, has data scatter $\sigma = 176.6\, \rm {m\, s^{-1}}$. Four more other stars are revealed to be variable after combining data from different instruments. Despite the presence of low-amplitude changes, a very large fraction of our sample (98.8 per cent) appears suitable as RV calibrators for Gaia RVS.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Boulkaboul, A.; CRAAG - Centre de Recherche en Astronomie, Astrophysique et Géophysique, Route de l'Observatoire, Bp 63 Bouzareah, DZ-16340 Algiers, Algeria, University of Science and Technology Houari Boumediene, Alia, DZ-16000 Algiers, Algeria
Damerdji, Yassine ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Groupe d'astrophysique des hautes énergies (GAPHE)
Morel, Thierry ; Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR)
Frémat, Y.; Royal Observatory of Belgium
Soubiran, C.; Observatoire de Bordeaux
Gosset, Eric ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Groupe d'astrophysique des hautes énergies (GAPHE)
Abdelatif, T. E.; CRAAG - Centre de Recherche en Astronomie, Astrophysique et Géophysique, Route de l'Observatoire, Bp 63 Bouzareah, DZ-16340 Algiers, Algeria
Language :
English
Title :
Analysis of Gaia radial-velocity standards: stability and new substellar companion candidates
Glebocki R., Gnacinski P., 2005, in Favata F., Hussain G.∼A.∼J, Battrick B, rds, 13th Cambridge Workshop on Cool Stars, Stellar Systems and the Sun. Vol. 560, p. 571
Gonzales E. J., Crepp J. R., Bechter E. B., Wood C. M., Johnson J. A., Montet B. T., Isaacson H., Howard A. W., 2020, ApJ, 893, 27
Gosset E., Royer P., Rauw G., Manfroid J., Vreux J. M., 2001, MNRAS, 327, 435
Gray D. F., 2021, The Observation and Analysis of Stellar Photospheres. Cambridge Univ. Press, Cambridge
Gustafsson B. et al., 2008, A&A, 486, 951
Hébrard G. et al., 2016, A&A, 588, A145
Heck A., Manfroid J., Mersch G., 1985, A&AS, 59, 63
Hinkel N. R., Unterborn C., Kane S. R., Somers G., Galvez R., 2019, ApJ, 880, 49
Husser T.-O., Wende-von Berg S., Dreizler S., Homeier D., Reiners A., Barman T., Hauschildt P. H., 2013, A&A, 553, A6
Krystek M., Anton M., 2007, Meas. Sci. Technol., 18, 3438
Lenzen R. et al., 2003, in Masanori I, F∼M Moorwood A, eds, Instrument Design and Performance for Optical/Infrared Ground-based Telescopes. Vol, 4841, SPIE, p. 944
Liu M. C., Fischer D. A., Graham J. R., Lloyd J. P., Marcy G. W., Butler R. P., 2002, ApJ, 571, 519
Lo Curto G. et al., 2015, The Messenger, 162, 9
Lovis C. et al., 2011, preprint (arXiv:1107.5325)
Martínez Fiorenzano A. F., Gratton R. G., Desidera S., Cosentino R., Endl M., 2005, A&A, 442, 775
MATLAB, 2022, version 9.12.0 (R2022a). The MathWorks Inc., Natick, MA
Nordström B., Stefanik R. P., Latham D. W., Andersen J., 1997, A&AS, 126, 21
Noyes R. W. et al., 2008, ApJ, 673, L79
Palacios A., Gebran M., Josselin E., Martins F., Plez B., Belmas M., Lebre A., 2010, A&A, 516, A13
Pecaut M. J., Mamajek E. E., 2013, ApJS, 208, 9
Petit P. et al., 2014, PASP, 126, 469
Pourbaix D. et al., 2004, A&A, 424, 727
Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P., 1986, Numerical Recipes in Fortran 77, Cambridge university press, New York
Queloz D. et al., 2001, A&A, 379, 279
Raghavan D. et al., 2010, ApJS, 190, 1
Rickman E., Ségransan D., Hagelberg J., Beuzit J.-L., Cheetham A., Delisle J.-B., Forveille T., Udry S., 2020, A&A, 635, A203
Robertson P., Endl M., Cochran W. D., Dodson-Robinson S. E., 2013, ApJ, 764, 3
Rousset G. et al., 2003, in Wizinowich P. L., Bonaccini D., eds, Proc. SPIE Conf. Ser.Vol. 4839, Adaptive Optical System Technologies II. SPIE, Bellingham, p. 140
Santos N. C. et al., 2002, A&A, 392, 215
Santos N. C. et al., 2014, A&A, 566, A35
Santos N. C., Mayor M., Naef D., Pepe F., Queloz D., Udry S., Blecha A., 2000, A&A, 361, 265
Sartoretti P. et al., 2018, A&A, 616, A6
Soubiran C. et al., 2018, A&A, 616, A7 (CS18)
Soubiran C., Jasniewicz G., Chemin L., Crifo F., Udry S., Hestroffer D., Katz D., 2013, A&A, 552, A64(CS13)