Paper published in a book (Scientific congresses and symposiums)
Mixture Domain Adaptation to Improve Semantic Segmentation in Real-World Surveillance
Pierard, Sébastien; Cioppa, Anthony; Halin, Anaïs et al.
2023In Proceedings of IEEE/CVF Winter Conference on Applications of Computer Vision (WACVW)
Peer reviewed
 

Files


Full Text
Pierard2023Mixture.pdf
Author preprint (5.11 MB)
Download
Annexes
Pierard2023Mixture_supplementary.pdf
(2.66 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Domain Adaptation; Video Surveillance; Artificial Intelligence; Semantic Segmentation
Abstract :
[en] Various tasks encountered in real-world surveillance can be addressed by determining posteriors (e.g. by Bayesian inference or machine learning), based on which critical decisions must be taken. However, the surveillance domain (acquisition device, operating conditions, etc.) is often unknown, which prevents any possibility of scene-specific optimization. In this paper, we define a probabilistic framework and present a formal proof of an algorithm for the unsupervised many-to-infinity domain adaptation of posteriors. Our proposed algorithm is applicable when the probability measure associated with the target domain is a convex com- bination of the probability measures of the source domains. It makes use of source models and a domain discriminator model trained off-line to compute posteriors adapted on the fly to the target domain. Finally, we show the effectiveness of our algorithm for the task of semantic segmentation in real-world surveillance. The code is publicly available at https://github.com/rvandeghen/MDA.
Research Center/Unit :
Montefiore Institute - Montefiore Institute of Electrical Engineering and Computer Science - ULiège
TELIM
Disciplines :
Electrical & electronics engineering
Author, co-author :
Pierard, Sébastien  ;  Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science
Cioppa, Anthony  ;  Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science
Halin, Anaïs  ;  Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science
Vandeghen, Renaud ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Télécommunications
Maxime Zanella;  UCL - Catholic University of Louvain [BE]
Benoît Macq;  UCL - Catholic University of Louvain [BE]
Saïd Mahmoudi;  UMONS - University of Mons [BE]
Van Droogenbroeck, Marc  ;  Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science
Language :
English
Title :
Mixture Domain Adaptation to Improve Semantic Segmentation in Real-World Surveillance
Publication date :
January 2023
Event name :
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)
Event place :
Waikoloa, United States - Hawaii
Event date :
January 3-7 2023
Audience :
International
Main work title :
Proceedings of IEEE/CVF Winter Conference on Applications of Computer Vision (WACVW)
Publisher :
IEEE
Pages :
22-31
Peer reviewed :
Peer reviewed
Name of the research project :
ARIAC by DIGITALWALLONIA4.AI
Funders :
Walloon region
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding number :
2010235
Available on ORBi :
since 18 November 2022

Statistics


Number of views
295 (27 by ULiège)
Number of downloads
92 (2 by ULiège)

Scopus citations®
 
6
Scopus citations®
without self-citations
4
OpenCitations
 
0
OpenAlex citations
 
5

Bibliography


Similar publications



Contact ORBi