Faba bean; Gene expression; In silico analysis; Osmotic stress; qRT-PCR; Salt stress; Physiology; Agronomy and Crop Science; Plant Science
Abstract :
[en] Drought and salinity are the most important environmental constraints affecting faba bean (Vicia faba L.) development and crop yield in Tunisia and other Mediterranean countries. Through using different strategies, associating in silico analysis of gene expression and qRT-PCR, this study aims at identifying key genes of faba bean molecular pathways potentially involved in salt and drought response. The impact of these stresses on several physiological and biochemical parameters were investigated in two genotypes (Bachar and Giza 3). To uncover abiotic stress-related genes and better understand the mechanisms of salt and drought stress tolerance in faba bean, a total of 25 faba bean genes were identified through in silico analysis. These genes were associated with important cellular processes such as transcription regulation, signal transport, kinases, phytohormonal signaling, and defense/stress responses. Most of the studied candidates were expressed at various levels in different organs including leaves, roots, flowers, stems, cotyledons, and seeds suggesting a potential role in the growth and development of faba bean plants. Furthermore, qRT-PCR was used to study gene expression profiles in leaves and roots of Bachar and Giza 3 plants under salt and drought stresses, and ABA treatment. The results showed that selected transcripts were differentially expressed under various treatments in both genotypes suggesting their important roles in abiotic stress tolerance responses. The osmotic-responsive genes identified in this study may be considered as potential candidates with a further application as stress selection markers for the creation of faba bean stress-tolerant varieties in various breeding programs.
Disciplines :
Agriculture & agronomy
Author, co-author :
Abid, Ghassen ; Laboratory of Legumes, Biotechnology Center of Borj Cedria, University of Tunis El Manar, Hammam-Lif, Tunisia
Saidi, Mohammed ; Université de Liège - ULiège > Forêts, Nature et Paysage > Gestion des ressources forestières et des milieux naturels ; Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, Sfax, Tunisia
Ouertani, Rim Nefissi; Laboratory of Plant Molecular Physiology, Biotechnology Center of Borj Cedria, University of Tunis El Manar, Hammam-Lif, Tunisia
Muhovski, Yordan; Department of Life Sciences, Walloon Agricultural Research Centre, Gembloux, Belgium
Jebara, Salwa Harzalli; Laboratory of Legumes, Biotechnology Center of Borj Cedria, University of Tunis El Manar, Hammam-Lif, Tunisia
Ghouili, Emna; Laboratory of Legumes, Biotechnology Center of Borj Cedria, University of Tunis El Manar, Hammam-Lif, Tunisia
Sassi, Khaled; Laboratory of Agronomy, National Agronomy Institute of Tunisia (INAT), University of Carthage, Tunis-Mahrajène, Tunisia
Baudoin, Jean-Pierre ; Université de Liège - ULiège > Département GxABT > Plant Sciences
Ayed, Mohamed El; Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, University of Tunis El Manar, Hammam-Lif, Tunisia
Elkahoui, Salem; Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, University of Tunis El Manar, Hammam-Lif, Tunisia ; Department of Biology, College of Science, University of Ha’il, Hail, Saudi Arabia
Barhoumi, Fathi; Laboratory of Legumes, Biotechnology Center of Borj Cedria, University of Tunis El Manar, Hammam-Lif, Tunisia
Jebara, Moez; Laboratory of Legumes, Biotechnology Center of Borj Cedria, University of Tunis El Manar, Hammam-Lif, Tunisia
Language :
English
Title :
Differential gene expression reveals candidate genes for osmotic stress response in faba bean (Vicia faba L.) involved in different molecular pathways
Publication date :
March 2021
Journal title :
Acta Physiologiae Plantarum
ISSN :
0137-5881
eISSN :
1861-1664
Publisher :
Springer Science and Business Media Deutschland GmbH
Abdellatif KF, El Absawy SA, Zakaria AM (2012) Drought stress tolerance of faba bean as studied by morphological traits and seed storage protein pattern. J Plant Stud 2:47–54
Abid G, Hessini K, Aouida M, Aroua I, Baudoin JP, Muhovski Y, Mergeai G, Sassi K, Machraoui M, Souissi F, Jebara M (2017) Agro-physiological and biochemical responses of faba bean (Vicia faba L. var. ‘minor’) genotypes to water deficit stress. Biotechnol Agron Soc Environ 21:146–159
Alghamdi SS (2007) Genetic behavior of some selected faba bean genotypes. Afr Crop Sci Conf Proc 8:709–714
Alghamdi SS, Al-Shameri AM, Migdadi HM, Ammar MH, El-Harty EH, Khan MA, Farooq M (2015) Physiological and molecular characterization of faba bean (Vicia faba L.) genotypes for adaptation to drought stress. J Agro Crop Sci 201:401–409 DOI: 10.1111/jac.12110
Al-Suhaibani NA (2009) Influence of early water deficit on seed yield and quality of faba bean under arid environment of Saudi Arabia. Am-Eurasian J Agric Environ Sci 5:649–654
Amede T, Schubert S (2003) Mechanisms of drought resistance in grain legumes. I. Osmotic adjustment. Ethiop J Sci 26:37–46
Awasthi R, Gaur P, Turner NC, Vadez V, Siddique KHM, Nayyar H (2017) Effects of individual and combined heat and drought stress during seed filling on the oxidative metabolism and yield of chickpea (Cicer arietinum) genotypes differing in heat and drought tolerance. Crop Pasture Sci 68:823–841 DOI: 10.1071/CP17028
Bacelar EA, Santos DL, Moutinho-Pereira JM, Lopes JI, Gonçalves BC, Ferreira TC, Correia CM (2007) Physiological behaviour, oxidative damage and antioxidative protection of olive trees grown under different irrigation regimes. Plant Soil 292:1–12 DOI: 10.1007/s11104-006-9088-1
Bates LS, Waldern RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207 DOI: 10.1007/BF00018060
Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148:6–24 DOI: 10.1104/pp.108.120725
Brini F, Hanin M, Lumbreras V, Amara I, Khoudi H, Hassairi A, Pages M, Masmoudi K (2007) Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Rep 26:2017–2026 DOI: 10.1007/s00299-007-0412-x
Büyük I, Aras S (2017) Genome-wide in silico identification, characterization and transcriptional analysis of the family of growth-regulating factors in common bean (Phaseolus vulgaris L.) subjected to polyethylene glycol-induced drought stress. Arch Biol Sci 69:5–14 DOI: 10.2298/ABS160204033B
Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116 DOI: 10.1007/BF02670468
Chugh V, Kaur N, Grewal MS, Gupta AK (2013) Differential antioxidative response of tolerant and sensitive maize (Zea mays L.) genotypes to drought stress at reproductive stage. Indian J Biochem Biophys 50:150–158
Das R, Pandey GK (2010) Expressional analysis and role of calcium regulated kinases in abiotic stress signaling. Curr Genom 11:2–13 DOI: 10.2174/138920210790217981
De Costa WAJM, Dennett MD, Ratnaweera U, Nyalemegbe K (1997) Effects of different water regimes on field-grown determinate and indeterminate faba bean (Vicia faba L.). I. Canopy growth and biomass production. Field Crops Res 49:83–93 DOI: 10.1016/S0378-4290(96)01059-3
Ding Z, Li S, An X, Liu X, Qin H, Wang D (2008) Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana. Cell Res 18:1047–1060 DOI: 10.1038/cr.2008.280
Dossa K, Wei X, Li D, Fonceka D, Zhang Y, Wang L, Yu J, Boshou L, Diouf D, Cissé N, Zhang X (2016) Insight into the AP2/ERF transcription factor superfamily in sesame and expression profiling of DREB subfamily under drought stress. BMC Plant Biol 16:171. 10.1186/s12870-016-0859-4 DOI: 10.1186/s12870-016-0859-4
Downey LA, Miller JW (1971) Rapid measurements of relative turgidity in maize (Zea mays L.). New Phytol 70:555–560 DOI: 10.1111/j.1469-8137.1971.tb02557.x
Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 38:350–356 DOI: 10.1021/ac60111a017
Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581 DOI: 10.1016/j.tplants.2010.06.005
FAOSTAT (2018). http://www.fao.org/faostat/en/#data/QC. Accessed 24 June 2019
Farooq M, Wahid A, Lee DJ (2009) Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties. Acta Physiol Plant 31:937–945 DOI: 10.1007/s11738-009-0307-2
Ghassemi-Golezani K, Ghanehpoor S, Dabbagh Mohammadi-Nasab A (2009) Effects of water limitation on growth and grain filling of faba bean cultivars. J Food Agric Environ 7:442–447
Ghuge SA, Rai A, Suprasanna P (2010) Comparative effects of NaCl, PEG, Mannitol iso-osmotic stress on solute accumulation and antioxidant enzyme system in potato (Solanum tuberosum L.). Plant Stress 4:50–55
Gu C, Guo ZH, Hao PP, Wang GM, Jin ZM, Zhang SL (2017) Multiple regulatory roles of AP2/ERF transcription factor in angiosperm. Bot Stud. 10.1186/s40529-016-0159-1 DOI: 10.1186/s40529-016-0159-1
Guo ZJ, Chen XJ, Wu XL, Ling JQ, Xu P (2004) Overexpression of the AP2/EREBP transcription factor OPBP1 enhances disease resistance and salt tolerance in tobacco. Plant Mol Biol 55:607–618 DOI: 10.1007/s11103-004-1521-3
Hare PD, Cress WA (1997) Metabolic implications of stress- induced proline accumulation in plants. Plant Growth Regul 21:79–102 DOI: 10.1023/A:1005703923347
Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments. Plant Signal Behav 7:1456–1466 DOI: 10.4161/psb.21949
He GH, Xu JY, Wang YX, Liu JM, Li PS, Chen M, Ma YZ, Xu ZS (2016) Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis. BMC Plant Biol 16:116–131 DOI: 10.1186/s12870-016-0806-4
Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198 DOI: 10.1016/0003-9861(68)90654-1
Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Station 347:1–32
Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611 DOI: 10.1007/s004250050524
Hong Y, Zhang H, Huang L, Li D, Song F (2016) Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Front Plant Sci. 10.3389/fpls.2016.00004 DOI: 10.3389/fpls.2016.00004
Hossain MR, Bassel GW, Pritchard J, Sharma GP, Ford-Lloyd BV (2016) Trait specific expression profiling of salt stress responsive genes in diverse rice genotypes as determined by modified significance analysis of microarrays. Front Plant Sci. 10.3389/fpls.2016.00567 DOI: 10.3389/fpls.2016.00567
Hu Y, Chen L, Wang H, Zhang L, Wang F, Yu D (2013) Arabidopsis transcription factor WRKY8 functions antagonistically with its interacting partner VQ9 to modulate salinity stress tolerance. Plant J 74:730–745 DOI: 10.1111/tpj.12159
Hua T, Zhua S, Tana L, Qib W, Hea S, Wanga G (2016) Overexpression of OsLEA4 enhances drought, high salt and heavy metal stress tolerance in transgenic rice (Oryza sativa L.). Environ Exp Bot 123:68–77 DOI: 10.1016/j.envexpbot.2015.10.002
Jia H, Wang C, Wang F, Liu S, Li G, Guo X (2015) GhWRKY68 reduces resistance to salt and drought in transgenic Nicotiana benthamiana. PLoS ONE 10:e0120646 DOI: 10.1371/journal.pone.0120646
Katiyar A, Smita S, Lenka SK, Rajwanshi R, Chinnusamy V, Bansal KC (2012) Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis. BMC Genom 13:544–563 DOI: 10.1186/1471-2164-13-544
Khan HR, Paull JG, Siddique KHM, Stoddard FL (2010) Faba bean breeding for drought-affected environments: a physiological and agronomic perspective. Field Crops Res 115:279–286 DOI: 10.1016/j.fcr.2009.09.003
Khan F, Chai HH, Ajmera I, Hodgman C, Mayes S, Lu C (2017) A transcriptomic comparison of two bambara groundnut landraces under dehydration stress. Genes. 10.3390/genes8040121 DOI: 10.3390/genes8040121
Kim KN, Cheong YH, Grant JJ, Pandey GK, Luan S (2003) CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell 15:411–423 DOI: 10.1105/tpc.006858
Krannich CT, Maletzki L, Kurowsky C, Horn R (2015) Network candidate genes in breeding for drought tolerant crops. Int J Mol Sci 16:16378–16400 DOI: 10.3390/ijms160716378
Kumar M, Lee SC, Kim JY, Kim SJ, Aye SS, Kim SR (2014) Over-expression of dehydrin gene, OsDhn1, improves drought and salt stress tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.). J Plant Biol 57:383–393 DOI: 10.1007/s12374-014-0487-1
Li D, Su Z, Dong J, Wang T (2009) An expression database for roots of the model legume Medicago truncatula under salt stress. BMC Genom. 10.1186/1471-2164-10-517 DOI: 10.1186/1471-2164-10-517
Li S, Fan C, Li Y, Zhang J, Sun J, Chen Y, Tian C, Su X, Lu M, Liang C, Hu Z (2016) Effects of drought and salt-stresses on gene expression in Caragana korshinskii seedlings revealed by RNA-seq. BMC Genom 17:200. 10.1186/s12864-016-2562-0 DOI: 10.1186/s12864-016-2562-0
Licausi F, Giorgi FM, Zenoni S, Osti F, Pezzotti M, Perata P (2010) Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera. BMC Genom. 10.1186/1471-2164-11-719 DOI: 10.1186/1471-2164-11-719
Lu C, Li Y, Chen A, Li L, Zuo J, Tian H, Luo Y, Zhu B (2010) LeERF1 improves tolerance to drought stress in tomato (Lycopersicon esculentum) and activates downstream stress-responsive genes. Afr J Biotech 9:6294–6300
Lu X, Zhou X, Cao Y, Zhou M, McNeil D, Liang S, Yang C (2017) RNA-seq analysis of cold and drought responsive transcriptomes of Zea mays ssp. mexicana L. Front Plant Sci. 10.3389/fpls.2017.00136 DOI: 10.3389/fpls.2017.00136
Maazaoui H, Drevon JJ, Sifi B (2016) Improvement of Faba bean (Vicia fabae L. var. minor) phosphorus uptake and nitrogen fixation in a Tunisian multi local field test. J New Sci Agric Biotechnol 31:1806–1811
Mao X, Jia D, Li A, Zhang H, Tian S, Zhang X, Jia J, Jing R (2011) Transgenic expression of TaMYB2A confers enhanced tolerance to multiple abiotic stresses in Arabidopsis. Funct Integr Genom 11:445–465 DOI: 10.1007/s10142-011-0218-3
Mhamdi R, Jebara M, Aouani ME, Ghrir R, Mars M (1999) Genotypic diversity and symbiotic effectiveness of rhizobia isolated from root nodules of Phaseolus vulgaris L. grown in Tunisian soils. Biol Fertil Soil 28:313–320 DOI: 10.1007/s003740050499
Migdadi HM, El-Harty EH, Salamh A, Kha MA (2016) Yield and proline content of faba bean genotypes under water stress treatments. J Animal Plant Sci 26:1772–1779
Mukherjee SP, Choudhuri MA (1983) Implications of water stress-induced changes in the leaves of endogenous ascorbic acid and hydrogen peroxide in vigna seedlings. Physiol Plant 58:166–170 DOI: 10.1111/j.1399-3054.1983.tb04162.x
Muthuramalingam P, Krishnan SR, Pothiraj R, Ramesh M (2017) Global transcriptome analysis of combined abiotic stress signaling genes unravels key players in Oryza sativa L.: an in silico approach. Front Plant Sci. 10.3389/fpls.2017.00759 DOI: 10.3389/fpls.2017.00759
Mwadzingeni L, Shimelis H, Tesfay S, Tsilo TJ (2016) Screening of bread wheat genotypes for drought tolerance using phenotypic and proline analyses. Front Plant Sci. 10.3389/fpls.2016.01276 DOI: 10.3389/fpls.2016.01276
Nadeem M, Li J, Yahya M, Sher A, Ma C, Wang X, Qiu L (2019) Research progress and perspective on drought stress in legumes: a review. Int J Mol Sci 20:2542. 10.3390/ijms20102541 DOI: 10.3390/ijms20102541
Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617–630 DOI: 10.1111/j.1365-313X.2007.03168.x
Ohnishi T, Sugahara S, Yamada T, Kikuchi K, Yoshiba Y, Hirano HY, Tsutsumi N (2005) OsNAC6, a member of the NAC gene family, is induced by various stresses in rice. Genes Genet Syst 80:135–139 DOI: 10.1266/ggs.80.135
Ouji A, El-Bok S, Mouelhi M, Ben Younes M, Kharrat M (2016) Yield and yield components of Chickpea (Cicer arietinum L.) as influenced by supplemental irrigation under semi-arid region of Tunisia. World J Agric Res 4:153–157
Pan Y, Seymour GB, Lu C, Hu Z, Chen X, Chen G (2012) An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato. Plant Cell Rep 31:349–360 DOI: 10.1007/s00299-011-1170-3
Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M (2017) Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front Plant Sci. 10.3389/fpls.2017.00537 DOI: 10.3389/fpls.2017.00537
Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress tolerance. Trends Plant Sci 17:369–381 DOI: 10.1016/j.tplants.2012.02.004
Ram G, Sharma AD (2013) In silico analysis of putative miRNAs and their target genes in sorghum (Sorghum bicolor). Int J Bioinform Res Appl 9:349–364 DOI: 10.1504/IJBRA.2013.054694
Redillas MCFR, Park SH, Lee JW, Kim YS, Jeong JS, Jung H, Bang SW, Hahn TR, Kim JK (2012) Accumulation of trehalose increases soluble sugar contents in rice plants conferring tolerance to drought and salt stress. Plant Biotechnol Rep 6:89–96 DOI: 10.1007/s11816-011-0210-3
Rong W, Qi L, Wang A, Ye X, Du L, Liang H, Xin Z, Zhang Z (2014) The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnol J 12:468–479 DOI: 10.1111/pbi.12153
Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386
Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108 DOI: 10.1038/nprot.2008.73
Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26 DOI: 10.1155/2012/217037
Siddiqui MH, Al-Khaishany MY, Al-Qutami MA, Al-Whaibi MH, Grover A, Ali HM, Al-Wahibi MS, Bukhari NA (2015) Response of different genotypes of faba bean plant to drought stress. Int J Mol Sci 16:10214–10227 DOI: 10.3390/ijms160510214
Sinha P, Pazhamala LT, Singh VK, Saxena RK, Krishnamurthy L, Azam S, Khan AW, Varshney RK (2016) Identification and validation of selected universal stress protein domain containing drought-responsive genes in pigeonpea (Cajanus cajan L.). Front Plant Sci. 10.3389/fpls.2015.01065 DOI: 10.3389/fpls.2015.01065
Soares-Cavalcanti NM, Belarmino LC, Kido EA, Wanderley-Nogueira AC, Bezerra-Neto JP, Cavalcanti-Lira R, Pandolfi V, Nepomuceno AL, Abdelnoor RV, Nascimento LC, Benko-Iseppon AM (2012) In silico identification of known osmotic stress responsive genes from Arabidopsis in soybean and Medicago. Genet Mol Biol 35:315–321 DOI: 10.1590/S1415-47572012000200012
Song K, Kim HC, Shin S, Kim KH, Moon JC, Kim JY, Lee BM (2017) Transcriptome analysis of flowering time genes under drought stress in maize leaves. Front Plant Sci. 10.3389/fpls.2017.00267 DOI: 10.3389/fpls.2017.00267
Sourour A, Afef O, Mounir R, Mongi BY (2017) A review: morphological, physiological, biochemical and molecular plant responses to water deficit stress. Inter J Engin Sci 6:1–4 DOI: 10.9790/1813-0601010104
Swapna S, Shylaraj KS (2017) Screening for osmotic stress responses in rice varieties under drought condition. Rice Sci 24:253–263 DOI: 10.1016/j.rsci.2017.04.004
Torres AM, Avila CM, Gutierrez N, Palomino C, Moreno MT, Cubero JI (2010) Marker-assisted selection in faba bean (Vicia faba L.). Field Crop Res 115:243–252 DOI: 10.1016/j.fcr.2008.12.002
Wu GQ, Wang CM, Su YY, Zhang JJ, Feng RJ, Liang N (2014) Assessment of drought tolerance in seedlings of sugar beet (Beta vulgaris L.) cultivars using inorganic and organic solutes accumulation criteria. Soil Sci Plant Nutr 60:565–576 DOI: 10.1080/00380768.2014.921579
Wu M, Liu H, Han G, Cai R, Pan F, Xiang Y (2017) A moso bamboo WRKY gene PeWRKY83 confers salinity tolerance in transgenic Arabidopsis plants. Sci Rep 7:11721. 10.1038/s41598-017-10795-z DOI: 10.1038/s41598-017-10795-z
Xiang Y, Huang Y, Xiong L (2007) Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol 144:1416–1428 DOI: 10.1104/pp.107.101295
Xie R, Pan X, Zhang J, Ma Y, He S, Zheng Y, Ma Y (2018) Effect of salt-stress on gene expression in citrus roots revealed by RNA-seq. Funct Integr Genom 18:155–173 DOI: 10.1007/s10142-017-0582-8
Xu ZZ, Zhou GS, Wang YL, Han GX, Li YJ (2008) Changes in chlorophyll fluorescence in maize plants with imposed rapid dehydration at different leaf ages. J Plant Growth Regul 27:83–92 DOI: 10.1007/s00344-007-9035-2
Xu R, Yamada M, Fujiyama H (2013) Lipid peroxidation and antioxidative enzymes of two turfgrass species under salinity stress. Pedosphere 23:213–222 DOI: 10.1016/S1002-0160(13)60009-0
Xu Q, He J, Dong J, Hou X, Zhang X (2017) Genomic survey and expression profiling of the MYB gene family in watermelon. Hortic Plant J 4:1–15 DOI: 10.1016/j.hpj.2017.12.001
Yang A, Dai X, Zhang WH (2012) A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot 63:2541–2556 DOI: 10.1093/jxb/err431
Yang G, Wang Y, Xia D, Gao C, Wang C, Yang C (2014) Overexpression of a GST gene (ThGSTZ1) from Tamarix hispida improves drought and salinity tolerance by enhancing the ablity to scavenge reacive oxygen species. Plant Cell Tiss Organ Cult 117:99–112 DOI: 10.1007/s11240-014-0424-5
Yang X, Liu J, Xu J, Duan S, Wang Q, Li G, Jin L (2019) Transcriptome profiling reveals effects of drought stress on gene expression in diploid potato genotype P3–198. Int J Mol Sci 20:852. 10.3390/ijms20040852 DOI: 10.3390/ijms20040852
Zhang H, Liu W, Wan L, Li F, Dai L, Li D, Zhang Z, Huang R (2010) Functional analyses of ethylene response factor JERF3 with the aim of improving tolerance to drought and osmotic stress in transgenic rice. Transgenic Res 19:809–818 DOI: 10.1007/s11248-009-9357-x
Zhang Z, Zhou Q, Yang Z, Jiang J (2013) Discovery AP2/ERF family genes in silico in Medicago truncatula. Afr J Biotech 12:3636–3642
Zhao J, Sun Z, Zheng J, Guo X, Dong Z, Huai J, Gou M, He J, Jin Y, Wang J, Wang G (2009) Cloning and characterization of a novel CBL-interacting protein kinase from maize. Plant Mol Biol 69:661–674 DOI: 10.1007/s11103-008-9445-y
Zhou QY, Tian AG, Zou HF, Xie ZM, Lei G, Huang J, Wang CM, Wang HW, Zhang JS, Chen SY (2008) Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer diferential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol J 6:486–503 DOI: 10.1111/j.1467-7652.2008.00336.x
Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273 DOI: 10.1146/annurev.arplant.53.091401.143329