Shen et al. 2022_What makes a good phorophyte? Predicting occupancy species richness and abundance of vascular epiphytes in a lowland seasonal tropical forest.pdf
Nature and Landscape Conservation; Environmental Science (miscellaneous); Ecology; Global and Planetary Change; Forestry
Abstract :
[en] Epiphytes typically exhibit clustered distribution patterns, but predicting the spatial variation of their distribution at fine scales has long been a challenge. Taking advantage of a canopy crane giving access to 1.1 ha of lowland seasonal rainforest in Yunnan (China), we assess here which factors promote the probability that a given tree hosts epiphytes, and the variation of species richness and abundance of epiphytic spermatophytes and ferns among trees. Variation in epiphyte species richness as a function of host tree size, characteristics of its surrounding environment, topography and microclimatic conditions, were analyzed by Random Forest. Epiphytic spermatophytes and ferns occupied 2.3 and 10.8% of the available host trees, respectively. Significant models predicting which trees are more likely to host epiphytes than others were obtained, indicating that host tree characteristics and their local environment play a significant role in determining which host tree is most likely to be colonized. These models, as well as models for species richness and abundance, however, exhibited a moderate to low accuracy (r2 0.28 and 0.24 and of 0.12 and 0.14 for spermatophyte and fern richness and abundance, respectively). The best predictor of the presence of epiphytes on a tree, of its epiphytic species richness and abundance, was its DBH. In ferns, however, two peaks of species richness were observed, representing shade-loving ferns on small trees and sun-loving ferns on large trees. Microclimatic conditions and light intensity were the second best factor accounting for variation in species richness and abundance among trees. The contribution of liana infestation, host tree identity, and characteristics of neighboring trees were marginal. Our inclusion of a large number of host-tree characteristics and their local environment did not allow for an apparent improvement of model accuracy over studies with a more limited number of predictors, pointing to the role of chance upon tree colonization. Our results confirm the utmost importance of large trees with emergent canopies for the conservation of the epiphytic flora, but also indicate that epiphytic diversity assessments in tropical forests must also include small understorey trees, which should be further considered for conservation. The importance of the micro-climatic conditions that prevail at the level of each individual host tree further points to the necessity of maintaining a buffer zone around large host trees targeted for conservation.
Collart, Flavien ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Biologie de l'évolution et de la conservation - Unité aCREA-Ulg (Conseils et Recherches en Ecologie Appliquée)
Guisan, Antoine
Su, Yang
Hu, Hai-Xia
Wu, Yi
Dong, Jin-Long
Vanderpoorten, Alain ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Biologie de l'évolution et de la conservation - Unité aCREA-Ulg (Conseils et Recherches en Ecologie Appliquée)
Language :
English
Title :
What makes a good phorophyte? Predicting occupancy, species richness and abundance of vascular epiphytes in a lowland seasonal tropical forest
NSCF - National Natural Science Foundation of China Natural Science Foundation of Yunnan Province CSC - China Scholarship Council FWB - Fédération Wallonie-Bruxelles F.R.S.-FNRS - Fonds de la Recherche Scientifique
Adhikari Y. P. Fischer A. Fischer H. S. Rokaya M. B. Bhattarai P. Gruppe A. (2017). Diversity, composition and host-species relationships of epiphytic orchids and ferns in two forests in Nepal. J. Mt. Sci. 14 1065–1075. 10.1007/s11629-016-4194-x
Adhikari Y. P. Hoffmann S. Kunwar R. M. Bobrowski M. Jentsch A. Beierkuhnlein C. (2021). Vascular epiphyte diversity and host tree architecture in two forest management types in the Himalaya. Glob. Ecol. Conserv. 27:e01544. 10.1016/j.gecco.2021.e01544
Baker T. P. Jordan G. J. Steel E. A. Fountain-Jones N. M. Wardlaw T. J. Baker S. C. (2014). Microclimate through space and time: microclimatic variation at the edge of regeneration forests over daily, yearly and decadal time scales. For. Ecol. Manag. 334 174–184. 10.1016/j.foreco.2014.09.008
Basset Y. Cizek L. Cuenoud P. Didham R. K. Guilhaumon F. Missa O. et al. (2012). Arthropod diversity in a tropical forest. Science 338 1481–1484. 10.1126/science.1226727 23239740
Boch S. Berlinger M. Fischer M. Knop E. Nentwig W. Türke M. et al. (2013). Fern and bryophyte endozoochory by slugs. Oecologia 172 817–822. 10.1007/s00442-012-2536-0 23203510
Boch S. Berlinger M. Prati D. Fischer M. (2016). Is fern endozoochory widespread among fern-eating herbivores? Plant Ecol. 217 13–20. 10.1007/s11258-015-0554-9
Bradford M. Murphy H. T. (2019). The importance of large-diameter trees in the wet tropical rainforests of Australia. PLoS One 14:e0208377. 10.1371/journal.pone.0208377 31042705
Bramer I. Anderson B. J. Bennie J. Bladon A. J. De Frenne P. et al. (2018). Advances in monitoring and modelling climate at ecologically relevant scales. Adv. Ecol. Res. 58 101–161. 10.1016/bs.aecr.2017.12.005
Callaway R. M. Reinhart K. O. Moore G. W. Moore D. J. Pennings S. C. (2002). Epiphyte host preferences and host traits: mechanisms for species-specific interactions. Oecologia 132 221–230. 10.1007/s00442-002-0943-3 28547355
Chai Z. Z. (2021). Forestsas: An R Package for Forest Spatial Structure Analysis Systems. R Package Version 0.1.0. Available online at: https://mran.microsoft.com/snapshot/2020-03-15/web/packages/forestSAS/forestSAS.pdf
Dawkins H. C. Field D. R. B. (1978). A Long-term Surveillance System for British Woodland Vegetation. Oxford: Oxford University.
De Frenne P. Lenoir J. Luoto M. Scheffers B. R. Zellweger F. Aalto J. et al. (2021). Forest microclimates and climate change: importance, drivers and future research agenda. Global Change Biol. 27 2279–2297. 10.1111/gcb.15569 33725415
Dias-Pereira J. Andrade G. C. da Silva L. C. Ferrari F. B. Ribas R. F. Neto L. M. et al. (2022). Leaf structural adaptations in vascular epiphytes from the Atlantic rainforest along phorophyte vertical stratification. Flora 288:152022. 10.1016/j.flora.2022.152022
Dormann C. F. Elith J. Bacher S. Buchmann C. Carl G. Carré G. et al. (2013). Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36 27–46. 10.1111/j.1600-0587.2012.07348.x
Dymytrova L. Stofer S. Ginzler C. Breiner F. T. Scheidegger C. (2016). Forest-structure data improve distribution models of threatened habitat specialists: implications for conservation of epiphytic lichens in forest landscapes. Biol. Conserv. 196 31–38. 10.1016/j.biocon.2016.01.030
Eaton S. Ellis C. Genney D. Thompson R. Yahr R. Haydon D. T. (2018). Adding small species to the big picture: species distribution modelling in an age of landscape scale conservation. Biol. Conserv. 217 251–258. 10.1016/j.biocon.2017.11.012
Einzmann H. J. Zotz G. (2017). Dispersal and establishment of vascular epiphytes in human-modified landscapes. AB Plants 9:lx052. 10.1093/aobpla/plx052 29225763
Fardhani I. Torimaru T. Kisanuki H. (2021). Effects of tree density and the topography of the sites of host trees on epiphytic orchid communities on Schima wallichii in a forest in West Java, Indonesia. Acta Oecol. 111:103739. 10.1016/j.actao.2021.103739
Flores-Tolentino M. García-Valdés R. Saénz-Romero C. Ávila-Díaz I. Paz H. Lopez-Toledo L. (2020). Distribution and conservation of species is misestimated if biotic interactions are ignored: the case of the orchid Laelia speciosa. Sci. Rep. 10:9542. 10.1038/s41598-020-63638-9 32533000
Francisco T. M. Couto D. R. Garbin M. L. Misaki F. Ruiz-Miranda C. R. (2021). Role of spatial and environmental factors in structuring vascular epiphyte communities in two neotropical ecosystems. Perspect. Plant Ecol. Evol. Syst. 51:125621. 10.1016/j.ppees.2021.125621
Gallant J. C. Wilson J. P. (2000). “Primary topographic attributes,” in Terrain Analysis: Principles and Applications, eds Wilson J. P. Gallant J. C. (New York, NY: Wiley), 51–85. 10.1016/S0925-8574(00)00178-6
Guisan A. Thuiller W. Zimmermann N. (2017). Habitat Suitability and Distribution Models with Applications in R. Cambridge: Cambridge University Press, 10.1017/9781139028271
Hayward R. M. Martin T. E. Utteridge T. M. A. Mustari A. H. Marshall A. R. (2017). Are neotropical predictors of forest epiphyte–host relationships consistent in Indonesia? J. Trop. Ecol. 33 178–182. 10.1017/S0266467416000626
Hidasi-Neto J. Bailey R. I. Vasseur C. Woas S. Ulrich W. Jambon O. et al. (2019). A forest canopy as a living archipelago: why phylogenetic isolation may increase and age decrease diversity. J. Biogeogr. 46 158–169. 10.1111/jbi.13469
Hijmans R. J. (2021). raster: Geographic data analysis and modeling. R Package Version 3, 4–13. Available online at: https://CRAN.R-project.org/package=raster
Hirata A. Kamijo T. Saito S. (2008). “Host trait preferences and distribution of vascular epiphytes in a warm-temperate forest,” in Forest Ecology, ed. van der Valk A. (Dordrecht: Springer), 247–254. 10.1007/978-90-481-2795-5_19
Johansson D. (1974). Ecology of vascular epiphytes in West African rain forest. Acta Phytogeogr. Suec. 59 1–136.
Kovács B. Tinya F. Ódor P. (2017). Stand structural drivers of microclimate in mature temperate mixed forests. Agric. For. Meteorol. 234 11–21. 10.1016/j.agrformet.2016.11.268
Krömer T. Kessler M. Gradstein S. R. (2007). Vertical stratification of vascular epiphytes in submontane and montane forest of the Bolivian Andes: the importance of the understory. Plant Ecol. 189 261–278. 10.1007/s11258-006-9182-8
Kuhn M. (2021). Caret: Classification and Regression Training. R Package Version 6.0-88. Available online at: https://CRAN.R-project.org/package=caret (accessed April 19, 2022).
Ledent A. Gauthier J. Pereira M. Overson R. Laenen B. Mardulyn P. et al. (2020). What do tropical cryptogams reveal? strong genetic structure in Amazonian bryophytes. New Phytol. 228 640–650. 10.1111/nph.16720 32488881
Liaw A. Wiener M. (2002). Classification and regression by RandomForest. R News 2 18–22.
Lowman M. D. Nadkarni N. M. (1995). Forest Canopies. San Diego, NY: Academic Press, 10.1007/BF00044643
Lowman M. D. Rinker H. B. (2004). Forest Canopies, 2nd Edn. Cambridge, MA: Elsevier Academic Press.
Lowman M. D. Schowalter T. D. (2012). Plant science in forest canopies – the first 30 years of advances and challenges (1980-2010). New Phytol. 194 12–27. 10.1111/j.1469-8137.2012.04076.x 22348430
Mendieta-Leiva G. Buckley H. L. Zotz G. (2022). Directional changes over time in the species composition of tropical vascular epiphyte assemblages. J. Ecol. 10 553–568. 10.1111/1365-2745.13817
Mota de Oliveira S. ter Steege H. (2015). Bryophyte communities in the Amazon forest are regulated by height on the host tree and site elevation. J. Ecol. 103 441–450. 10.1111/1365-2745.12359
Murakami M. Nunes Ramos F. Durand M. Ashton R. Batke S. P. (2022). Quantification and variation of microclimatic variables within tree canopies - considerations for epiphyte research. Front. Forests Global Change 5:828725. 10.3389/ffgc.2022.828725
Nadkarni N. M. (2010). “Potential effects of global climate change on epiphytes in a tropical montane cloud forest: an experimental study from Monteverde, Costa Rica,” in Tropical Montane Cloud Forests: Science for Conservation and Management, eds Bruijnzeel L. A. Scatena F. N. Hamilton L. S. (New York, NY: Cambridge University Press), 557–565. 10.1017/CBO9780511778384.059
Nadyeina O. Dymytrova L. Naumovych A. Postoyalkin S. Werth S. Cheenacharoen S. et al. (2014). Microclimatic differentiation of gene pools in the L obaria pulmonaria symbiosis in a primeval forest landscape. Mol. Ecol. 23 5164–5178. 10.1111/mec.12928 25244617
Nakamura A. Kitching R. L. Cao M. Creedy T. J. Fayle T. M. Freiberg M. et al. (2017). Forests and their canopies: achievements and horizons in canopy science. Trends Ecol. Evol. 32 438–451. 10.1016/j.tree.2017.02.02
Nieder J. Engwald S. Klawun M. Barthlott W. (2000). Spatial distribution of vascular epiphytes (including hemiepiphytes) in a lowland Amazonian rain forest (Surumoni crane plot) of Southern Venezuela. Biotropica 32 385–396. 10.1111/j.1744-7429.2000.tb00485.x
Ozanne C. M. Anhuf D. Boulter S. L. Keller M. Kitching R. L. Körner C. et al. (2003). Biodiversity meets the atmosphere: a global view of forest canopies. Science 301 183–186. 10.1126/science.1084507 12855799
Paillet Y. Debaive N. Archaux F. Cateau E. Gilg O. Guilbert E. (2019). Nothing else matters? tree diameter and living status have more effects than biogeoclimatic context on microhabitat number and occurrence: an analysis in French forest reserves. PLoS One 14:e0216500. 10.1371/journal.pone.0216500 31071149
R Core Team (2021). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
Reina-Rodríguez G. A. Rubiano J. E. Llanos F. A. C. Otero J. T. (2016). Spatial distribution of dry forest orchids in the cauca river valley and dagua canyon: towards a conservation strategy to climate change. J. Nat. Conserv. 30 32–43. 10.1016/j.jnc.2016.01.004
Rutishauser E. Barthélémy D. Blanc L. Eric-André N. (2011). Crown fragmentation assessment in tropical trees: method, insights and perspectives. For. Ecol. Manag. 261 400–407. 10.1016/j.foreco.2010.10.025
Sáyago R. Lopezaraiza-Mikel M. Quesada M. Álvarez-Añorve M. Y. Cascante-Marín A. Bastida J. M. (2013). Evaluating factors that predict the structure of a commensalistic epiphyte–phorophyte network. Proc. R. Soc. B - Biol. Sci. 280:20122821. 10.1098/rspb.2012.2821 23407832
Seidler T. G. Plotkin J. B. (2006). Seed dispersal and spatial pattern in tropical trees. PLoS Biol. 4:e344. 10.1371/journal.pbio.0040344 17048988
Seto M. Higa M. Ishikawa S. (2020). Host size preferences of vascular epiphytes are reflected in their spatial distributions: a study of a mature broadleaf evergreen forest in Kochi. Japan. J. For. Res. 25 358–363. 10.1080/13416979.2020.1779909
Shen T. Corlett R. T. Song L. Ma W. Z. Guo X. L. Song Y. et al. (2018). Vertical gradient in bryophyte diversity and species composition in tropical and subtropical forests in Yunnan. SW China. J. Veg. Sci. 29 1075–1087. 10.1111/jvs.12692
Shen T. Corlett R. Collart F. Kasprzyk T. Guo X.-L. Patiño J. et al. (2022). Microclimatic variations in tropical canopies: a glimpse into the processes of community assembly in epiphytic bryophyte communities. J. Ecol. 10.1111/1365-2745.14011 [Epub ahead of print].
Snäll T. Ehrlén J. Rydin H. (2005). Colonisation–extinction dynamics of an epiphyte metapopulation in a dynamic landscape. Ecology 86 106–115. 10.1890/04-0531
Speiser J. L. Miller M. E. Tooze J. Ip E. (2019). A comparison of random forest variable selection methods for classification prediction modeling. Exp. Syst. Appl. 134 93–101.
Spicer M. E. Ortega J. Carson W. P. (2022). Substrate texture and natural removal processes mediate vascular epiphyte establishment: experimental evidence from a Panamanian cloud forest. J. Torrey Bot. Soc. 149 86–97. 10.3159/TORREY-D-21-00038 2354044
Sporn S. G. Bos M. M. Kessler M. Gradstein S. R. (2010). Vertical distribution of epiphytic bryophytes in an Indonesian rainforest. Biodivers. Conserv. 19 745–760. 10.1007/s10531-009-9731-2
Stork N. E. Adis J. Didham R. K. (1997). Canopy Arthropods. London: Chapman and Hall.
Taylor A. Burns K. (2015). Epiphyte community development throughout tree ontogeny: an island ontogeny framework. J. Veg. Sci. 26 902–910. 10.1111/jvs.12289
ter Steege H. T. Cornelissen J. H. C. (1989). Distribution and ecology of vascular epiphytes in lowland rain forest of Guyana. Biotropica 21 331–339. 10.2307/2388283
Toivonen J. M. Suominen L. Gonzales-Inca C. A. Trujillo Paucar G. Jones M. M. (2017). Environmental drivers of vascular and non-vascular epiphyte abundance in tropical pre-montane cloud forests in Northern Peru. J. Veg. Sci. 28 1198–1208. 10.1111/jvs.12577
Tremblay R. L. (2008). Ecological correlates and short-term effects of relocation of a rare epiphytic orchid after Hurricane Georges. Endanger. Species Res. 5 83–90. 10.3354/esr00114
Vergara-Torres C. A. Corona-López A. M. Díaz-Castelazo C. Toledo-Hernández V. H. Flores-Palacios A. (2018). Effect of seed removal by ants on the host-epiphyte associations in a tropical dry forest of central Mexico. AB Plants 10:ly056. 10.1093/aobpla/ply056 30338050
Victoriano-Romero E. García-Franco J. G. Mehltreter K. Valencia-Díaz S. Toledo-Hernández V. H. Flores-Palacios A. (2020). Epiphyte associations and canopy soil volume: nutrient capital and factors influencing soil retention in the canopy. Plant Biol. 22 541–552. 10.1111/plb.13080 31834980
Von Arx G. Graf Pannatier E. Thimonier A. Rebetez M. (2013). Microclimate in forests with varying leaf area index and soil moisture: potential implications for seedling establishment in a changing climate. J. Ecol. 101 1201–1213.
Wagner K. Mendieta-Leiva G. Zotz G. (2015). Host specificity in vascular epiphytes: a review of methodology, empirical evidence and potential mechanisms. AB Plants 7:lu092. 10.1093/aobpla/plu092 25564514
Wagner L. Zotz G. (2019). Including dynamics in the equation: tree growth rates and host specificity of vascular epiphytes. J. Ecol. 108 761–773. 10.1111/1365-2745.13333
Wang Q. Guan W. B. Wong M. H. G. Ranjitkar S. Sun W. N. Pan Y. et al. (2017). Tree size predicts vascular epiphytic richness of traditional cultivated tea plantations in Southwestern China. Glob. Ecol. Conserv. 10 147–153. 10.1016/j.gecco.2017.03.002
Winkler M. Koch M. Hietz P. (2011). High gene flow in epiphytic ferns despite habitat loss and fragmentation. Conserv. Genet. 12 1411–1420. 10.1007/s10592-011-0239-4 23935561
Woods C. L. Cardelús C. L. DeWalt S. J. (2015). Microhabitat associations of vascular epiphytes in a wet tropical forest canopy. J. Ecol. 103 421–430. 10.1111/1365-2745.12357
Zhang L. Hui G. Hu Y. Zhao Z. (2018). Spatial structural characteristics of forests dominated by Pinus tabulaeformis Carr. PLoS One 13:e0194710. 10.1371/journal.pone.0194710 29652916
Zhang L. Nurvianto S. Harrison R. (2010). Factors affecting the distribution and abundance of Asplenium nidus L. in a tropical lowland rain forest in Peninsular Malaysia. Biotropica 42 464–469. 10.1111/j.1744-7429.2009.00607.x
Zhao M. Geekiyanage N. Xu J. Khin M. M. Nurdiana D. R. Paudel E. et al. (2015). Structure of the epiphyte community in a tropical montane forest in SW China. PLoS One 10:e0122210. 10.1371/journal.pone.0122210 25856457
Zotz G. (2016). Plants on plants – The biology of vascular epiphytes. Cham: Springer International Publishing.
Zotz G. Bermejo P. Dietz H. (1999). The epiphyte vegetation of Annona glabra on Barro Colorado island, Panama. J. Biogeogr. 26 761–776. 10.1046/j.1365-2699.1999.00304.x
Zotz G. Schultz S. (2008). The vascular epiphytes of a lowland forest in Panama—species composition and spatial structure. Plant Ecol. 195 131–141.
Zotz G. Vollrath B. (2003). The epiphyte vegetation of the palm Socratea exorrhiza – correlations with tree size, tree age and bryophyte cover. J. Trop. Ecol. 19 81–90. 10.1017/S0266467403003092
Zotz G. Weichgrebe T. Happatz H. Einzmann H. J. R. (2016). Measuring the terminal velocity of tiny diaspores. Seed Sci. Res. 26 222–230. 10.1017/S0960258516000155
Zotz G. Weigelt P. Kessler M. Kreft H. Taylor A. (2021). EpiList 1.0: a global checklist of vascular epiphytes. Ecology 102:e03326. 10.1002/ecy.3326 33713353