[en] Biochar as a soil amendment is often described as a promising agricultural practice for climate change mitigation and adaptation. However, while recent research showed limited effects of biochar in temperate regions, its long-term impacts on nutrient management in-situ have been overlooked. Here we studied charcoal residues from pre-industrial kiln sites as a proxy to determine the effects of century-old biochar (~200 years old) on nutrient cycles of 3 land covers in a conventionally cropped field. We compared nutrient cycles of soil containing either century-old biochar (CoBC), recently pyrolyzed biochar (YBC) produced from similar feedstock (oak) and amended in similar amounts and a reference charcoal free soil (REF). For these three modalities, we characterized soil chemical properties, the pore water nutrient concentration evolution with time and depth using suction cups, and the crop nutrient uptakes. Our results revealed soil pore water nutrient concentrations strongly depended on biochar age. Indeed, YBC resulted in lower N-NO3- and K+ leaching but higher P-PO4– pore water concentrations in the topsoil Ap (0–30 cm) horizon. In CoBC higher K+ and Mg2+ concentrations occurred in the pore water than in REF for subsoil horizon E (30–60 cm) and Bt (60–100 cm). Beyond soil pore water, CoBC also strongly increased soil total N, available K+ and Ca2+ but decreased available P contents compared to REF and YBC. Finally, although no change in crop productivity occurred, lower N, K, Ca and higher Mg plant uptakes were observed for modalities with biochar. This resulted in no difference in terms of nutrient exports from the field in chicory but it significantly decreased N, K, Ca exports from biochar rich soil under winter wheat in straw. This study delivers the first field-based evidence that the effects of hardwood biochar on nutrient cycles change over its lifetime in a temperate Luvisol soil, whereby young biochar impacts mainly pore water nutrient concentrations and aged biochar mainly plant available contents. In such a strongly managed environment, no differences are noted in productivity despite strong changes in the nutrient cycle. Our study provides insights for addressing long-term effects of biochar in cultivated lands not only in terms of agronomic perspectives but through a biogeochemistry lens.
Disciplines :
Agriculture & agronomy
Author, co-author :
Burgeon, Victor ; Université de Liège - ULiège > Université de Liège - ULiège
Garré, Sarah; TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium ; Flanders Research Center for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
Dehkordi, Ramin Heidarian; TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
Colinet, Gilles ; Université de Liège - ULiège > TERRA Research Centre > Echanges Eau - Sol - Plantes
Cornelis, Jean-Thomas ; Université de Liège - ULiège > Département GxABT > Echanges Eau - Sol - Plantes ; Faculty of Land and Food Systems, The University of British Columbia, Vancouver, Canada
Language :
English
Title :
Young and century-old biochars strongly affect nutrient cycling in a temperate agroecosystem
We would like to thank colleagues from the water-soil-plant exchange lab for their advice during the set-up of the field work and in particular Aurore Houtart for her help with field and lab work. A special thanks goes to Alexandre Godfrind owner and farmer of the experimental site for his help in the field. Thanks to Carolina Levicek, Audrey Peten and Gauthier Malnoury for the site representation. Many thanks also to the numerous contributors whom helped us install the numerous Sentek probes, the weather station, the suctions cups and much more as well as those who helped us harvest and hand plough our site, those were the days… This research was funded through the Concerted Research Action grant 17/21-03 within the CHAR project framework by the French Community of Belgium .
Allen, R.G., 1998. FAO Irrigation and Drainage Paper Crop by. Irrig. Drain. 300, 300. https://doi.org/10.1016/j.eja.2010.12.001.
Angst, T.E., Sohi, S.P., Establishing release dynamics for plant nutrients from biochar. GCB Bioenergy 5 (2013), 221–226, 10.1111/gcbb.12023.
Antal, M.J., Grønli, M., The art, science, and technology of charcoal production. Ind. Eng. Chem. Res. 42 (2003), 1619–1640, 10.1021/ie0207919.
Biederman, L.A., Harpole, W.S., Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. GCB Bioenergy 5 (2013), 202–214, 10.1111/gcbb.12037.
Borchard, N., Ladd, B., Eschemann, S., Hegenberg, D., Möseler, B.M., Amelung, W., Black carbon and soil properties at historical charcoal production sites in Germany. Geoderma 232–234 (2014), 236–242, 10.1016/j.geoderma.2014.05.007.
Borchard, N., Siemens, J., Ladd, B., Möller, A., Amelung, W., Application of biochars to sandy and silty soil failed to increase maize yield under common agricultural practice. Soil Till. Res. 144 (2014), 184–194, 10.1016/j.still.2014.07.016.
Brodowski, S., Amelung, W., Haumaier, L., Abetz, C., Zech, W., Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. Geoderma 128 (2005), 116–129, 10.1016/j.geoderma.2004.12.019.
Brodowski, S., John, B., Flessa, H., Amelung, W., Aggregate-occluded black carbon in soil. Eur. J. Soil Sci. 57 (2006), 539–546, 10.1111/j.1365-2389.2006.00807.x.
Burgeon, V., Fouché, J., Leifeld, J., Chenu, C., Cornélis, J.-T., Organo-mineral associations largely contribute to the stabilization of century-old pyrogenic organic matter in cropland soils. Geoderma, 388, 2021, 114841, 10.1016/j.geoderma.2020.114841.
Cheng, C.-H., Lehmann, J., Ageing of black carbon along a temperature gradient. Chemosphere 75 (2009), 1021–1027, 10.1016/j.chemosphere.2009.01.045.
Cheng, C.-H., Lehmann, J., Thies, J.E., Burton, S.D., Engelhard, M.H., Oxidation of black carbon by biotic and abiotic processes. Org. Geochem. 37 (2006), 1477–1488, 10.1016/j.orggeochem.2006.06.022.
Chenu, C., Angers, D.A., Barré, P., Derrien, D., Arrouays, D., Balesdent, J., Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations. Soil Till. Res. 188 (2019), 41–52, 10.1016/j.still.2018.04.011.
Chintala, R., Schumacher, T.E., Mcdonald, L.M., Clay, D.E., Malo, D.D., Papiernik, S.K., Clay, S.A., Julson, J.L., Phosphorus sorption and availability from biochars and soil/biochar mixtures. Clean Soil Air Water 42 (2014), 626–634, 10.1002/clen.201300089.
Cordell, D., Drangert, J.-O., White, S., The story of phosphorus: global food security and food for thought. Glob. Environ. Change 19 (2009), 292–305, 10.1016/j.gloenvcha.2008.10.009.
Crane-Droesch, A., Abiven, S., Jeffery, S., Torn, M.S., Heterogeneous global crop yield response to biochar: a meta-regression analysis. Environ. Res. Lett., 8, 2013, 044049, 10.1088/1748-9326/8/4/044049.
Criscuoli, I., Alberti, G., Baronti, S., Favilli, F., Martinez, C., Calzolari, C., Pusceddu, E., Rumpel, C., Viola, R., Miglietta, F., Carbon sequestration and fertility after centennial time scale incorporation of charcoal into soil. PLoS One, 9, 2014, e91114, 10.1371/journal.pone.0091114.
Demeyer, A., Voundi Nkana, J., Verloo, M., Characteristics of wood ash and influence on soil properties and nutrient uptake: an overview. Bioresour. Technol. 77 (2001), 287–295, 10.1016/S0960-8524(00)00043-2.
Durner, W., Hydraulic conductivity estimation for soils with heterogeneous pore structure. Water Resour. Res. 30 (1994), 211–223, 10.1029/93WR02676.
Emrich, W., Handbook of Charcoal Making. 1985, D. Reidel Publishing Company, Dordrecht, The Netherlands.
Fan, J., McConkey, B., Wang, H., Janzen, H., Root distribution by depth for temperate agricultural crops. F. Crop. Res. 189 (2016), 68–74, 10.1016/j.fcr.2016.02.013.
Genot, V., Colinet, G., Bock, L., 2007. La fertilité des sols agricoles et forestiers en Région wallonne 78.
Genot, V., Colinet, G., Brahy, V., Bock, L., L’état de fertilité des terres agricoles et forestières en région wallonne (adapté du chapitre 4 - sol 1 de “ L’État de l'Environnement wallon 2006-2007 ”). Biotechnol. Agron. Soc. Environ. 13 (2009), 121–138.
Glaser, B., Birk, J.J., State of the scientific knowledge on properties and genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de Índio). Geochim. Cosmochim. Acta 82 (2012), 39–51, 10.1016/j.gca.2010.11.029.
Glaser, B., Lehr, V.-I., Biochar effects on phosphorus availability in agricultural soils: a meta-analysis. Sci. Rep., 9, 2019, 9338, 10.1038/s41598-019-45693-z.
Hardy, B., Cornelis, J.-T., Houben, D., Lambert, R., Dufey, J.E., The effect of pre-industrial charcoal kilns on chemical properties of forest soil of Wallonia, Belgium. Eur. J. Soil Sci. 67 (2016), 206–216, 10.1111/ejss.12324.
Hardy, B., Cornelis, J.-T., Houben, D., Leifeld, J., Lambert, R., Dufey, J.E., Evaluation of the long-term effect of biochar on properties of temperate agricultural soil at pre-industrial charcoal kiln sites in Wallonia, Belgium. Eur. J. Soil Sci. 68 (2017), 80–89, 10.1111/ejss.12395.
Hardy, B., Dufey, J., La foret wallonne, composante vitale de la sidérurgie préindustrielle En. For. -Nat., 2015, 11–18.
Hardy, B., Dufey, J.E.J., Les aires de faulde en forêt wallonne: Repérage, morphologie et distribution spatiale. For. Nat. 135 (2015), 21–32.
Hardy, B., Leifeld, J., Knicker, H., Dufey, J.E., Deforce, K., Cornélis, J.-T., Long term change in chemical properties of preindustrial charcoal particles aged in forest and agricultural temperate soil. Org. Geochem. 107 (2017), 33–45, 10.1016/j.orggeochem.2017.02.008.
Havlin, J.L., Beaton, J.D., Tisdale, S.L., Nelson, W.L., Soil fertility and fertilizers: an introduction to nutrient management. Soil Fertility and Fertilizers, 6th ed., 1999, Prentice Hall, New Jersey.
Heidarian Dehkordi, R., Burgeon, V., Fouché, J., Placencia Gomez, E., Cornelis, J.-T., Nguyen, F., Denis, A., Meersmans, J., Using UAV collected RGB and multispectral images to evaluate winter wheat performance across a site characterized by century-old biochar patches in Belgium. Remote Sens., 12, 2020, 2504, 10.3390/rs12152504.
Heidarian Dehkordi, R., Denis, A., Fouché, J., Burgeon, V., Cornelis, J.T., Tychon, B., Placencia Gomez, E., Meersmans, J., Remotely-sensed assessment of the impact of century-old biochar on chicory crop growth using high-resolution UAV-based imagery. Int. J. Appl. Earth Obs. Geoinf., 91, 2020, 102147, 10.1016/j.jag.2020.102147.
Hernandez-Soriano, M.C., Kerré, B., Goos, P., Hardy, B., Dufey, J., Smolders, E., Long-term effect of biochar on the stabilization of recent carbon: soils with historical inputs of charcoal. GCB Bioenergy 8 (2016), 371–381, 10.1111/gcbb.12250.
Jeffery, S., Abalos, D., Prodana, M., Bastos, A.C., van Groenigen, J.W., Hungate, B.A., Verheijen, F., Biochar boosts tropical but not temperate crop yields. Environ. Res. Lett., 12, 2017, 053001, 10.1088/1748-9326/aa67bd.
Jeffery, S., Verheijen, F.G.A., van der Velde, M., Bastos, A.C., A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 144 (2011), 175–187, 10.1016/j.agee.2011.08.015.
Joseph, S., Kammann, C.I., Shepherd, J.G., Conte, P., Schmidt, H.-P., Hagemann, N., Rich, A.M., Marjo, C.E., Allen, J., Munroe, P., Mitchell, D.R.G., Donne, S., Spokas, K., Graber, E.R., Microstructural and associated chemical changes during the composting of a high temperature biochar: mechanisms for nitrate, phosphate and other nutrient retention and release. Sci. Total Environ. 618 (2018), 1210–1223, 10.1016/j.scitotenv.2017.09.200.
Kalinichev, A.G., Kirkpatrick, R.J., Molecular dynamics simulation of cationic complexation with natural organic matter. Eur. J. Soil Sci. 58 (2007), 909–917, 10.1111/j.1365-2389.2007.00929.x.
Kerré, B., Bravo, C.T., Leifeld, J., Cornelissen, G., Smolders, E., Historical soil amendment with charcoal increases sequestration of non-charcoal carbon: a comparison among methods of black carbon quantification. Eur. J. Soil Sci. 67 (2016), 324–331, 10.1111/ejss.12338.
Kerré, B., Willaert, B., Cornelis, Y., Smolders, E., Long-term presence of charcoal increases maize yield in Belgium due to increased soil water availability. Eur. J. Agron. 91 (2017), 10–15, 10.1016/j.eja.2017.09.003.
Kerré, B., Willaert, B., Smolders, E., Lower residue decomposition in historically charcoal-enriched soils is related to increased adsorption of organic matter. Soil Biol. Biochem. 104 (2017), 1–7, 10.1016/j.soilbio.2016.10.007.
Kuzyakov, Y., Bogomolova, I., Glaser, B., Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis. Soil Biol. Biochem. 70 (2014), 229–236, 10.1016/j.soilbio.2013.12.021.
Laird, D.A., Fleming, P., Wang, B., Horton, R., Karlen, D., Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 158 (2010), 436–442, 10.1016/j.geoderma.2010.05.012.
Lal, R., Carbon sequestration. Philos. Trans. R. Soc. B Biol. Sci. 363 (2008), 815–830, 10.1098/rstb.2007.2185.
Lehmann, J., Gaunt, J., Rondon, M., Bio-char sequestration in terrestrial ecosystems – a review. Mitig. Adapt. Strateg. Glob. Change 11 (2006), 403–427, 10.1007/s11027-005-9006-5.
Lehmann, J., Liang, B., Solomon, D., Lerotic, M., Luizão, F., Kinyangi, J., Schäfer, T., Wirick, S., Jacobsen, C., Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy for mapping nano-scale distribution of organic carbon forms in soil: application to black carbon particles. Glob. Biogeochem. Cycles 19 (2005), 1–12, 10.1029/2004GB002435.
Lehmann, J., Pereira da Silva, J., Steiner, C., Nehls, T., Zech, W., Glaser, B., Nutrient availability and leaching in an archaeological Anthrosol and a\rFerralsol of the Central Amazon basin: fertilizer, manure and charcoal\ramendments. Plant Soil 249 (2003), 343–357, 10.1023/A:1022833116184.
Lehmann, J., Schroth, G., Nutrient leaching. Schroth, G., Sinclair, F.L., (eds.) Trees, Crops and Soil Fertility: Concepts and Research Methods, 2003, 151–166, 10.1079/9780851995939.0151.
Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O'Neill, B., Skjemstad, J.O., Thies, J., Luizão, F.J., Petersen, J., Neves, E.G., Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 70 (2006), 1719–1730, 10.2136/sssaj2005.0383.
Mastrolonardo, G., Calderaro, C., Cocozza, C., Hardy, B., Dufey, J., Cornelis, J.-T., Long-term effect of charcoal accumulation in hearth soils on tree growth and nutrient cycling. Front. Environ. Sci., 2019, 7, 10.3389/fenvs.2019.00051.
McBeath, A.V., Wurster, C.M., Bird, M.I., Influence of feedstock properties and pyrolysis conditions on biochar carbon stability as determined by hydrogen pyrolysis. Biomass Bioenergy 73 (2015), 155–173, 10.1016/j.biombioe.2014.12.022.
Miller, R., Handbook of Reference Methods for Plant Analysis. 1998.
Novak, J.M., Busscher, W.J., Laird, D.L., Ahmedna, M., Watts, D.W., Niandou, M.A.S., Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Sci. 174 (2009), 105–112, 10.1097/SS.0b013e3181981d9a.
Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G.P., Smith, P., Climate-smart soils. Nature 532 (2016), 49–57, 10.1038/nature17174.
Razzaghi, F., Obour, P.B., Arthur, E., Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma, 361, 2020, 114055, 10.1016/j.geoderma.2019.114055.
Sanford, J.R., Larson, R.A., Runge, T., Nitrate sorption to biochar following chemical oxidation. Sci. Total Environ. 669 (2019), 938–947, 10.1016/j.scitotenv.2019.03.061.
Schaap, M.G., Leij, F.J., Van Gencuhten, M.T., Rosetta v1.2: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol. 251 (2002), 163–176.
Schmidt, M.W.I., Torn, M.S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I.A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D.A.C., Nannipieri, P., Rasse, D.P., Weiner, S., Trumbore, S.E., Persistence of soil organic matter as an ecosystem property. Nature 478 (2011), 49–56, 10.1038/nature10386.
Schneider, A., Hirsch, F., Bonhage, A., Raab, A., Raab, T., The soil moisture regime of charcoal-enriched land use legacy sites. Geoderma, 366, 2020, 114241, 10.1016/j.geoderma.2020.114241.
Thorup-Kristensen, K., Cortasa, M.S., Loges, R., Winter wheat roots grow twice as deep as spring wheat roots, is this important for N uptake and N leaching losses?. Plant Soil 322 (2009), 101–114, 10.1007/s11104-009-9898-z.
Wiedemeier, D.B., Abiven, S., Hockaday, W.C., Keiluweit, M., Kleber, M., Masiello, C.A., McBeath, A.V., Nico, P.S., Pyle, L.A., Schneider, M.P.W., Smernik, R.J., Wiesenberg, G.L.B., Schmidt, M.W.I., Aromaticity and degree of aromatic condensation of char. Org. Geochem. 78 (2015), 135–143, 10.1016/j.orggeochem.2014.10.002.
Woolf, D., Amonette, J.E., Street-Perrott, F.A., Lehmann, J., Joseph, S., Sustainable biochar to mitigate global climate change. Nat. Commun., 1, 2010, 56, 10.1038/ncomms1053.
WRB, I., World Reference Base for Soil Resources. World Soil Resources Report 103. World Ref. Base Soil Resour, 2014, Food and Agriculture Organization of the United Nations, Rome, 132, 10.1017/S0014479706394902 US$22.00 (paperback). ISBN 92-5-10511-4.
Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C., Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86 (2007), 1781–1788, 10.1016/j.fuel.2006.12.013.