[en] The Brewer-Dobson Circulation (BDC) determines the distribution of long-lived tracers in the stratosphere; therefore, their changes can be used to diagnose changes in the BDC. We evaluate decadal (2005–2018) trends of nitrous oxide (N2O) in two versions of the Whole Atmosphere Chemistry-Climate Model (WACCM) by comparing them with measurements from four Fourier transform infrared (FTIR) ground-based instruments, the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), and with a chemistry-transport model (CTM) driven by four different reanalyses. The limited sensitivity of the FTIR instruments can hide negative N2O trends in the mid-stratosphere because of the large increase in the lowermost stratosphere. When applying ACE-FTS measurement sampling on model datasets, the reanalyses from the European Center for Medium Range Weather Forecast (ECMWF) compare best with ACE-FTS, but the N2O trends are consistently exaggerated. The N2O trends obtained with WACCM disagree with those obtained from ACE-FTS, but the new WACCM version performs better than the previous above the Southern Hemisphere in the stratosphere. Model sensitivity tests show that the decadal N2O trends reflect changes in the stratospheric transport. We further investigate the N2O Transformed Eulerian Mean (TEM) budget in WACCM and in the CTM simulation driven by the latest ECMWF reanalysis. The TEM analysis shows that enhanced advection affects the stratospheric N2O trends in the Tropics. While no ideal observational dataset currently exists, this model study of N2O trends still provides new insights about the BDC and its changes because of the contribution from relevant sensitivity tests and the TEM analysis.
Research Center/Unit :
SPHERES - ULiège
Disciplines :
Earth sciences & physical geography
Author, co-author :
Minganti, Daniele ; Université de Liège - ULiège > Université de Liège - ULiège ; Royal Belgian Institute for Space Aeronomy BIRA‐IASB Brussels Belgium
Chabrillat, Simon ; Royal Belgian Institute for Space Aeronomy BIRA‐IASB Brussels Belgium
Errera, Quentin; Royal Belgian Institute for Space Aeronomy BIRA‐IASB Brussels Belgium
Prignon, Maxime ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Groupe infra-rouge de physique atmosphérique et solaire (GIRPAS) ; Now at: Department of Earth, Space and Environment Chalmers University of Technology Gothenburg Sweden
Kinnison, Douglas E. ; National Center for Atmospheric Research Boulder CO USA
Garcia, Rolando R. ; National Center for Atmospheric Research Boulder CO USA
Abalos, Marta ; Universidad Complutense de Madrid Madrid Spain
Alsing, Justin; Oskar Klein Centre for Cosmoparticle Physics Department of Physics Stockholm University Stockholm Sweden ; Imperial Centre for Inference and Cosmology Department of Physics Imperial College London Blackett Laboratory London UK
Schneider, Matthias; Institute of Meteorology and Climate Research (IMK‐ASF) Karlsruhe Institute of Technology Karlsruhe Germany
Smale, Dan ; National Institute of Water and Atmospheric Research Lauder New Zealand
Jones, Nicholas ; School of Chemistry University of Wollongong Wollongong Australia
Mahieu, Emmanuel ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Groupe infra-rouge de physique atmosphérique et solaire (GIRPAS)
Language :
English
Title :
Evaluation of the N2O Rate of Change to Understand the Stratospheric Brewer‐Dobson Circulation in a Chemistry‐Climate Model
F.R.S.-FNRS - Fonds de la Recherche Scientifique NASA - National Aeronautics and Space Administration National Institute of Water and Atmospheric Research Federal Office for Meteorology and Climatology MeteoSwitzerland
Abalos, M., Calvo, N., Benito-Barca, S., Garny, H., Hardiman, S. C., Lin, P., et al. (2021). The Brewer-Dobson circulation in CMIP6. Atmospheric Chemistry and Physics Discussions, 21(17), 1–27. https://doi.org/10.5194/acp-21-13571-2021
Abalos, M., Legras, B., Ploeger, F., & Randel, W. J. (2015). Evaluating the advective Brewer-Dobson circulation in three reanalyses for the period 1979–2012. Journal of Geophysical Research: Atmospheres, 120(15), 7534–7554. https://doi.org/10.1002/2015jd023182
Abalos, M., Orbe, C., Kinnison, D. E., Plummer, D., Oman, L. D., Jöckel, P., et al. (2020). Future trends in stratosphere-to-troposphere transport in CCMI models. Atmospheric Chemistry and Physics, 20(11), 6883–6901. https://doi.org/10.5194/acp-20-6883-2020
Abalos, M., Polvani, L., Calvo, N., Kinnison, D., Ploeger, F., Randel, W., & Solomon, S. (2019). New Insights on the Impact of Ozone-Depleting Substances on the Brewer-Dobson Circulation. Journal of Geophysical Research: Atmospheres, 124(5), 2435–2451. https://doi.org/10.1029/2018jd029301
Abalos, M., Randel, W., Kinnison, D., & Serrano, E. (2013). Quantifying tracer transport in the tropical lower stratosphere using WACCM. Atmospheric Chemistry and Physics, 13(10), 591–610. https://doi.org/10.5194/acp-13-10591-2013
Alexander, M. J., Liu, C. C., Bacmeister, J., Bramberger, M., Hertzog, A., & Richter, J. H. (2021). Observational validation of parameterized gravity waves from tropical convection in the Whole Atmosphere Community Climate Model. Journal of Geophysical Research: Atmospheres, 126(7), e2020JD033954. https://doi.org/10.1029/2020jd033954
Alsing, J. A. (2019). dlmmc: Dynamical linear model regression for atmospheric time-series analysis. Journal of Open Source Software, 4(37), 1157. https://doi.org/10.21105/joss.01157
Andrews, A., Boering, K., Daube, B., Wofsy, S., Loewenstein, M., Jost, H., et al. (2001). Mean ages of stratospheric air derived from in situ observations of CO2, CH4, and N2O. Journal of Geophysical Research, 106(D23), 32295–32314. https://doi.org/10.1029/2001jd000465
Andrews, D., Holton, J. R., & Leovy, C. B. (1987). Middle atmosphere dynamics (No. 40). Academic Press.
Angelbratt, J., Mellqvist, J., Blumenstock, T., Borsdorff, T., Brohede, S., Duchatelet, P., et al. (2011). A new method to detect long term trends of methane (CH4) and nitrous oxide (N2O) total columns measured within the NDACC ground-based high resolution solar FTIR network. Atmospheric Chemistry and Physics, 11(13), 6167–6183. https://doi.org/10.5194/acp-11-6167-2011
Bader, W., Bovy, B., Conway, S., Strong, K., Smale, D., Turner, A. J., et al. (2017). The recent increase of atmospheric methane from 10 years of ground-based NDACC FTIR observations since 2005. Atmospheric Chemistry and Physics, 17(3), 2255–2277. https://doi.org/10.5194/acp-17-2255-2017
Baldwin, M., Gray, L., Dunkerton, T., Hamilton, K., Haynes, P., Randel, W., et al. (2001). The quasi-biennial oscillation. Reviews of Geophysics, 39(2), 179–229. https://doi.org/10.1029/1999rg000073
Ball, W. T., Alsing, J., Mortlock, D. J., Rozanov, E. V., Tummon, F., & Haigh, J. D. (2017). Reconciling differences in stratospheric ozone composites. Atmospheric Chemistry and Physics, 17(20), 12269–12302. https://doi.org/10.5194/acp-17-12269-2017
Ball, W. T., Alsing, J., Mortlock, D. J., Staehelin, J., Haigh, J. D., Peter, T., et al. (2018). Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery. Atmospheric Chemistry and Physics, 18(2), 1379–1394. https://doi.org/10.5194/acp-18-1379-2018
Bernath, P. (2017). The Atmospheric Chemistry Experiment (ACE). Journal of Quantitative Spectroscopy and Radiative Transfer, 186, 3–16. https://doi.org/10.1016/j.jqsrt.2016.04.006
Bernath, P., Crouse, J., Hughes, R., & Boone, C. (2021). The Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) version 4.1 retrievals: Trends and seasonal distributions. Journal of Quantitative Spectroscopy and Radiative Transfer, 259, 107409. https://doi.org/10.1016/j.jqsrt.2020.107409
Bernath, P., McElroy, C. T., Abrams, M. C., Boone, C. D., Butler, M., Camy-Peyret, C., & Zou, J. (2005). Atmospheric Chemistry Experiment (ACE): Mission overview. Geophysical Research Letters, 32(15), L15S01. https://doi.org/10.1029/2005GL022386
Bernath, P., Steffen, J., Crouse, J., & Boone, C. (2020). Sixteen-year trends in atmospheric trace gases from orbit. Journal of Quantitative Spectroscopy and Radiative Transfer, 253, 107178. https://doi.org/10.1016/j.jqsrt.2020.107178
Brewer, A. (1949). Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Quarterly Journal of the Royal Meteorological Society, 75(326), 351–363. https://doi.org/10.1002/qj.49707532603
Butchart, N. (2014). The Brewer-Dobson circulation. Reviews of Geophysics, 52(2), 157–184. https://doi.org/10.1002/2013RG000448
Butchart, N., & Scaife, A. A. (2001). Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and troposphere in a changing climate. Nature, 410(6830), 799–802. https://doi.org/10.1038/35071047
Chabrillat, S., Vigouroux, C., Christophe, Y., Engel, A., Errera, Q., Minganti, D., et al. (2018). Comparison of mean age of air in five reanalyses using the BASCOE transport model. Atmospheric Chemistry and Physics, 18(19), 14715–14735. https://doi.org/10.5194/acp-18-14715-2018
Charney, J. G., & Drazin, P. G. (1961). Propagation of planetary-scale disturbances from the lower into the upper atmosphere. Journal of Geophysical Research, 66(1), 83–109. https://doi.org/10.1029/jz066i001p00083
Danabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D., DuVivier, A., Edwards, J., et al. (2020). The community earth system model version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 12(2). https://doi.org/10.1029/2019ms001916
Darrag, M., Jin, S., Calabia, A., & Samy, A. (2022). Determination of tropical belt widening using multiple GNSS radio occultation measurements. Annales Geophysicae, 40(3), 359–377. https://doi.org/10.5194/angeo-40-359-2022
Dee, D. P., Uppala, S., Simmons, A., Berrisford, P., Poli, P., Kobayashi, S., et al. (2011). The ERA-interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the royal meteorological society, 137(656), 553–597. https://doi.org/10.1002/qj.828
De Mazière, M., Thompson, A. M., Kurylo, M. J., Wild, J. D., Bernhard, G., Blumenstock, T., et al. (2018). The network for the detection of atmospheric composition change (NDACC): History, status and perspectives. Atmospheric Chemistry and Physics, 18(7), 4935–4964. https://doi.org/10.5194/acp-18-4935-2018
De Wit, T. D., Bruinsma, S., & Shibasaki, K. (2014). Synoptic radio observations as proxies for upper atmosphere modelling. Journal of Space Weather and Space Climate, 4, A06. https://doi.org/10.1051/swsc/2014003
Dhomse, S. S., Kinnison, D., Chipperfield, M. P., Salawitch, R. J., Cionni, I., Hegglin, M. I., et al. (2018). Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations. Atmospheric Chemistry and Physics, 18(11), 8409–8438. https://doi.org/10.5194/acp-18-8409-2018
Diallo, M., Ern, M., & Ploeger, F. (2021). The advective Brewer–Dobson circulation in the ERA5 reanalysis: Climatology, variability, and trends. Atmospheric Chemistry and Physics, 21(10), 7515–7544. https://doi.org/10.5194/acp-21-7515-2021
Diallo, M., Legras, B., & Chédin, A. (2012). Age of stratospheric air in the ERA-Interim. Atmospheric Chemistry and Physics, 12(24), 12133–12154. https://doi.org/10.5194/acp-12-12133-2012
Dietmüller, S., Eichinger, R., Garny, H., Birner, T., Boenisch, H., Pitari, G., et al. (2018). Quantifying the effect of mixing on the mean age of air in CCMVal-2 and CCMI-1 models. Atmospheric Chemistry and Physics, 18(9), 6699–6720. https://doi.org/10.5194/acp-18-6699-2018
Dietmüller, S., Garny, H., Plöger, F., Jöckel, P., & Cai, D. (2017). Effects of mixing on resolved and unresolved scales on stratospheric age of air. Atmospheric Chemistry and Physics, 17(12), 7703–7719. https://doi.org/10.5194/acp-17-7703-2017
Dobson, G. M. B. (1956). Origin and distribution of the polyatomic molecules in the atmosphere. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 236(1205), 187–193.
Dobson, G. M. B., Harrison, D., & Lawrence, J. (1929). Measurements of the amount of ozone in the earth’s atmosphere and its relation to other geophysical conditions. Part III. Proceedings of the Royal Society of London - Series A: Containing Papers of a Mathematical and Physical Character, 122(790), 456–486.
Dubé, K., Randel, W., Bourassa, A., Zawada, D., McLinden, C., & Degenstein, D. (2020). Trends and variability in stratospheric NOx derived from merged SAGE II and OSIRIS satellite observations. Journal of Geophysical Research: Atmospheres, 125(7), e2019JD031798. https://doi.org/10.1029/2019JD031798
Durbin, J., & Koopman, S. J. (2012). Time series analysis by state space methods. Oxford University Press.
Eichinger, R., Dietmüller, S., Garny, H., Šácha, P., Birner, T., Bönisch, H., et al. (2019). The influence of mixing on the stratospheric age of air changes in the 21st century. Atmospheric Chemistry and Physics, 19(2), 921–940. https://doi.org/10.5194/acp-19-921-2019
Eichinger, R., & Šácha, P. (2020). Overestimated acceleration of the advective Brewer–Dobson circulation due to stratospheric cooling. Quarterly Journal of the Royal Meteorological Society, 146(733), 3850–3864. https://doi.org/10.1002/qj.3876
Engel, A., Bönisch, H., Ullrich, M., Sitals, R., Membrive, O., Danis, F., & Crevoisier, C. (2017). Mean age of stratospheric air derived from AirCore observations. Atmospheric Chemistry and Physics, 17(11), 6825–6838. https://doi.org/10.5194/acp-17-6825-2017
Engel, A., Möbius, T., Bönisch, H., Schmidt, U., Heinz, R., Levin, I., et al. (2009). Age of stratospheric air unchanged within uncertainties over the past 30 years. Nature Geoscience, 2(1), 28–31. https://doi.org/10.1038/ngeo388
Errera, Q., Chabrillat, S., Christophe, Y., Debosscher, J., Hubert, D., Lahoz, W., et al. (2019). Technical note: Reanalysis of aura MLS chemical observations. Atmospheric Chemistry and Physics Discussions, 1–60. https://doi.org/10.5194/acp-2019-530
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016
Eyring, V., Lamarque, J.-F., Hess, P., Arfeuille, F., Bowman, K., Chipperfiel, M. P., et al. (2013). Overview of IGAC/SPARC Chemistry-Climate Model Initiative (CCMI) community simulations in support of upcoming ozone and climate assessments. SPARC Newsletter, 40(January), 48–66.
Fritsch, F., Garny, H., Engel, A., Bönisch, H., & Eichinger, R. (2020). Sensitivity of age of air trends to the derivation method for non-linear increasing inert SF6. Atmospheric Chemistry and Physics, 20(14), 8709–8725. https://doi.org/10.5194/acp-20-8709-2020
Froidevaux, L., Kinnison, D. E., Wang, R., Anderson, J., & Fuller, R. A. (2019). Evaluation of CESM1 (WACCM) free-running and specified dynamics atmospheric composition simulations using global multispecies satellite data records. Atmospheric Chemistry and Physics, 19(7), 4783–4821. https://doi.org/10.5194/acp-19-4783-2019
Fu, Q., Lin, P., Solomon, S., & Hartmann, D. (2015). Observational evidence of strengthening of the Brewer–Dobson circulation since 1980. Journal of Geophysical Research: Atmospheres, 120(19), 10–214. https://doi.org/10.1002/2015jd023657
Fujiwara, M., Wright, J. S., Manney, G. L., Gray, L. J., Anstey, J., Birner, T., et al. (2017). Introduction to the SPARC reanalysis intercomparison project (S-RIP) and overview of the reanalysis systems. Atmospheric Chemistry and Physics, 17(2), 1417–1452. https://doi.org/10.5194/acp-17-1417-2017
Galytska, E., Rozanov, A., Chipperfield, M. P., DhomseWeber, M., Arosio, C., Burrows, J. P., et al. (2019). Dynamically controlled ozone decline in the tropical mid-stratosphere observed by SCIAMACHY. Atmospheric Chemistry and Physics, 19(2), 767–783. https://doi.org/10.5194/acp-19-767-2019
García, O. E., Schneider, M., Sepúlveda, E., Hase, F., Blumenstock, T., Cuevas, E., et al. (2021). Twenty years of ground-based NDACC FTIR spectrometry at Izaña Observatory – Overview and long-term comparison to other techniques. Atmospheric Chemistry and Physics, 21(20), 15519–15554. https://doi.org/10.5194/acp-21-15519-2021
Garcia, R. R., Randel, W. J., & Kinnison, D. E. (2011). On the determination of age of air trends from atmospheric trace species. Journal of the Atmospheric Sciences, 68(1), 139–154. https://doi.org/10.1175/2010jas3527.1
Garcia, R. R., Smith, A. K., Kinnison, D. E., De la Cámara, A., & Murphy, D. J. (2017). Modification of the gravity wave parameterization in the Whole Atmosphere Community Climate Model: Motivation and results. Journal of the Atmospheric Sciences, 74(1), 275–291. https://doi.org/10.1175/JAS-D-16-0104.1
Garny, H., Birner, T., Bönisch, H., & Bunzel, F. (2014). The effects of mixing on age of air. Journal of Geophysical Research: Atmospheres, 119(12), 7015–7034. https://doi.org/10.1002/2013jd021417
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., et al. (2017). The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). Journal of Climate, 30(14), 5419–5454. https://doi.org/10.1175/jcli-d-16-0758.1
Gettelman, A., Mills, M., Kinnison, D., Garcia, R., Smith, A., Marsh, D., et al. (2019). The whole atmosphere community climate model version 6 (WACCM6). Journal of Geophysical Research: Atmospheres, 124(23), 12380–12403. https://doi.org/10.1029/2019jd030943
Griffith, D. W. T., Deutscher, N. M., Caldow, C., Kettlewell, G., Riggenbach, M., & Hammer, S. (2012). A Fourier transform infrared trace gas and isotope analyser for atmospheric applications. Atmospheric Measurement Techniques, 5(10), 2481–2498. https://doi.org/10.5194/amt-5-2481-2012
Haenel, F. J., Stiller, G. P., Von Clarmann, T., Funke, B., Eckert, E., Glatthor, N., et al. (2015). Reassessment of MIPAS age of air trends and variability. Atmospheric Chemistry and Physics, 15(22), 13161–13176. https://doi.org/10.5194/acp-15-13161-2015
Hall, T. M., & Plumb, R. A. (1994). Age as a diagnostic of stratospheric transport. Journal of Geophysical Research, 99(D1), 1059–1070. https://doi.org/10.1029/93jd03192
Han, Y., Tian, W., Chipperfield, M. P., Zhang, J., Wang, F., Sang, W., et al. (2019). Attribution of the hemispheric asymmetries in trends of stratospheric trace gases inferred from Microwave Limb Sounder (MLS) measurements. Journal of Geophysical Research: Atmospheres, 124(12), 6283–6293. https://doi.org/10.1029/2018JD029723
Hardiman, S. C., Butchart, N., & Calvo, N. (2014). The morphology of the Brewer–Dobson circulation and its response to climate change in CMIP5 simulations. Quarterly Journal of the Royal Meteorological Society, 140(683), 1958–1965. https://doi.org/10.1002/qj.2258
Hardiman, S. C., Lin, P., Scaife, A. A., Dunstone, N. J., & Ren, H.-L. (2017). The influence of dynamical variability on the observed Brewer–Dobson circulation trend. Geophysical Research Letters, 44(6), 2885–2892. https://doi.org/10.1002/2017gl072706
Harrison, J. J., Chipperfield, M. P., Boone, C. D., Dhomse, S. S., Bernath, P. F., Froidevaux, L., et al. (2016). Satellite observations of stratospheric hydrogen fluoride and comparisons with SLIMCAT calculations. Atmospheric Chemistry and Physics, 16(16), 10501–10519. https://doi.org/10.5194/acp-16-10501-2016
Hegglin, M., Plummer, D., Shepherd, T., Scinocca, J., Anderson, J., Froidevaux, L., et al. (2014). Vertical structure of stratospheric water vapour trends derived from merged satellite data. Nature Geoscience, 7(10), 768–776. https://doi.org/10.1038/ngeo2236
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., et al. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803
Holton, J. (2004). An introduction to dynamic meteorology (No. v. 1). Elsevier Academic Press.
Holton, J., & Choi, W.-K. (1988). Transport circulation deduced from SAMS trace species data. Journal of the Atmospheric Sciences, 45(13), 1929–1939. https://doi.org/10.1175/1520-0469(1988)045<1929:tcdfst>2.0.co;2
Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., et al. (2013). The community earth system model: A framework for collaborative research. Bulletin of the American Meteorological Society, 94(9), 1339–1360. https://doi.org/10.1175/bams-d-12-00121.1
Jin, J. J., Semeniuk, K., Beagley, S. R., Fomichev, V. I., Jonsson, A. I., McConnell, J. C., et al. (2009). Comparison of CMAM simulations of carbon monoxide (CO), nitrous oxide (N2O), and methane (CH4) with observations from ODIN/SMR, ACE-FTS, and Aura/MLS. Atmospheric Chemistry and Physics, 9(10), 3233–3252. https://doi.org/10.5194/acp-9-3233-2009
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., et al. (2015). The JRA-55 reanalysis: General specifications and basic characteristics. Journal of the Meteorological Society of Japan. Series II, 93(1), 5–48. https://doi.org/10.2151/jmsj.2015-001
Kolonjari, F., Plummer, D. A., Walker, K. A., Boone, C. D., Elkins, J. W., Hegglin, M. I., et al. (2018). Assessing stratospheric transport in the CMAM30 simulations using ACE-FTS measurements. Atmospheric Chemistry and Physics, 18(9), 6801–6828. https://doi.org/10.5194/acp-18-6801-2018
Kyrölä, E., Laine, M., Sofieva, V., Tamminen, J., Päivärinta, S.-M., Tukiainen, S., et al. (2013). Combined SAGE II–GOMOS ozone profile data set for 1984–2011 and trend analysis of the vertical distribution of ozone. Atmospheric Chemistry and Physics, 13(21), 10645–10658. https://doi.org/10.5194/acp-13-10645-2013
Laine, M., Latva-Pukkila, N., & Kyrölä, E. (2014). Analysing time-varying trends in stratospheric ozone time series using the state space approach. Atmospheric Chemistry and Physics, 14(18), 9707–9725. https://doi.org/10.5194/acp-14-9707-2014
Langerock, B., De Mazière, M., Hendrick, F., Vigouroux, C., Desmet, F., Dils, B., & Niemeijer, S. (2015). Description of algorithms for co-locating and comparing gridded model data with remote-sensing observations. Geoscientific Model Development, 8(3), 911–921. https://doi.org/10.5194/gmd-8-911-2015
Lin, P., & Fu, Q. (2013). Changes in various branches of the Brewer–Dobson circulation from an ensemble of chemistry climate models. Journal of Geophysical Research: Atmospheres, 118(1), 73–84. https://doi.org/10.1029/2012jd018813
Lin, S., & Rood, R. B. (1996). Multidimensional flux-form semi-Lagrangian transport schemes. Monthly Weather Review, 124(9), 2046–2070. https://doi.org/10.1175/1520-0493(1996)124<2046:mffslt>2.0.co;2
Lin, S.-J. (2004). A “vertically Lagrangian” finite-volume dynamical core for global models. Monthly Weather Review, 132(10), 2293–2307. https://doi.org/10.1175/1520-0493(2004)132<2293:avlfdc>2.0.co;2
Linz, M., Plumb, R. A., Gupta, A., & Gerber, E. P. (2021). Stratospheric adiabatic mixing rates derived from the vertical gradient of age of air. Journal of Geophysical Research: Atmospheres, 126(21), e2021JD035199. https://doi.org/10.1029/2021jd035199
Livesey, N. J., Read, W. G., Froidevaux, L., Lambert, A., Santee, M. L., Schwartz, M. J., et al. (2021). Investigation and amelioration of long-term instrumental drifts in water vapor and nitrous oxide measurements from the aura microwave limb sounder (MLS) and their implications for studies of variability and trends. Atmospheric Chemistry and Physics, 21(20), 15409–15430. https://doi.org/10.5194/acp-21-15409-2021
Mahieu, E., Chipperfield, M., Notholt, J., Reddmann, T., Anderson, J., Bernath, P., et al. (2014). Recent northern hemisphere stratospheric HCl increase due to atmospheric circulation changes. Nature, 515(7525), 104–107. https://doi.org/10.1038/nature13857
Manney, G. L., & Hegglin, M. I. (2018). Seasonal and regional variations of long-term changes in upper-tropospheric jets from reanalyses. Journal of Climate, 31(1), 423–448. https://doi.org/10.1175/jcli-d-17-0303.1
Marsh, D. R., Mills, M. J., Kinnison, D. E., Lamarque, J.-F., Calvo, N., & Polvani, L. M. (2013). Climate change from 1850 to 2005 simulated in CESM1(WACCM). Journal of Climate, 26(19), 7372–7391. https://doi.org/10.1175/JCLI-D-12-00558.1
Matthes, K., Marsh, D. R., Garcia, R. R., Kinnison, D. E., Sassi, F., & Walters, S. (2010). Role of the QBO in modulating the influence of the 11 year solar cycle on the atmosphere using constant forcings. Journal of Geophysical Research, 115(D18), D18110. https://doi.org/10.1029/2009jd013020
Meinshausen, M., Nicholls, Z. R. J., Lewis, J., Gidden, M. J., Vogel, E., Freund, M., et al. (2020). The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geoscientific Model Development, 13(8), 3571–3605. https://doi.org/10.5194/gmd-13-3571-2020
Meul, S., Dameris, M., Langematz, U., Abalichin, J., Kerschbaumer, A., Kubin, A., & Oberländer-Hayn, S. (2016). Impact of rising greenhouse gas concentrations on future tropical ozone and UV exposure. Geophysical Research Letters, 43(6), 2919–2927. https://doi.org/10.1002/2016GL067997
Meul, S., Langematz, U., Kröger, P., Oberländer-Hayn, S., & Jöckel, P. (2018). Future changes in the stratosphere-to-troposphere ozone mass flux and the contribution from climate change and ozone recovery. Atmospheric Chemistry and Physics, 18(10), 7721–7738. https://doi.org/10.5194/acp-18-7721-2018
Millán, L. F., Livesey, N. J., Santee, M. L., Neu, J. L., Manney, G. L., & Fuller, R. A. (2016). Case studies of the impact of orbital sampling on stratospheric trend detection and derivation of tropical vertical velocities: Solar occultation vs. limb emission sounding. Atmospheric Chemistry and Physics, 16(18), 11521–11534. https://doi.org/10.5194/acp-16-11521-2016
Mills, M. J., Richter, J. H., Tilmes, S., Kravitz, B., MacMartin, D. G., Glanville, A. A., et al. (2017). Radiative and chemical response to interactive stratospheric sulfate aerosols in fully coupled CESM1(WACCM). Journal of Geophysical Research: Atmospheres, 122(23), 13061–13078. https://doi.org/10.1002/2017JD027006
Minganti, D., Chabrillat, S., Christophe, Y., Errera, Q., Abalos, M., Prignon, M., et al. (2020). Climatological impact of the Brewer–Dobson circulation on the N2O budget in WACCM, a chemical reanalysis and a CTM driven by four dynamical reanalyses. Atmospheric Chemistry and Physics, 20(21), 12609–12631. https://doi.org/10.5194/acp-20-12609-2020
Minganti, D., Errera, Q., Chabrillat, S., & Kinnison, D. E. (2022). Supplement for: N2O rate of change as a diagnostic of the Brewer-Dobson circulation in the stratosphere [Dataset]. Royal Belgian Institute for Space Aeronomy. https://doi.org/10.18758/71021071
Minschwaner, K., Su, H., & Jiang, J. H. (2016). The upward branch of the Brewer-Dobson circulation quantified by tropical stratospheric water vapor and carbon monoxide measurements from the Aura Microwave Limb Sounder. Journal of Geophysical Research: Atmospheres, 121(6), 2790–2804. https://doi.org/10.1002/2015JD023961
Monge-Sanz, B. M., Chipperfield, M. P., Dee, D. P., Simmons, A. J., & Uppala, S. M. (2012). Improvements in the stratospheric transport achieved by a chemistry transport model with ECMWF (re)analyses: Identifying effects and remaining challenges. Quarterly Journal of the Royal Meteorological Society, 139(672), 654–673. https://doi.org/10.1002/qj.1996
Morgenstern, O., Hegglin, M. I., Rozanov, E., O’Connor, F. M., Abraham, N. L., Akiyoshi, H., et al. (2017). Review of the global models used within phase 1 of the Chemistry–Climate Model Initiative (CCMI). Geoscientific Model Development, 10(2), 639–671. https://doi.org/10.5194/gmd-10-639-2017
Neale, R. B., Richter, J., Park, S., Lauritzen, P. H., Vavrus, S. J., Rasch, P. J., & Zhang, M. (2013). The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. Journal of Climate, 26(14), 5150–5168. https://doi.org/10.1175/jcli-d-12-00236.1
Nedoluha, G. E., Siskind, D. E., Lambert, A., & Boone, C. (2015). The decrease in mid-stratospheric tropical ozone since 1991. Atmospheric Chemistry and Physics, 15(8), 4215–4224. https://doi.org/10.5194/acp-15-4215-2015
Oberländer-Hayn, S., Gerber, E. P., Abalichin, J., Akiyoshi, H., Kerschbaumer, A., Kubin, A., et al. (2016). Is the Brewer-Dobson circulation increasing or moving upward? Geophysical Research Letters, 43(4), 1772–1779. https://doi.org/10.1002/2015GL067545
Pisoft, P., Sacha, P., Polvani, L. M., Añel, J. A., De La Torre, L., Eichinger, R., et al. (2021). Stratospheric contraction caused by increasing greenhouse gases. Environmental Research Letters, 16(6), 064038. https://doi.org/10.1088/1748-9326/abfe2b
Ploeger, F., Abalos, M., Birner, T., Konopka, P., Legras, B., Müller, R., & Riese, M. (2015). Quantifying the effects of mixing and residual circulation on trends of stratospheric mean age of air. Geophysical Research Letters, 42(6), 2047–2054. https://doi.org/10.1002/2014gl062927
Ploeger, F., Diallo, M., Charlesworth, E., Konopka, P., Legras, B., Laube, J. C., et al. (2021). The stratospheric Brewer–Dobson circulation inferred from age of air in the ERA5 reanalysis. Atmospheric Chemistry and Physics, 21(11), 8393–8412. https://doi.org/10.5194/acp-21-8393-2021
Ploeger, F., & Garny, H. (2022). Hemispheric asymmetries in recent changes in the stratospheric circulation. Atmospheric Chemistry and Physics, 22(8), 5559–5576. https://doi.org/10.5194/acp-22-5559-2022
Ploeger, F., Legras, B., Charlesworth, E., Yan, X., Diallo, M., Konopka, P., et al. (2019). How robust are stratospheric age of air trends from different reanalyses? Atmospheric Chemistry and Physics, 19(9), 6085–6105. https://doi.org/10.5194/acp-19-6085-2019
Plumb, R. A. (2002). Stratospheric transport. Journal of the Meteorological Society of Japan. Series II, 80(4B), 793–809. https://doi.org/10.2151/jmsj.80.793
Plumb, R. A., & Ko, M. K. (1992). Interrelationships between mixing ratios of long-lived stratospheric constituents. Journal of Geophysical Research, 97(D9), 10145–10156. https://doi.org/10.1029/92jd00450
Plummer, D., Nagashima, T., Tilmes, S., Archibald, A., Chiodo, G., Fadnavis, S., et al. (2021). CCMI-2022: A new set of Chemistry-Climate Model Initiative (CCMI) community simulations to update the assessment of models and support upcoming ozone assessment activities. Newsletter, 57, 22.
Polvani, L. M., Wang, L., Abalos, M., Butchart, N., Chipperfield, M. P., Dameris, M., et al. (2019). Large impacts, past and future, of ozone-depleting substances on Brewer-Dobson circulation trends: A multimodel assessment. Journal of Geophysical Research: Atmospheres, 124(13), 6669–6680. https://doi.org/10.1029/2018JD029516
Prather, M. J., Hsu, J., DeLuca, N. M., Jackman, C. H., Oman, L. D., Douglass, A. R., et al. (2015). Measuring and modeling the lifetime of nitrous oxide including its variability. Journal of Geophysical Research: Atmospheres, 120(11), 5693–5705. https://doi.org/10.1002/2015jd023267
Prignon, M., Chabrillat, S., Friedrich, M., Smale, D., Strahan, S., Bernath, P., et al. (2021). Stratospheric fluorine as a tracer of circulation changes: Comparison between infrared remote-sensing observations and simulations with five modern reanalyses. Journal of Geophysical Research: Atmospheres, 126(19), e2021JD034995. https://doi.org/10.1029/2021jd034995
Prignon, M., Chabrillat, S., Minganti, D., O’Doherty, S., Servais, C., Stiller, G., et al. (2019). Improved FTIR retrieval strategy for HCFC-22 (CHClF2), comparisons with in situ and satellite datasets with the support of models, and determination of its long-term trend above Jungfraujoch. Atmospheric Chemistry and Physics Discussions, 19(19), 12309–12324. https://doi.org/10.5194/acp-19-12309-2019
Randel, W., Boville, B. A., Gille, J. C., Bailey, P. L., Massie, S. T., Kumer, J., et al. (1994). Simulation of stratospheric N2O in the NCAR CCM2: Comparison with CLAES data and global budget analyses. Journal of the Atmospheric Sciences, 51(20), 2834–2845. https://doi.org/10.1175/1520-0469(1994)051<2834:sosnit>2.0.co;2
Randel, W., & Park, M. (2019). Diagnosing observed stratospheric water vapor relationships to the cold point tropical tropopause. Journal of Geophysical Research: Atmospheres, 124(13), 7018–7033. https://doi.org/10.1029/2019jd030648
Rodgers, C. D. (2000). Inverse methods for atmospheric sounding: Theory and practice (Vol. 2). World Scientific.
Šácha, P., Eichinger, R., Garny, H., Pišoft, P., Dietmüller, S., De la Torre, L., et al. (2019). Extratropical age of air trends and causative factors in climate projection simulations. Atmospheric Chemistry and Physics, 19(11), 7627–7647. https://doi.org/10.5194/acp-19-7627-2019
Scaife, A., & James, I. (2000). Response of the stratosphere to interannual variability of tropospheric planetary waves. Quarterly Journal of the Royal Meteorological Society, 126(562), 275–297. https://doi.org/10.1002/qj.49712656214
Seinfeld, J. H., & Pandis, S. N. (2016). Atmospheric chemistry and physics: From air pollution to climate change. John Wiley & Sons.
Sheese, P. E., Walker, K. A., Boone, C. D., Bernath, P. F., Froidevaux, L., Funke, B., & Von Clarmann, T. (2017). ACE-FTS ozone, water vapour, nitrous oxide, nitric acid, and carbon monoxide profile comparisons with MIPAS and MLS. Journal of Quantitative Spectroscopy and Radiative Transfer, 186, 63–80. https://doi.org/10.1016/j.jqsrt.2016.06.026
Shepherd, T. G. (2007). Transport in the middle atmosphere. Journal of the Meteorological Society of Japan. Series II, 85(0), 165–191. https://doi.org/10.2151/jmsj.85b.165
Shepherd, T. G. (2008). Dynamics, stratospheric ozone, and climate change. Atmosphere-Ocean, 46(1), 117–138. https://doi.org/10.3137/ao.460106
Simmons, A., Soci, C., Nicolas, J., Bell, B., Berrisford, P., Dragani, R., et al. (2020). Global stratospheric temperature bias and other stratospheric aspects of ERA5 and ERA5. 1. European Centre for Medium Range Weather Forecasts.
Stiller, G., Clarmann, T. v., Haenel, F., Funke, B., Glatthor, N., Grabowski, U., et al. (2012). Observed temporal evolution of global mean age of stratospheric air for the 2002 to 2010 period. Atmospheric Chemistry and Physics, 12(7), 3311–3331.
Stiller, G., Fierli, F., Ploeger, F., Cagnazzo, C., Funke, B., Haenel, F. J., et al. (2017). Shift of subtropical transport barriers explains observed hemispheric asymmetry of decadal trends of age of air. Atmospheric Chemistry and Physics, 17(18), 11177–11192. https://doi.org/10.5194/acp-17-11177-2017
Strahan, S. E., Douglass, A., Stolarski, R., Akiyoshi, H., Bekki, S., Braesicke, P., et al. (2011). Using transport diagnostics to understand chemistry climate model ozone simulations. Journal of Geophysical Research, 116(D17), D17302. https://doi.org/10.1029/2010jd015360
Strahan, S. E., Smale, D., Douglass, A. R., Blumenstock, T., Hannigan, J. W., Hase, F., et al. (2020). Observed hemispheric asymmetry in stratospheric transport trends from 1994 to 2018. Geophysical Research Letters, 47(17), e2020GL088567. https://doi.org/10.1029/2020gl088567
Strong, K., Wolff, M. A., Kerzenmacher, T. E., Walker, K. A., Bernath, P. F., Blumenstock, T., et al. (2008). Validation of ACE-FTS N2O measurements. Atmospheric Chemistry and Physics, 8(16), 4759–4786. https://doi.org/10.5194/acp-8-4759-2008
Tian, H., Xu, R., Canadell, J. G., Thompson, R. L., Winiwarter, W., Suntharalingam, P., et al. (2020). A comprehensive quantification of global nitrous oxide sources and sinks. Nature, 586(7828), 248–256. https://doi.org/10.1038/s41586-020-2780-0
Von Clarmann, T., & Grabowski, U. (2021). Direct inversion of circulation from tracer measurements–Part 2: Sensitivity studies and model recovery tests. Atmospheric Chemistry and Physics, 21(4), 2509–2526. https://doi.org/10.5194/acp-21-2509-2021
Wargan, K., Orbe, C., Pawson, S., Ziemke, J. R., Oman, L. D., Olsen, M. A., et al. (2018). Recent decline in extratropical lower stratospheric ozone attributed to circulation changes. Geophysical Research Letters, 45(10), 5166–5176. https://doi.org/10.1029/2018gl077406
Waugh, D., & Hall, T. (2002). Age of stratospheric air: Theory, observations, and models. Reviews of Geophysics, 40(4), 1. https://doi.org/10.1029/2000rg000101
Wolter, K., & Timlin, M. S. (2011). El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI. ext). International Journal of Climatology, 31(7), 1074–1087. https://doi.org/10.1002/joc.2336
Xian, T., & Homeyer, C. R. (2019). Global tropopause altitudes in radiosondes and reanalyses. Atmospheric Chemistry and Physics, 19(8), 5661–5678. https://doi.org/10.5194/acp-19-5661-2019
Zander, R., Mahieu, E., Demoulin, P., Duchatelet, P., Roland, G., Servais, C., et al. (2008). Our changing atmosphere: Evidence based on long-term infrared solar observations at the jungfraujoch since 1950. Science of the Total Environment, 391, 184–195. https://doi.org/10.1016/j.scitotenv.2007.10.018
Zhou, M., Langerock, B., Wells, K. C., Millet, D. B., Vigouroux, C., Sha, M. K., et al. (2019). An intercomparison of total column-averaged nitrous oxide between ground-based FTIR TCCON and NDACC measurements at seven sites and comparisons with the GEOS-Chem model. Atmospheric Measurement Techniques, 12(2), 1393–1408. https://doi.org/10.5194/amt-12-1393-2019