Social Psychology; Experimental and Cognitive Psychology; Behavioral Neuroscience
Abstract :
[en] The COVID-19 pandemic and associated lockdowns triggered worldwide changes in the daily routines of human experience. The Blursday database provides repeated measures of subjective time and related processes from participants in nine countries tested on 14 questionnaires and 15 behavioural tasks during the COVID-19 pandemic. A total of 2,840 participants completed at least one task, and 439 participants completed all tasks in the first session. The database and all data collection tools are accessible to researchers for studying the effects of social isolation on temporal information processing, time perspective, decision-making, sleep, metacognition, attention, memory, self-perception and mindfulness. Blursday includes quantitative statistics such as sleep patterns, personality traits, psychological well-being and lockdown indices. The database provides quantitative insights on the effects of lockdown (stringency and mobility) and subjective confinement on time perception (duration, passage of time and temporal distances). Perceived isolation affects time perception, and we report an inter-individual central tendency effect in retrospective duration estimation.
Disciplines :
Theoretical & cognitive psychology
Author, co-author :
Chaumon, Maximilien ; Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Centre MEG-EEG, Centre de NeuroImagerie Recherche (CENIR), Paris, France. maximilien.chaumon@gmail.com
Rioux, Pier-Alexandre ; École de psychologie, Université Laval, Quebec City, Quebec, Canada
Herbst, Sophie K; Cognitive Neuroimaging Unit, INSERM, CEA, CNRS, Université Paris-Saclay, NeuroSpin, Gif/Yvette, France
Spiousas, Ignacio ; Department of Science and Technology, University of Quilmes, Buenos Aires, Argentina ; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
Kübel, Sebastian L ; Max Planck Institute for the Study of Crime, Security and Law, Freiburg, Germany ; Institute for Frontier Areas of Psychology and Mental Health, Freiburg, Germany
Gallego Hiroyasu, Elisa M ; Department of Life Sciences, University of Tokyo, Tokyo, Japan
Runyun, Şerife Leman ; Department of Psychology and Center for Translational Medicine, Koç University, Istanbul, Turkey
Micillo, Luigi ; Department of General Psychology, University of Padova, Padova, Italy
Thanopoulos, Vassilis ; Multisensory and Temporal Processing Laboratory (MultiTimeLab), Department of Psychology, Panteion University of Social and Political Sciences, Athens, Greece ; Department of History and Philosophy of Science, National and Kapodistrian University of Athens, Athens, Greece
Mendoza-Duran, Esteban ; École de psychologie, Université Laval, Quebec City, Quebec, Canada
Wagelmans, Anna ; Cognitive Neuroimaging Unit, INSERM, CEA, CNRS, Université Paris-Saclay, NeuroSpin, Gif/Yvette, France
Mudumba, Ramya; Department of Cognitive Science, Indian Institute of Technology Kanpur, Kanpur, India
Tachmatzidou, Ourania ; Multisensory and Temporal Processing Laboratory (MultiTimeLab), Department of Psychology, Panteion University of Social and Political Sciences, Athens, Greece
Cellini, Nicola ; Department of General Psychology, University of Padova, Padova, Italy
Giersch, Anne ; Université de Strasbourg, Unité mixte INSERM U1114, Département de Psychiatrie, Hôpital civil, Strasbourg, France
Grondin, Simon; École de psychologie, Université Laval, Quebec City, Quebec, Canada
Gronfier, Claude; Waking Team, Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, Université Lyon 1, Bron, France
Igarzábal, Federico Alvarez ; Institute for Frontier Areas of Psychology and Mental Health, Freiburg, Germany
Klarsfeld, André; Laboratoire Plasticité du Cerveau, CNRS UMR 8249, ESPCI Paris PSL, Paris, France
Jovanovic, Ljubica ; Université de Strasbourg, Unité mixte INSERM U1114, Département de Psychiatrie, Hôpital civil, Strasbourg, France ; School of Psychology, University Park, University of Nottingham, Nottingham, UK
Laje, Rodrigo ; Department of Science and Technology, University of Quilmes, Buenos Aires, Argentina ; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
Lannelongue, Elisa; Cognitive Neuroimaging Unit, INSERM, CEA, CNRS, Université Paris-Saclay, NeuroSpin, Gif/Yvette, France
Mioni, Giovanna ; Department of General Psychology, University of Padova, Padova, Italy
Nicolaï, Cyril; Cognitive Neuroimaging Unit, INSERM, CEA, CNRS, Université Paris-Saclay, NeuroSpin, Gif/Yvette, France ; Centre de Recherches Interdisciplinaires, Paris, France
Srinivasan, Narayanan ; Department of Cognitive Science, Indian Institute of Technology Kanpur, Kanpur, India
Sugiyama, Shogo; Department of Life Sciences, University of Tokyo, Tokyo, Japan
Wittmann, Marc ; Institute for Frontier Areas of Psychology and Mental Health, Freiburg, Germany
Yotsumoto, Yuko ; Department of Life Sciences, University of Tokyo, Tokyo, Japan
Vatakis, Argiro ; Multisensory and Temporal Processing Laboratory (MultiTimeLab), Department of Psychology, Panteion University of Social and Political Sciences, Athens, Greece
Balcı, Fuat ; Department of Psychology and Center for Translational Medicine, Koç University, Istanbul, Turkey ; Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
van Wassenhove, Virginie ; Cognitive Neuroimaging Unit, INSERM, CEA, CNRS, Université Paris-Saclay, NeuroSpin, Gif/Yvette, France. virginie.van.wassenhove@gmail.com
We thank the many participants who took part in the study, mostly without compensation and by sheer interest in citizen science. We thank B. Martins (CEA, NeuroSpin) for her continuous support on the ethical aspects of the protocol (CER-Paris-Saclay-2020-020) and M. Hevin (CEA, NeuroSpin) for her administrative help. We thank numerous communication channels that have relayed and advertised the study: C. Doublé (CEA, NeuroSpin), L. Belot (Le Monde) and C. Chevallier (Le Parisien). We thank D. Buonomano, S. Droit-Volet, S. Kotz, N. Martinelli, R. Ogden, D. Poole, D. Rhodes and H. van Rijn for their initial interest and support in building momentum for this international project. We thank Brill Publishing for sponsoring participation tokens in Gorilla. C.G. was funded by grants from the French National Research Agency (Idex Breakthrough ALAN, no. ANR-16-IDEX-0005) and the Région Auvergne Rhône Alpes (Pack Ambition Recherche, Light Health). F.B. and S.G. were funded by the Natural Sciences and Engineering Research Council of Canada. G.M. and N.C. were supported by the research programme ‘Dipartimenti di Eccellenza’ from the Italian Ministry of Education, University and Research to the Department of General Psychology of the University of Padua. L.J. was supported by grant no. ANR-16-CE37-0004. M.C. works in a core facility that receives funding from the programme ‘Investissements d’avenir’ (grant nos ANR-10-IAIHU-06 and ANR-11-INBS-006). V.v.W. was funded by CEA and grant no. ANR-18-CE22-0016. A.W. was funded by the doctoral school ED3C ‘Cerveau, Cognition, Comportement’. Y.Y. was funded by JSPS KAKENHI no. 19H05308, UTokyo CiSHuB. The authors received no specific funding for this work.
Matthews, W. J. & Meck, W. H. Time perception: the bad news and the good. WIREs Cogn. Sci. 5, 429–446 (2014).
Holman, E. A. & Grisham, E. L. When time falls apart: the public health implications of distorted time perception in the age of COVID-19. Psychol. Trauma 12, S63–S65 (2020).
Wittmann, M. & Paulus, M. P. Decision making, impulsivity and time perception. Trends Cogn. Sci. 12, 7–12 (2008).
COVID-19 and Well-Being: Life in the Pandemic (OECD, 2021); https://www.oecd.org/wise/covid-19-and-well-being-1e1ecb53-en.htm
Yamada, Y. et al. COVIDiSTRESS Global Survey dataset on psychological and behavioural consequences of the COVID-19 outbreak. Sci. Data 8, 3 (2021).
Buonomano, D. V. The biology of time across different scales. Nat. Chem. Biol. 3, 594–597 (2007).
Laje, R., Agostino, P. V. & Golombek, D. A. The times of our lives: interaction among different biological periodicities. Front. Integr. Neurosci. 12, 10 (2018).
Balci, F., Meck, W. H., Moore, H. & Brunner, D. in: Animal Models of Human Cognitive Aging (eds Bizon, J. & Woods, A.) 1–41 (Springer, 2009).
Schmidt, C., Collette, F., Cajochen, C. & Peigneux, P. A time to think: circadian rhythms in human cognition. Cogn. Neuropsychol. 24, 755–789 (2007).
Balcı, F. et al. Optimal temporal risk assessment. Front. Integr. Neurosci. 5, 56 (2011).
Blume, C., Schmidt, M. H. & Cajochen, C. Effects of the COVID-19 lockdown on human sleep and rest-activity rhythms. Curr. Biol. 30, R795–R797 (2020).
Cellini, N., Canale, N., Mioni, G. & Costa, S. Changes in sleep pattern, sense of time and digital media use during COVID-19 lockdown in Italy. J. Sleep Res. 29, e13074 (2020).
Wright, K. P. Jr et al. Sleep in university students prior to and during COVID-19 stay-at-home orders. Curr. Biol. 30, R797–R798 (2020).
Marelli, S. et al. Impact of COVID-19 lockdown on sleep quality in university students and administration staff. J. Neurol. 268, 8–15 (2021).
Dean, D. J. et al. Cross-cultural comparisons of psychosocial distress in the USA, South Korea, France, and Hong Kong during the initial phase of COVID-19. Psychiatry Res. 295, 113593 (2021).
Lieberoth, A. et al. Stress and worry in the 2020 coronavirus pandemic: relationships to trust and compliance with preventive measures across 48 countries in the COVIDiSTRESS global survey. R. Soc. Open Sci. 8, 200589 (2021).
Micillo, L. et al. Time perspective predicts levels of anxiety and depression during the COVID-19 outbreak: a cross-cultural study. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/8tqap (2021).
Fiorenzato, E., Zabberoni, S., Costa, A. & Cona, G. Cognitive and mental health changes and their vulnerability factors related to COVID-19 lockdown in Italy. PLoS ONE 16, e0246204 (2021).
Droit-Volet, S. et al. Time and COVID-19 stress in the lockdown situation: time free, “dying” of boredom and sadness. PLoS ONE 15, e0236465 (2020).
Droit-Volet, S. et al. The persistence of slowed time experience during the COVID-19 pandemic: two longitudinal studies in France. Front. Psychol. 12, 721716 (2021).
Martinelli, N. et al. Time and emotion in the lockdown for the COVID-19 epidemic: the determinants of our experience of time? Front. Psychol. 11, 3738 (2020).
Ogden, R. Distortions to the passage of time during England’s second national lockdown: a role for depression. PLoS ONE 16, e0250412 (2021).
Ogden, R. The passage of time during the UK COVID-19 lockdown. PLoS ONE 15, e0235871 (2020).
Loose, T., Wittmann, M. & Vásquez-Echeverría, A. Disrupting times in the wake of the pandemic: dispositional time attitudes, time perception and temporal focus. Time Soc. 31, 110–131 (2021).
Cravo, A. M. et al. Time experience during social distancing: a longitudinal study during the first months of COVID-19 pandemic in Brazil. Sci. Adv. 8, eabj7205 (2022).
Glasauer, S. & Shi, Z. The origin of Vierordt’s law: the experimental protocol matters. PsyCh J. 10, 732–741 (2021).
Lejeune, H. & Wearden, J. H. Vierordt’s The Experimental Study of the Time Sense (1868) and its legacy. Eur. J. Cogn. Psychol. 21, 941–960 (2009).
Petzschner, F. H., Glasauer, S. & Stephan, K. E. A Bayesian perspective on magnitude estimation. Trends Cogn. Sci. 19, 285–293 (2015).
Grondin, S. & Plourde, M. Judging multi-minute intervals retrospectively. Q. J. Exp. Psychol. 60, 1303–1312 (2007).
Eisler, H. Experiments on subjective duration 1868–1975: a collection of power function exponents. Psychol. Bull. 83, 1154–1171 (1976).
Block, R. A., Zakay, D. & Hancock, P. A. Human aging and duration judgments: a meta-analytic review. Psychol. Aging 13, 584–596 (1998).
Pöppel, E. & Giedke, H. Diurnal variation of time perception. Psychol. Forsch. 34, 182–198 (1970).
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Wearden, J. H. Passage of time judgements. Conscious. Cogn. 38, 165–171 (2015).
Wearden, J., O’Donoghue, A., Ogden, R. & Montgomery, C. in Subjective Time: The Philosophy, Psychology, and Neuroscience of Temporality (eds Arstila, V. & Lloyd, D.) 287–306 (Boston Review, 2014); https://doi.org/10.7551/mitpress/8516.001.0001
Bertrand, L. et al. Sleep and circadian rhythm characteristics in individuals from the general population during the French COVID-19 full lockdown. J. Sleep Res. 31, e13480 (2021).
Wheeler, M. A., Stuss, D. T. & Tulving, E. Toward a theory of episodic memory: the frontal lobes and autonoetic consciousness. Psychol. Bull. 121, 331–354 (1997).
Winkler, I. et al. Has it really been that long? Why time seems to speed up with age. Timing Time Percept. 5, 168–189 (2017).
Addis, D. R., Wong, A. T. & Schacter, D. L. Age-related changes in the episodic simulation of future events. Psychol. Sci. 19, 33–41 (2008).
Jazayeri, M. & Shadlen, M. N. Temporal context calibrates interval timing. Nat. Neurosci. 13, 1020–1026 (2010).
Woodrow, H. The temporal indifference interval determined by the method of mean error. J. Exp. Psychol. 17, 167–188 (1934).
Yarmey, A. D. Retrospective duration estimations for variant and invariant events in field situations. Appl. Cogn. Psychol. 14, 45–57 (2000).
Roy, M. M. & Christenfeld, N. J. S. Effect of task length on remembered and predicted duration. Psychon. Bull. Rev. 15, 202–207 (2008).
Looijmans, A., Spahrkäs, S. S., Sanderman, R. & Hagedoorn, M. Ethical review procedures in international internet-based intervention studies. Internet Interv. 28, 100487 (2021).
Anwyl-Irvine, A. L., Massonnié, J., Flitton, A., Kirkham, N. Evershed, J. K. Gorilla in our midst: an online behavioral experiment builder. Behav. Res. https://doi.org/10.3758/s13428-019-01237-xi (2019).
van Wassenhove, V. et al. Blursday. OSF https://doi.org/10.17605/OSF.IO/359QM (2020).
Russell, D. W., Peplau, L. A. & Cutrona, C. E. The revised UCLA Loneliness Scale: concurrent and discriminant validity evidence. J. Pers. Soc. Psychol. 39, 472–480 (1980).
Russell, D. W. UCLA Loneliness Scale (Version 3): reliability, validity, and factor structure. J. Pers. Assess. 66, 20–40 (1996).
Crawford, J. R., Henry, J. D., Crombie, C. & Taylor, E. P. Normative data for the HADS from a large non-clinical sample. Br. J. Clin. Psychol. 40, 429–434 (2001).
Ising, H. K. et al. The validity of the 16-item version of the Prodromal Questionnaire (PQ-16) to screen for ultra high risk of developing psychosis in the general help-seeking population. Schizophr. Bull. 38, 1288–1296 (2012).
Randler, C. German version of the reduced Morningness–Eveningness Questionnaire (rMEQ). Biol. Rhythm Res. 44, 730–736 (2013).
Ghotbi, N. et al. The μMCTQ: an ultra-short version of the Munich ChronoType questionnaire. J. Biol. Rhythms 35, 98–110 (2020).
Buysse, D. J. et al. Quantification of subjective sleep quality in healthy elderly men and women using the Pittsburgh Sleep Quality Index (PSQI). Sleep 14, 331–338 (1991).
Smyth, C. The Pittsburgh Sleep Quality Index (PSQI) (SLACK Incorporated, 1999).
Rammstedt, B. The 10-item Big Five Inventory: norm values and investigation of sociodemographic effects based on a German population representative sample. Eur. J. Psychol. Assess. 23, 193–201 (2007).
Rammstedt, B. & John, O. P. Measuring personality in one minute or less: a 10-item short version of the Big Five Inventory in English and German. J. Res. Pers. 41, 203–212 (2007).
Zimbardo, P. G. The Stanford Time Perspective Inventory (Stanford University, 1990).
Zimbardo, P. G. Boyd, J. N. in Time Perspective Theory: Review, Research and Application (eds Stolarski, M. et al.) 17–55 (Springer, 2015).
Sircova, A. et al. A global look at time: a 24-country study of the equivalence of the Zimbardo Time Perspective Inventory. Sage Open 4, 2158244013515686 (2014).
Kraft, J. D. et al. Assessing the psychometric properties of the Attentional Style Questionnaire. Cogn. Emot. 34, 403–412 (2019).
Van Calster, L., D’Argembeau, A. & Majerus, S. Measuring individual differences in internal versus external attention: the Attentional Style Questionnaire. Pers. Individ. Dif. 128, 25–32 (2018).
Block, R. A., Grondin, S. Zakay, D. in Timing and Time Perception: Procedures, Measures, & Applications (eds Vatakis, A. et al.) 32–51 (Brill, 2018).
Hicks, R. E. in Time, Action and Cognition (eds Macar, F. et al.) 97–108 (Springer, 1992).
Zakay, D. & Block, R. A. Temporal cognition. Curr. Dir. Psychol. Sci. 6, 12–16 (1997).
Thönes, S. & Stocker, K. A standard conceptual framework for the study of subjective time. Conscious. Cogn. 71, 114–122 (2019).
Koriat, A., Fischhoff, B. & Razel, O. An inquiry into the process of temporal orientation. Acta Psychol. 40, 57–73 (1976).
Koriat, A. & Fischhoff, B. What day is today? An inquiry into the process of time orientation. Mem. Cogn. 2, 201–205 (1974).
Friedman, W. J. Memory for the time of past events. Psychol. Bull. 113, 44–66 (1993).
Liberman, N. & Trope, Y. Traversing psychological distance. Trends Cogn. Sci. 18, 364–369 (2014).
Ross, M. & Wilson, A. E. It feels like yesterday: self-esteem, valence of personal past experiences, and judgments of subjective distance. J. Pers. Soc. Psychol. 82, 792–803 (2002).
Henry, J. D. & Crawford, J. R. A meta-analytic review of verbal fluency performance in patients with traumatic brain injury. Neuropsychology 18, 621–628 (2004).
D’Argembeau, A., Ortoleva, C., Jumentier, S. & Van der Linden, M. Component processes underlying future thinking. Mem. Cogn. 38, 809–819 (2010).
Brown, S. W. Attentional resources in timing: interference effects in concurrent temporal and nontemporal working memory tasks. Percept. Psychophys. 59, 1118–1140 (1997).
Grondin, S. Macar, F. in Time, Action and Cognition (Macar, F. et al.) 119–128 (Springer, 1992).
Macar, F., Grondin, S. & Casini, L. Controlled attention sharing influences time estimation. Mem. Cogn. 22, 673–686 (1994).
Fortin, C. & Breton, R. Temporal interval production and processing in working memory. Percept. Psychophys. 57, 203–215 (1995).
Polti, I., Martin, B. & van Wassenhove, V. The effect of attention and working memory on the estimation of elapsed time. Sci. Rep. 8, 6690 (2018).
Akdoğan, B. & Balcı, F. Are you early or late? Temporal error monitoring. J. Exp. Psychol. Gen. 146, 347–361 (2017).
Kononowicz, T. W., Roger, C. & van Wassenhove, V. Temporal metacognition as the decoding of self-generated brain dynamics. Cereb. Cortex 29, 4366–4380 (2019).
Grondin, S. From physical time to the first and second moments of psychological time. Psychol. Bull. 127, 22–44 (2001).
Balci, F., Freestone, D. & Gallistel, C. R. Risk assessment in man and mouse. Proc. Natl Acad. Sci. USA 106, 2459–2463 (2009).
Hammerschmidt, D., Frieler, K. & Wöllner, C. Spontaneous motor tempo: investigating psychological, chronobiological, and demographic factors in a large-scale online tapping experiment. Front. Psychol. 12, 2338 (2021).
McAuley, J. D., Jones, M. R., Holub, S., Johnston, H. M. & Miller, N. S. The time of our lives: life span development of timing and event tracking. J. Exp. Psychol. Gen. 135, 348–367 (2006).
Turgeon, M. & Wing, A. M. Late onset of age-related difference in unpaced tapping with no age-related difference in phase-shift error detection and correction. Psychol. Aging 27, 1152–1163 (2012).
Turgeon, M., Lustig, C. & Meck, W. H. Cognitive aging and time perception: roles of Bayesian optimization and degeneracy. Front. Aging Neurosci. 8, 102 (2016).
Semjen, A., Schulze, H.-H. & Vorberg, D. Timing precision in continuation and synchronization tapping. Psychol. Res. 63, 137–147 (2000).
Wing, A. M. & Kristofferson, A. B. Response delays and the timing of discrete motor responses. Percept. Psychophys. 14, 5–12 (1973).
Repp, B. H. & Su, Y.-H. Sensorimotor synchronization: a review of recent research (2006–2012). Psychon. Bull. Rev. 20, 403–452 (2013).
Chen, Y., Ding, M. & Kelso, J. S. Long memory processes (1/f α type) in human coordination. Phys. Rev. Lett. 79, 4501 (1997).
Bavassi, M. L., Tagliazucchi, E. & Laje, R. Small perturbations in a finger-tapping task reveal inherent nonlinearities of the underlying error correction mechanism. Hum. Mov. Sci. 32, 21–47 (2013).
Nobre, A. C. & Van Ede, F. Anticipated moments: temporal structure in attention. Nat. Rev. Neurosci. 19, 34–48 (2018).
Cravo, A. M., Rohenkohl, G., Wyart, V. & Nobre, A. C. Endogenous modulation of low frequency oscillations by temporal expectations. J. Neurophysiol. 106, 2964–2972 (2011).
Herbst, S. K. & Obleser, J. Implicit temporal predictability enhances pitch discrimination sensitivity and biases the phase of delta oscillations in auditory cortex. NeuroImage 203, 116198 (2019).
Loewenstein, G. F. Frames of mind in intertemporal choice. Manage. Sci. 34, 200–214 (1988).
Moynihan, A. B., Igou, E. R. & van Tilburg, W. A. Boredom increases impulsiveness: a meaning-regulation perspective. Social Psychology 48, 293 (2017).
Eurostat–OECD Methodological Manual on Purchasing Power Parities (Organisation for Economic Co-operation and Development, 2012).
Husserl, E. On the Phenomenology of the Consciousness of Internal Time (1893–1917) Vol. 4 (Springer Science & Business Media, 2012).
Fuchs, T. The temporal structure of intentionality and its disturbance in schizophrenia. Psychopathology 40, 229–235 (2007).
Minkowski, E. Le temps vécu (Presses Universitaires de France, 2013); https://doi.org/10.3917/puf.mink.2013.01
Vogeley, K. & Kupke, C. Disturbances of time consciousness from a phenomenological and a neuroscientific perspective. Schizophr. Bull. 33, 157–165 (2007).
Foerster, F. R. et al. Volatility of subliminal haptic feedbacks alters the feeling of control in schizophrenia. J. Abnorm. Psychol. 130, 775–784 (2021).
Martin, B. et al. Fragile temporal prediction in patients with schizophrenia is related to minimal self disorders. Sci. Rep. 7, 8278 (2017).
Makwana, M. & Srinivasan, N. Self-associated stimuli produce stronger intentional binding. J. Exp. Psychol. Hum. Percept. Perform. 45, 1436–1442 (2019).
Sui, J., He, X. & Humphreys, G. W. Perceptual effects of social salience: evidence from self-prioritization effects on perceptual matching. J. Exp. Psychol. Hum. Percept. Perform. 38, 1105–1117 (2012).
Cunningham, S. J., Turk, D. J., Macdonald, L. M. & Macrae, C. N. Yours or mine? Ownership and memory. Conscious. Cogn. 17, 312–318 (2008).
Keyes, H., Brady, N., Reilly, R. B. & Foxe, J. J. My face or yours? Event-related potential correlates of self-face processing. Brain Cogn. 72, 244–254 (2010).
Hale, T. et al. A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker). Nat. Hum. Behav. 5, 529–538 (2021).
Google COVID-19 Community Mobility Reports (Google, accessed 4 October 2021); https://www.google.com/covid19/mobility/
Huttenlocher, J., Hedges, L. V. & Prohaska, V. Memory for day of the week: a 5+ 2 day cycle. J. Exp. Psychol. Gen. 121, 313–325 (1992).
Roediger, H. L. & Crowder, R. G. A serial position effect in recall of United States presidents. Bull. Psychon. Soc. 8, 275–278 (1976).
Jonas, K. J. & Huguet, P. What day is today? A social–psychological investigation into the process of time orientation. Pers. Soc. Psychol. Bull. 34, 353–365 (2008).
Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).
Bridges, D., Pitiot, A., MacAskill, M. R. & Peirce, J. W. The timing mega-study: comparing a range of experiment generators, both lab-based and online. PeerJ 8, e9414 (2020).