Article (Scientific journals)
Gully erosion susceptibility mapping using four machine learning methods in Luzinzi watershed, eastern Democratic Republic of Congo
Chuma Basimine, Géant; Mugumaarhahama, Yannick,; Mondo Mubalama, Jean et al.
2022In Physics and Chemistry of the Earth, p. 103295
Peer Reviewed verified by ORBi Dataset
 

Files


Full Text
geant.pdf
Author postprint (13.59 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Gully erosion; GIS; Machine learning; Luzinzi watershed; Gully driving factors
Abstract :
[en] Soil erosion by gullying causes severe soil degradation, which in turn leads to severe socio-economic and environmental damages in tropical and subtropical regions. To mitigate these negative effects and guarantee sustainable management of natural resources, gullies must be prevented. Gully management strategies start by devising adequate assessment tools and identification of driving factors and control measures. To achieve this, machine learning methods are essential tools to assist in the identification of driving factors to implement site-specific control measures. This study aimed at assessing the effectiveness of four machine learning methods (Random Forest (RF), Maximum of Entropy (MaxEnt), Artificial Neural Network (ANN), and Boosted Regression Tree (BRT)) to identify gully's driving factors, and predict gully erosion susceptibility in the Luzinzi watershed, in eastern Democratic Republic of Congo (DRC).
Research Center/Unit :
Laplec
UR Spheres
Disciplines :
Earth sciences & physical geography
Author, co-author :
Chuma Basimine, Géant  ;  Université de Liège - ULiège > Sphères ; Université évangélique en Afrique
Mugumaarhahama, Yannick,;  Université évangélique en Afrique
Mondo Mubalama, Jean;  Université évangélique en Afrique
Bagula Mukengere, Espoir;  Université évangélique en Afrique
Ndeko Byamungu, Adrien;  Université évangélique en Afrique
Lucungu, Prince Baraka;  Université évangélique en Afrique
Katcho, Karume;  Université évangélique en Afrique
Mushagalusa Nachigera, Gustave;  Université évangélique en Afrique
Schmitz, Serge  ;  Université de Liège - ULiège > Département de géographie > Service de géographie rurale (Laboratoire pour l'analyse des lieux, des paysages et des campagnes européennes LAPLEC)
Language :
English
Title :
Gully erosion susceptibility mapping using four machine learning methods in Luzinzi watershed, eastern Democratic Republic of Congo
Publication date :
November 2022
Journal title :
Physics and Chemistry of the Earth
ISSN :
1474-7065
eISSN :
1873-5193
Publisher :
Elsevier BV
Pages :
103295
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 21 November 2022

Statistics


Number of views
130 (18 by ULiège)
Number of downloads
224 (5 by ULiège)

Scopus citations®
 
17
Scopus citations®
without self-citations
15
OpenCitations
 
0
OpenAlex citations
 
21

Bibliography


Similar publications



Contact ORBi