[en] Soil erosion by gullying causes severe soil degradation, which in turn leads to severe socio-economic and environmental damages in tropical and subtropical regions. To mitigate these negative effects and guarantee sustainable management of natural resources, gullies must be prevented. Gully management strategies start by devising adequate assessment tools and identification of driving factors and control measures. To achieve this, machine learning methods are essential tools to assist in the identification of driving factors to implement site-specific control measures. This study aimed at assessing the effectiveness of four machine learning methods (Random Forest (RF), Maximum of Entropy (MaxEnt), Artificial Neural Network (ANN), and Boosted Regression Tree (BRT)) to identify gully's driving factors, and predict gully erosion susceptibility in the Luzinzi watershed, in eastern Democratic Republic of Congo (DRC).
Research Center/Unit :
Laplec UR Spheres
Disciplines :
Earth sciences & physical geography
Author, co-author :
Chuma Basimine, Géant ; Université de Liège - ULiège > Sphères ; Université évangélique en Afrique
Mugumaarhahama, Yannick,; Université évangélique en Afrique
Mondo Mubalama, Jean; Université évangélique en Afrique
Bagula Mukengere, Espoir; Université évangélique en Afrique
Ndeko Byamungu, Adrien; Université évangélique en Afrique
Lucungu, Prince Baraka; Université évangélique en Afrique
Katcho, Karume; Université évangélique en Afrique
Mushagalusa Nachigera, Gustave; Université évangélique en Afrique
Schmitz, Serge ; Université de Liège - ULiège > Département de géographie > Service de géographie rurale (Laboratoire pour l'analyse des lieux, des paysages et des campagnes européennes LAPLEC)
Language :
English
Title :
Gully erosion susceptibility mapping using four machine learning methods in Luzinzi watershed, eastern Democratic Republic of Congo
Aggarwal, S., Principles of remote sensing. Sivakumar, M.V.K., Roy, P.S., Harmsen, K., Saha, S.K., (eds.) Satellite Remote Sensing and GIS Applications in Agricultural Meteorology, Dehra Dun, India, 7–11 July 2003, 2004, World Meteorological Organisation, Switzerland, 23–38.
Allouche, O., Tsoar, A., Kadmon, R., Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43:6 (2006), 1223–1232.
Amiri, M., Pourghasemi, H.R., Mapping and preparing a susceptibility map of gully erosion using the MARS Model. Gully Erosion Studies from India and Surrounding Regions, 2020, Springer, Cham, 405–413.
Arabameri, A., Asadi Nalivan, O., Saha, S., Roy, J., Pradhan, B., Tiefenbacher, J.P., Thi Ngo, P.T., Novel ensemble approaches of machine learning techniques in modeling the gully erosion susceptibility. Rem. Sens., 12(11), 2020, 1890.
Arabameri, A., Chen, W., Loche, M., Zhao, X., Li, Y., Lombardo, L., Cerda, A., Pradhan, B., Bui, D.T., Comparison of machine learning models for gully erosion susceptibility mapping. Geosci. Front. 11:5 (2020), 1609–1620.
Agnesi, V., Angileri, S., Cappadonia, C., Conoscenti, C., Rotigliano, E., Multi parametric gis analysis to assess gully erosion susceptibility: A test in southern sicily, italy. Landf. Anal. 17 (2011), 15–20.
Ahmadpour, H., Bazrafshan, O., Rafiei-Sardooi, E., Zamani, H., Panagopoulos, T., Gully erosion susceptibility assessment in the Kondoran watershed using machine learning algorithms and the Boruta feature selection. Sustainability, 13(18), 2021, 10110, 10.3390/su131810110.
Arabameri, A., Sadhasivam, N., Turabieh, H., Mafarja, M., Rezaie, F., Pal, S.C., Santosh, M., Credal decision tree based novel ensemble models for spatial assessment of gully erosion and sustainable management. Sci. Rep. 11:1 (2021), 1–18.
Avand, M., Janizadeh, S., Naghibi, S.A., Pourghasemi, H.R., Khosrobeigi Bozchaloei, S., Blaschke, T., A comparative assessment of random forest and k-nearest neighbor classifiers for gully erosion susceptibility mapping. Water, 11(10), 2019, 2076.
Azareh, A., Rahmati, O., Rafiei-Sardooi, E., Sankey, J.B., Lee, S., Shahabi, H., Ahmad, B.B., Modelling gully-erosion susceptibility in a semi-arid region, Iran: investigation of applicability of certainty factor and maximum entropy models. Sci. Total Environ. 655 (2019), 684–696.
Barbet-Massin, M., Jiguet, F., Albert, C.H., Thuiller, W., Selecting pseudo-absences for species distribution models: how, where and how many?. Methods Ecol. Evol. 3 (2012), 327–338, 10.1111/j.2041-210X.2011.00172.x.
Bingner, R.L., Theurer, F.D., AnnAGNPS: estimating sediment yield by particle size for sheet & rill erosion. Proceedings of the Sedimentation: Monitoring, Modeling, and Managing, 7th Federal Interagency Sedimentation Conference, 2001, 1–7 Reno, NV, 25–29 March 2001.
Birhenjira, E.M., Useni, P.M., Badibanga, K., Myango, M., Caractérisation de la déformation dans le synclinorium de l'Itombwe (Kibarien superieur) à Kaziba, Sud-Kivu, RD Congo. Eur. Sci. J., 10(27), 2014.
Borrelli, P., Robinson, D.A., Panagos, P., Lugato, E., Yang, J.E., Alewell, C., Wuepper, D., Montanarella, L., Ballabio, C., Land use and climate change impacts on global soil erosion by water (2015-2070). Proc. Natl. Acad. Sci. USA 117:36 (2020), 21994–22001.
Borrelli, P., Poesen, J., Vanmaercke, M., Ballabio, C., Hervás, J., Maerker, M., et al. Monitoring gully erosion in the European Union: a novel approach based on the Land Use/Cover Area frame survey (LUCAS). Int. Soil Water Conserv. Res. 10:1 (2022), 17–28.
Breiman, L., Random forests. Mach. Learn. 45:1 (2001), 5–32.
Ceccato, P., Flasse, S., Gregoire, J.M., Designing a spectral index to estimate vegetation water content from remote sensing data: Part 2. Validation and applications. Rem. Sens. Environ. 82 (2002), 198–207.
Chen, Z., Liang, S., Ke, Y., Yang, Z., Zhao, H., Landslide susceptibility assessment using evidential belief function, certainty factor and frequency ratio model at Baxie River basin, NW China. Geocarto Int. 34:4 (2019), 348–367.
Chuma, B.G., Connaissances paysannes et évaluation des techniques de conservation du sol dans les petites exploitations de Kabare nord, est de la RD Congo. 2019, Faculté des bioingénieurs, Université catholique de Louvain, 82 http://hdl.handle.net/2078.1/thesis:22507.
Chuma, B.G., Mondo, M.J., Ndeko, B.A., Mugumaarhahama, Y.M., Bagula, M.E., Mulalisi, B., Muhaya, V., Kavimba, J., Katcho, K., Mushagalusa, N.G., Forest cover affects gully expansion at the tropical watershed scale: case study of Luzinzi in Eastern DR Congo. Trees, Forests and People, 4, 2021, 100083, 10.1016/j.tfp.2021.100083.
Chuma, B.G., Safina, B.F., Ndeko, B.A., Mugumaarhaham, Y.M., Cirezi, C.N., Mondo, M.J., Bagula, E.M., Katcho, K., Mushagalusa, N.G., Schmitz, S., Estimation of soil erosion using RUSLE modeling and geospatial tools in a tea production watershed (Chisheke in Walungu), eastern Democratic Republic of Congo. Model. Earth Syst. Environ., 2021, 1–17, 10.1007/s40808-021-01134-3.
Chuma, G.B., Mondo, J.M., Ndeko, A.B., Bagula, E.M., Lucungu, P.B., Bora, F.S., Karume, K., Mushagalusa, G.N., Schmitz, S., Bielders, C.L., Farmers' knowledge and practices of soil conservation techniques in smallholder farming systems of northern Kabare, east of DR Congo. Environ. Challenges, 7, 2022, 100516.
Conforti, M., Aucelli, P.P., Robustelli, G., Scarciglia, F., Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy). Nat. Hazards 56:3 (2011), 881–898.
Conoscenti, C., Agnesi, V., Cama, M., Caraballo-Arias, N.A., Rotigliano, E., Assessment of gully erosion susceptibility using multivariate adaptive regression splines and accounting for terrain connectivity. Land Degrad. Dev. 29:3 (2018), 724–736.
Conoscenti, C., Angileri, S., Cappadonia, C., Rotigliano, E., Agnesi, V., Märker, M., Gully erosion susceptibility assessment by means of GIS-based logistic regression: a case of Sicily (Italy). Geomorphology 204 (2014), 399–411.
De Oliveira, C.M.M., Francelino, M.R., de Mendonça, B.A.F., Ramos, I.Q., Obtaining morphometric variables from gullies using two methods of interpolation laser scanner data: the case study of Vassouras, Brazil. J. Mt. Sci. 17:12 (2020), 3012–3023.
Dewitte, O., Jones, A., Spaargaren, O., Breuning-Madsen, D., Brossard, M., Dampha, A., Deckers, J., Gallali, T., Hallett, S., Jones, R., Kilasara, M., Le Roux, P., Michéli, E., Montanarella, L., Thiombiano, L., Van Ranst, E., Yemefack, M., Zougmore, R., Harmonisation of the soil map of Africa at the continental scale. Geoderma 211–212 (2013), 138–153, 10.1016/j.geoderma.2013.07.007.
De'Ath, G., Boosted Trees for Ecological modeling and Prediction. Ecology 88 (2007), 243–251, 10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2.
Dixon, B., Candade, N., Multispectral land use classification using neural networks and support vector machines: one or the other, or both?. Int. J. Rem. Sens. 29:4 (2008), 1185–1206.
Dube, F., Nhapi, I., Murwira, A., Gumindoga, W., Goldin, J., Mashauri, D.A., Potential of weight of evidence modelling for gully erosion hazard assessment in Mbire District–Zimbabwe. Phys. Chem. Earth, Parts A/B/C 67 (2014), 145–152.
Dube, T., Sibanda, M., Shoko, C., Examining the variability of small-reservoir water levels in semi-arid environments for integrated water management purposes, using remote sensing. Trans. Roy. Soc. S. Afr. 71:1 (2016), 115–119.
Elith, J., Leathwick, J.R., Hastie, T., A working guide to boosted regression trees. J. Anim. Ecol. 77:4 (2008), 802–813.
Felicísimo, Á.M., Cuartero, A., Remondo, J., Quirós, A., Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study. Landslides 10:2 (2013), 175–189, 10.1007/s10346-012-0320-1.
Flanagan, D.C., Nearing, M.A., USDA-Water Erosion Prediction Project: hillslope profile and watershed model documentation. Nserl Rep 10 (1995), 1–123.
Garosi, Y., Sheklabadi, M., Pourghasemi, H.R., Besalatpour, A.A., Conoscenti, C., Van Oost, K., Comparison of differences in resolution and sources of controlling factors for gully erosion susceptibility mapping. Geoderma 330 (2018), 65–78.
Gayen, A., Haque, S.M., Saha, S., Modeling of gully erosion based on random forest using GIS and R. Gully Erosion Studies from India and Surrounding Regions, 2020, Springer, Cham, 35–44.
Gayen, A., Pourghasemi, H.R., Saha, S., Keesstra, S., Bai, S., Gully erosion susceptibility assessment and management of hazard-prone areas in India using different machine learning algorithms. Sci. Total Environ. 668 (2019), 124–138, 10.1016/j.scitotenv.2019.02.436.
Gideon, D., Mustafa, F.B., Victor, I., The application of an expert knowledge-driven approach for assessing gully erosion susceptibility in the subtropical Nigerian savannah. Singapore J. Trop. Geogr. 42:1 (2021), 107–131.
Gómez-Gutiérrez, Á., Conoscenti, C., Angileri, S.E., Rotigliano, E., Schnabel, S., Using topographical attributes to evaluate gully erosion proneness (susceptibility) in two Mediterranean basins: advantages and limitations. Nat. Hazards 79:1 (2015), 291–314.
Griffith, J.A., Martinko, E.A., Whistler, J.L., Price, K.P., Interrelationships among landscapes, NDVI, and stream water quality in the US Central Plains. Ecol. Appl. 12:6 (2002), 1702–1718.
Gu, Y., Brown, J.F., Verdin, J.P., Wardlow, B., A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophys. Res. Lett., 34, 2007.
Heri-Kazi, A.B., Bielders, C.L., Cropland Characteristics and Extent of Soil Loss by Rill and Gully Erosion in Smallholder Farms in the Kivu Highlands, DR Congo. 2021, Geoderma Regional, e00404.
Guisan, A., Thuiller, W., Zimmermann, N.E., Habitat suitability and distribution models: with applications in R, 2017, Cambridge University Press.
Heri-Kazi, B.A., Caractérisation de l’état de dégradation des terres par l’érosion hydrique dans le Sud-Kivu montagneux à l'Est de la RD Congo. 2020, Doctoral Dissertation, UCL-Université Catholique de Louvain, 323.
Higaki, D., Karki, K.K., Koiwa, N., Takahashi, M., Ghimire, S.K., Rehabilitation of gully-dominant hill slopes by using low-cost measures: a case study in Nepal. Workshop on World Landslide Forum, 2020, Springer, Cham, 347–353.
Hong, H., Naghibi, S.A., Pourghasemi, H.R., Pradhan, B., GIS-based landslide spatial modeling in Ganzhou City, China. Arabian J. Geosci. 9:2 (2016), 1–26, 10.1007/s12517-015-2094-y.
Hosseinalizadeh, M., Kariminejad, N., Chen, W., Pourghasemi, H.R., Alinejad, M., Behbahani, A.M., Tiefenbacher, J.P., Spatial modelling of gully headcuts using UAV data and four best-first decision classifier ensembles (BFTree, Bag-BFTree, RS-BFTree, and RF-BFTree). Geomorphology 329 (2019), 184–193.
Imwangana, F.M., Vandecasteele, I., Trefois, P., Ozer, P., Moeyersons, J., The origin and control of mega-gullies in Kinshasa (DR Congo). Catena 125 (2015), 38–49.
Imwangana, M.F., Etude de l’érosion ravinante à Kinshasa : Dynamisme Pluvio-Morphogénique et Développement d'un Outil de Prévision. Ph.D. Thesis, 2014, Université de Kinshasa, 209.
Javidan, N., Kavian, A., Pourghasemi, H.R., Conoscenti, C., Jafarian, Z., Data mining technique (maximum entropy model) for mapping gully erosion susceptibility in the gorganrood watershed, Iran. Gully Erosion Studies from India and Surrounding Regions, 2020, Springer, Cham, 427–448.
Jiang, C., Fan, W., Yu, N., Liu, E., Spatial modeling of gully head erosion on the Loess Plateau using a certainty factor and random forest model. Sci. Total Environ., 783, 2021, 147040.
Kafy, A.A., Raikwar, V., Al Rakib, A., Kona, M.A., Ferdousi, J., Geospatial approach for developing an integrated water resource management plan in Rajshahi, Bangladesh. Environ. Challenges, 4, 2021, 100139, 10.1016/j.envc.2021.100139.
Kafy, A.A., Naim, M.N.H., Subramanyam, G., Ahmed, N.U., Al Rakib, A., Kona, M.A., Sattar, G.S., Cellular Automata approach in dynamic modelling of land cover changes using RapidEye images in Dhaka, Bangladesh. Environ. Challenges, 4, 2021, 100084, 10.1016/j.envc.2021.100084.
Kheir, R.B., Wilson, J., Deng, Y., Use of terrain variables for mapping gully erosion susceptibility in Lebanon. Earth Surf. Process. Landforms 32:12 (2007), 1770–1782.
Kornejady, A., Ownegh, M., Bahremand, A., Landslide susceptibility assessment using maximum entropy model with two different data sampling methods. Catena 152 (2017), 144–162, 10.1016/j.catena.2017.01.010.
Kuhnert, P.M., Henderson, A.-K., Bartley, R., Herr, A., Incorporating uncertainty in gully erosion calculations using the random forests modelling approach. Environmetrics 21 (2010), 493–509, 10.1002/env.999.
Kulimushi, L.C., Choudhari, P., Mubalama, L.K., Banswe, G.T., GIS and remote sensing-based assessment of soil erosion risk using RUSLE model in South-Kivu province, eastern, Democratic Republic of Congo. Geomatics, Nat. Hazards Risk 12:1 (2021), 961–987.
Le Roux, J., van der Waal, B., Gully erosion susceptibility modelling to support avoided degradation planning. S. Afr. Geogr. J. 102:3 (2020), 406–420, 10.1080/03736245.2020.1786444.
Lesschen, J.P., Kok, K., Verburg, P.H., Cammeraat, L.H., Identification of vulnerable areas for gully erosion under different scenarios of land abandonment in Southeast Spain. Catena 71:1 (2007), 110–121.
Liaw, A., Wiener, M., Classification and regression by random Forest. R. News 2:3 (2002), 18–22.
Liou, Y.-A., Liu, S.-F., Wang, W.J., Retrieving soil moisture from simulated brightness temperatures by a neural network. IEEE Trans. Geosci. Rem. Sens. 39 (2001), 1662–1673.
Lombardo, L., Cama, M., Conoscenti, C., Märker, M., Rotigliano, E.J., Binary logistic regression versus stochastic gradient boosted decision trees in assessing landslide susceptibility for multiple-occurring landslide events: application to the 2009 storm event in Messina (Sicily, southern Italy). Nat. Hazards 79:3 (2015), 1621–1648, 10.1007/s11069-015-1915-3.
Lu, D., Weng, Q.A., Survey of image classification methods and techniques for improving classification performance. Int. J. Rem. Sens. 28 (2007), 823–870.
McFeeters, S.K., The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Rem. Sens. 17:7 (1996), 1425–1432.
Mekonnen, Z., Berie, H.T., Woldeamanuel, T., Asfaw, Z., Kassa, H., Land use and land cover changes and the link to land degradation in Arsi Negele district, Central Rift Valley, Ethiopia. Remote Sens. Appl.: Society and Environment 12 (2018), 1–9.
Moore, I.D., Burch, G.J., Sediment transport capacity of sheet and rill flow: application of unit stream power theory. Water Resour. Res. 22:8 (1986), 1350–1360.
Moore, I.D., Grayson, R.B., Ladson, A.R., Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrol. Process. 5:1 (1991), 3–30.
Moreno, R., Zamora, R., Molina, J.R., Vasquez, A., Herrera, M.A., Predictive modeling of microhabitats for endemic birds in South Chilean temperate forests using Maximum entropy (Maxent). Ecol. Inf. 6 (2011), 364–370, 10.1016/j.ecoinf.2011.07.003.
Morgan, R.P.C., Mngomezulu, D., Threshold conditions for initiation of valley-side gullies in the Middle Veld of Swaziland. Catena 50:2–4 (2003), 401–414.
Nachtergaele, J., Poesen, J., Vandekerckhove, L., Oostwoud Wijdenes, D., Roxo, M., Testing the ephemeral gully erosion model (EGEM) for two Mediterranean environments. Earth Surface Processes and Landforms. J. British Geomorphol. Res. Group 26:1 (2001), 17–30.
Naghibi, S.A., Pourghasemi, H.R., Dixon, B., GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environ. Monit. Assess. 188:1 (2016), 1–27.
Nalivan, O.A., Badehian, Z., Sadeghinia, M., Soltani, A., Islami, I., Boustan, A., A step beyond susceptibility: an adaptation of risk framework for monetary risk estimation of gully erosion. Nat. Hazards 111 (2022), 1661–1684, 10.1007/s11069-021-05110-z.
Nyssen, J., Poesen, J., Veyret-Picot, M., Moeyersons, J., Haile, M., Deckers, J., Dewit, J., Naudts, J., Teka, K., Govers, G., Assessment of gully erosion rates through interviews and measurements: a case study from Northern Ethiopia. Earth Surf. Process. Landforms 31:2 (2006), 167–185.
Ollobarren Del Barrio, P., Campo-Bescós, M.A., Giménez, R., Casalí, J., Assessment of soil factors controlling ephemeral gully erosion on agricultural fields. Earth Surf. Process. Landforms 43:9 (2018), 1993–2008.
Ozdemir, A., Altural, T., A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: sultan Mountains, SW Turkey. J. Asian Earth Sci. 64 (2013), 180–197.
Phillips, S.J., Dudík, M., Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:2 (2008), 161–175.
Park, N.W., Using maximum entropy modeling for landslide susceptibility mapping with multiple geoenvironmental data sets. Environ. Earth Sci. 73:3 (2015), 937–949, 10.1007/s12665-014-3442-z.
Phillips, S.J., Anderson, R.P., Schapire, R.E., Maximum entropy modeling of species geographic distributions. Ecol. Model. 190:3–4 (2006), 231–259.
Podwojewski, P., Janeau, J.L., Caquineau, S., Hughes, J., Mechanisms of lateral and linear extension of gullies (dongas) in a subhumid grassland of South Africa. Earth Surf. Process. Landforms 45:13 (2020), 3202–3215.
Poesen, J., Nachtergaele, J., Verstraeten, G., Valentin, C., Gully erosion and environmental change: importance and research needs. Catena 50:2–4 (2003), 91–133.
Poesen, J., Vandaele, K., van Wesemael, B., Gully erosion: importance and model implications. Modelling Soil Erosion by Water, 1998, Springer, Berlin, Heidelberg, 285–311.
Pourghasemi, H.R., Gayen, A., Panahi, M., Rezaie, F., Blaschke, T., Multi-hazard probability assessment and mapping in Iran. Sci. Total Environ. 692 (2019), 556–571.
Pradhan, B., Sezer, E.A., Gokceoglu, C., Buchroithner, M.F., Landslide susceptibility mapping by neuro-fuzzy approach in a landslide-prone area (Cameron Highlands, Malaysia). IEEE Trans. Geosci. Rem. Sens. 48:12 (2010), 4164–4177.
Rahmana, R.M., Mohiuddinc, M., Al Kafy, A., Sheele, P.K., Di, L., Classification of cities in Bangladesh based on remote sensing derived spatial characteristics. J. Urban Manag. 8 (2019), 206–224, 10.1016/j.jum.2018.12.001.
Rahmati, O., Haghizadeh, A., Pourghasemi, H.R., Noormohamadi, F., Gully erosion susceptibility mapping: the role of GIS-based bivariate statistical models and their comparison. Nat. Hazards 82:2 (2016), 1231–1258.
Rahmati, O., Tahmasebipour, N., Haghizadeh, A., Pourghasemi, H.R., Feizizadeh, B., Evaluation of different machine learning models for predicting and mapping the susceptibility of gully erosion. Geomorphology 298 (2017), 118–137.
Ridgway, T., Riginos, C., Davis, J., Hoegh-Guldberg, O., Genetic connectivity patterns of Pocillopora verrucosa in southern African Marine protected areas. Mar. Ecol. Prog. Ser. 354 (2008), 161–168.
Rigge, M., Smart, A., Wylie, B., Optimal placement of off-stream water sources for ephemeral stream recovery. Rangel. Ecol. Manag. 66:4 (2013), 479–486.
Riley, S.J., DeGloria, S.D., Elliot, R., Index that quantifies topographic heterogeneity. Intermt. J. Sci. 5:1–4 (1999), 23–27.
Rouse, J.W. Jr., Haas, R.H., Schell, J.A., Deering, D.W., Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation. 1973.
Sidorchuk, A., Dynamic and static models of gully erosion. Catena 37:3–4 (1999), 401–414.
Sivia, D., Skilling, J., Data analysis: a Bayesian tutorial, 2006, Oxford University Press, 246.
Svetnik, V., Liaw, A., Tong, C., Culberson, J.C., Sheridan, R.P., Feuston, B.P., Random forest: a classification and regression tool for compound classification and QSAR modeling. J. Chem. Inf. Comput. Sci. 43:6 (2003), 1947–1958.
Svoray, T., Michailov, E., Cohen, A., Rokah, L., Sturm, A., Predicting gully initiation: comparing data mining techniques, analytical hierarchy processes and the topographic threshold. Earth Surf. Process. Landforms 37:6 (2012), 607–619.
Taruvinga, K., Gully Mapping Using Remote Sensing: Case Study in Kwazulu Natal, South Africa. 2008, M.Sc. Thesis, University of Waterloo, Ontario, Canada.
Theobald, D., Norman, J., Peterson, E.E., Ferraz, S., Functional linkage of watersheds and streams (FLoWS): network-based ArcGIS tools to analyze freshwater ecosystems. Proceedings of the Second Annual International Symposium on GIS Spatial Analyses in Fishery and Aquatic Sciences, 2005, ESRI Press, Redlands, California.
Therneau, T.M., Atkinson, B., Ripley, B., rpart: Recursive Partitioning and Regression Trees. R package version. http://CRAN.R-project.org/package=rpart.
Torkashvand, A.M., Alipour, H.R., Investigation of the possibility to prepare supervised classification map of gully erosion by RS and GIS. World Academy Sci. Eng. Technol. 55 (2009), 291–293.
Townsend Peterson, A., Papeş, M., Eaton, M., Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. Ecography 30 (2007), 550–560, 10.1111/j.0906-7590.2007.05102.x.
Tsangaratos, P., Benardos, A., Estimating landslide susceptibility through an artificial neural network classifier. Nat. Hazards 74:3 (2014), 1489–1516.
Uchida, S., Applicability of Satellite Remote Sensing for Mapping Hazardous State of Land Degradation by Soil Erosion on Agricultural Areas, vol. 24, 2015, Procedia Environmental Sciences, 29–34.
USDA. CREAMS: a field-scale model for chemicals, runoff, and erosion from agricultural management systems. Knisel, W.G., (eds.) Conservation Research Rep. No. 26, 1980 Washington, DC.
Vanmaercke, M., Poesen, J., Van Mele, B., Demuzere, M., Bruynseels, A., Golosov, V., Bezerra, J.F.R., Bolysov, S., Dvinskih, A., Frankl, A., Fuseina, Y., How fast do gully headcuts retreat?. Earth Sci. Rev. 154 (2016), 336–355.
Warren, D.L., Seifert, S.N., Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21 (2011), 335–342, 10.1890/10-1171.1.
Yu, H., Jiang, S., Land, K.C., Multicollinearity in hierarchical linear models. Soc. Sci. Res. 53 (2015), 118–136.
Zabihi, M., Mirchooli, F., Motevalli, A., Darvishan, A.K., Pourghasemi, H.R., Zakeri, M.A., Sadighi, F., Spatial modelling of gully erosion in Mazandaran Province, northern Iran. Catena 161 (2018), 1–13.
Zakerinejad, R., Maerker, M., An integrated assessment of soil erosion dynamics with special emphasis on gully erosion in the Mazayjan basin, southwestern Iran. Nat. Hazards 79:1 (2015), 25–50.
Zádorová, T., Skála, J., Žížala, D., Vaněk, A., Penížek, V., Harmonization of a large-scale national soil database with the world reference Base for soil resources 2014. Geoderma, 384, 2021, 114819, 10.1016/j.geoderma.2020.114819.
Zhu, H., Tang, G., Qian, K., Liu, H., Extraction and analysis of gully head of Loess Plateau in China based on digital elevation model. Chin. Geogr. Sci. 24:3 (2014), 328–338.