orbital energy; Ruddlesden-Popper; halide perovskites; tunable optoelectronic application
Disciplines :
Physics
Author, co-author :
Tang, G.
Wang, V.
Zhang, Y.
Ghosez, Philippe ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM)
Hong, J.
Language :
English
Title :
Orbital-Energy Splitting in Anion Ordered Ruddlesden-Popper Halide Perovskites for Tunable Optoelectronic Applications.
Jiang, Q., Zhao, Y., Zhang, X., Yang, X., Chen, Y., Chu, Z., Ye, Q., Li, X., Yin, Z., You, J., Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13 (2019), 460–466.
Yin, W.J., Shi, T., Yan, Y., Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 26 (2014), 4653–4658.
Yin, W.-J., Shi, T., Yan, Y., Superior photovoltaic properties of lead halide perovskites: insights from first-principles theory. J. Phys. Chem. C 119 (2015), 5253–5264.
Etgar, L., The merit of perovskite's dimensionality; can this replace the 3D halide perovskite?. Energy Environ. Sci. 11 (2018), 234–242.
Lin, H., Zhou, C., Tian, Y., Siegrist, T., Ma, B., Low-dimensional organometal halide perovskites. ACS Energy Lett. 3 (2017), 54–62.
Zhou, C., Tian, Y., Wang, M., Rose, A., Besara, T., Doyle, N.K., Yuan, Z., Wang, J.C., Clark, R., Hu, Y., Low-dimensional organic tin bromide perovskites and their photoinduced structural transformation. Angew. Chem. Int. Ed. 56 (2017), 9018–9022.
Wang, J., Chen, H., Wei, S.H., Yin, W.J., Materials design of solar cell absorbers beyond perovskites and conventional semiconductors via combining tetrahedral and octahedral coordination. Adv. Mater., 31, 2019, 1806593.
Tsai, H., Nie, W., Blancon, J.-C., Stoumpos, C.C., Asadpour, R., Harutyunyan, B., Neukirch, A.J., Verduzco, R., Crochet, J.J., Tretiak, S., High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536 (2016), 312–316.
Savory, C.N., Walsh, A., Scanlon, D.O., Can Pb-free halide double perovskites support high-efficiency solar cells?. ACS Energy Lett. 1 (2016), 949–955.
Slavney, A.H., Hu, T., Lindenberg, A.M., Karunadasa, H.I., A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc. 138 (2016), 2138–2141.
Xiao, Z., Meng, W., Wang, J., Mitzi, D.B., Yan, Y., Searching for promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality. Mater. Horiz. 4 (2017), 206–216.
Tang, G., Xiao, Z., Hong, J., Designing two-dimensional properties in three-dimensional halide perovskites via orbital engineering. J. Phys. Chem. Lett. 10 (2019), 6688–6694.
Zhang, J., Song, L., Madsen, G.K., Fischer, K.F., Zhang, W., Shi, X., Iversen, B.B., Designing high-performance layered thermoelectric materials through orbital engineering. Nat. Commun. 7 (2016), 1–7.
Jeon, N.J., Noh, J.H., Yang, W.S., Kim, Y.C., Ryu, S., Seo, J., Seok, S.I., Compositional engineering of perovskite materials for high-performance solar cells. Nature 517 (2015), 476–480.
Zhu, C., Niu, X., Fu, Y., Li, N., Hu, C., Chen, Y., He, X., Na, G., Liu, P., Zai, H., Strain engineering in perovskite solar cells and its impacts on carrier dynamics. Nat. Commun. 10 (2019), 1–11.
McClure, E.T., McCormick, A.P., Woodward, P.M., Four lead-free layered double perovskites with the n = 1 Ruddlesden–Popper structure. Inorg. Chem. 59 (2020), 6010–6017.
Soe, C.M.M., Nagabhushana, G., Shivaramaiah, R., Tsai, H., Nie, W., Blancon, J.-C., Melkonyan, F., Cao, D.H., Traoré, B., Pedesseau, L., Structural and thermodynamic limits of layer thickness in 2D halide perovskites. Proc. Natl. Acad. Sci. U.S.A 116 (2019), 58–66.
Zheng, Y., Niu, T., Ran, X., Qiu, J., Li, B., Xia, Y., Chen, Y., Huang, W., Unique characteristics of 2D Ruddlesden–Popper (2DRP) perovskite for future photovoltaic application. J. Mater. Chem. 7 (2019), 13860–13872.
Acharyya, P., Maji, K., Kundu, K., Biswas, K., 2D nanoplates and scaled-up bulk polycrystals of Ruddlesden–Popper, Cs2PbI2Cl2 for optoelectronic applications. ACS Appl. Nano Mater. 3 (2020), 877–886.
Akkerman, Q.A., Bladt, E., Petralanda, U., Dang, Z., Sartori, E., Baranov, D., Abdelhady, A.L., Infante, I., Bals, S., Manna, L., Fully inorganic Ruddlesden–Popper double Cl–I and triple Cl–Br–I lead halide perovskite nanocrystals. Chem. Mater. 31 (2019), 2182–2190.
Li, J., Stoumpos, C.C., Trimarchi, G.G., Chung, I., Mao, L., Chen, M., Wasielewski, M.R., Wang, L., Kanatzidis, M.G., Air-stable direct bandgap perovskite semiconductors: all-inorganic tin-based heteroleptic halides AxSnClyIz (A = Cs, Rb). Chem. Mater. 30 (2018), 4847–4856.
Li, X., Wang, S., Zhao, S., Li, L., Li, Y., Zhao, B., Shen, Y., Wu, Z., Shan, P., Luo, J., Mixing halogens to assemble an all-inorganic layered perovskite with warm white-light emission. Chem. Eur J. 24 (2018), 9243–9246.
Tang, G., Ghosez, P., Hong, J., Band-edge orbital engineering of perovskite semiconductors for optoelectronic applications. J. Phys. Chem. Lett. 12 (2021), 4227–4239.
Ding, Y.-F., Zhao, Q.-Q., Yu, Z.-L., Zhao, Y.-Q., Liu, B., He, P.-B., Zhou, H., Li, K., Yin, S.-F., Cai, M.-Q., Strong thickness-dependent quantum confinement in all-inorganic perovskite Cs2PbI4 with a Ruddlesden–Popper structure. J. Mater. Chem. C 7 (2019), 7433–7441.
Zhang, L., Liang, W., How the structures and properties of two-dimensional layered perovskites MAPbI3 and CsPbI3 vary with the number of layers. J. Phys. Chem. Lett. 8 (2017), 1517–1523.
Cheng, P., Wu, T., Zhang, J., Li, Y., Liu, J., Jiang, L., Mao, X., Lu, R.-F., Deng, W.-Q., Han, K., (C6H5C2H4NH3)2GeI4: a layered two-dimensional perovskite with potential for photovoltaic applications. J. Phys. Chem. Lett. 8 (2017), 4402–4406.
Mitzi, D.B., Synthesis, crystal structure, and optical and thermal properties of (C4H9NH3)2MI4 (M = Ge, Sn, Pb). Chem. Mater. 8 (1996), 791–800.
Chiara, R., Morana, M., Boiocchi, M., Coduri, M., Striccoli, M., Fracassi, F., Listorti, A., Mahata, A., Quadrelli, P., Gaboardi, M., Role of spacer cations and structural distortion in two-dimensional germanium halide perovskites. J. Mater. Chem. C 9 (2021), 9899–9906.
Goesten, M.G., Hoffmann, R., Mirrors of bonding in metal halide perovskites. J. Am. Chem. Soc. 140 (2018), 12996–13010.
Kato, M., Nishiwaki, M., Fujiwara, H., Very high oscillator strength in the band-edge light absorption of zincblende, chalcopyrite, kesterite, and hybrid perovskite solar cell materials. Phys. Rev. Mater., 4, 2020, 035402.
Meng, W., Wang, X., Xiao, Z., Wang, J., Mitzi, D.B., Yan, Y., Parity-forbidden transitions and their impact on the optical absorption properties of lead-free metal halide perovskites and double perovskites. J. Phys. Chem. Lett. 8 (2017), 2999–3007.
Wang, V., Xu, N., Liu, J.-C., Tang, G., Geng, W.-T., VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun., 267, 2021, 108033.
Pan, L.-Y., Ding, Y.-F., Yu, Z.-L., Wan, Q., Liu, B., Cai, M.-Q., Layer-dependent optoelectronic property for all-inorganic two-dimensional mixed halide perovskite Cs2PbI2Cl2 with a Ruddlesden–Popper structure. J. Power Sources, 451, 2020, 227732.
Xu, Z., Chen, M., Liu, S.F., Layer-dependent ultrahigh-mobility transport properties in all-inorganic two-dimensional Cs2PbI2Cl2 and Cs2SnI2Cl2 perovskites. J. Phys. Chem. C 123 (2019), 27978–27985.
Cardona, P.Y. Y.a.M., Fundamentals of Semiconductors: Physics and Materials Properties. 2010, Springer, Heidelberg.
Dursun, I., De Bastiani, M., Turedi, B., Alamer, B., Shkurenko, A., Yin, J., El-Zohry, A.M., Gereige, I., AlSaggaf, A., Mohammed, O.F., CsPb2Br5 single crystals: synthesis and characterization. ChemSusChem 10 (2017), 3746–3749.
Saparov, B., Hong, F., Sun, J.-P., Duan, H.-S., Meng, W., Cameron, S., Hill, I.G., Yan, Y., Mitzi, D.B., Thin-film preparation and characterization of Cs3Sb2I9: a lead-free layered perovskite semiconductor. Chem. Mater. 27 (2015), 5622–5632.
Marronnier, A., Roma, G., Boyer-Richard, S., Pedesseau, L., Jancu, J.-M., Bonnassieux, Y., Katan, C., Stoumpos, C.C., Kanatzidis, M.G., Even, J., Anharmonicity and disorder in the black phases of cesium lead iodide used for stable inorganic perovskite solar cells. ACS Nano 12 (2018), 3477–3486.