[en] The thermal conductivity data provided by the manufacture are not always sufficiently accurate, and not available for newly formulated materials . However, it is crucial to obtain precise data of the thermal conductivity for low (less as 0.2 W m-1 K-1) thermal conductivity materials where measurement errors have significant impact. There are several experimental methods to measure the thermal conductivity of insulating materials. These methods can be generally divided in two broad groups: steady-state and transient methods. In our work, we compared the results of thermal conductivity obtained by 3 different methods for the in-house formulated thermally insulating xerogel - epoxy composite adhesive. We performed the steady-state thermal conductivity measurements in vacuum chamber with low pressure of 7 10-9 mbar to suppress the conduction and convection losses. The results obtained by that method were compared with data obtained using two transient methods, a laser flash analysis (LFA) and an infrared (IR) thermography method. The LFA and IR thermography are indirect methods and require at least three independent measurements to obtain the thermal conductivity. The measurements error is larger than for the steady-state method. Additionally, to that, the IR thermography method exhibits several practical complications to realize necessary conditions of thermal transfer. That results in possible measurements errors and makes it not possible to obtain the thermal conductivity accurately. The steady-state and LFA methods can be used for the characterization of the thermal conductivity for low thermal conductivity materials such xerogel-epoxy composites
Disciplines :
Electrical & electronics engineering
Author, co-author :
Stoukatch, Serguei ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Systèmes microélectroniques intégrés ; Liege University,Microsys lab,Department of Electrical Engineering and Computer Science,Seraing,Belgium
Fagnard, Jean-François ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Applied and Computational Electromagnetics (ACE) ; Liege University,Department of Electrical Engineering and Computer Science,Seraing,Belgium
Roy, Geoffrey; Materials and process engineering, Institute of Mechanics, Materials and Civil Engineering (IMMC) Université catholique de Louvain,Louvain-la-Neuve,Belgium
Laurent, Philippe ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Systèmes microélectroniques intégrés ; Liege University,Department of Electrical Engineering and Computer Science,Seraing,Belgium
Dupont, François ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Systèmes microélectroniques intégrés ; Liege University,Microsys lab,Department of Electrical Engineering and Computer Science,Seraing,Belgium
Jacques, Pascal J.; Materials and process engineering, Institute of Mechanics, Materials and Civil Engineering (IMMC) Université catholique de Louvain,Louvain-la-Neuve,Belgium
Redouté, Jean-Michel ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Systèmes microélectroniques intégrés ; Liege University,Microsys lab,Department of Electrical Engineering and Computer Science,Seraing,Belgium
Language :
English
Title :
Thermal conductivity characterization of an in-house formulated thermal insulating xerogel - epoxy composite adhesive for electronics applications
ERDF - European Regional Development Fund Wallonia
Funding number :
No. 675781-642409
Funding text :
The work was supported by the Microsystème_ULg Microsys project, funded by the Wallonia (Belgium), the Micro+ project (No. 675781-642409) co-funded by the European Regional Development Fund (ERDF) and Wallonia (Belgium) and the Multifunctional thin films/Locoted project co-funded by the European Regional Development Fund (ERDF) and Wallonia (Belgium).
B. Kim B., and W. T. Park, "MEMS Packaging", In: Encyclopedia of Nanotechnology. B. Bhushan, Eeds., Springer, 2012, Dordrecht. DOI: 10. 1007/978-90-481-9751-4_319.
J. Sun, Zh. Geng, N. Xue, Ch. Liu, M. Tianjun, "A Mini-System Integrated with Metal-Oxide-Semiconductor Sensor and Micro-Packed Gas Chromatographic Column". Micromachines, 2018, 9 (8): 408. DOI: 10. 3390/mi9080408.
H. Nazemi, A. Joseph, J. Park, A. Emadi, "Advanced Micro-and Nano-Gas Sensor Technology: A Review". Sensors (Basel). 2019 Mar 14; 19 (6): 1285. DOI: 10. 3390/s19061285.
J. J. Licari, and D. W. Swanson, "Adhesives Technology for Electronic Applications: Materials, Processing, Reliability, " William Andrew Publishing, 2011, p. 512.
D. Zhao, X. Qian, X. Gu, S. A. Jajja, and R. Yang, "Measurement Techniques for Thermal Conductivity and Interfacial Thermal Conductance of Bulk and Thin Film Materials. " ASME. J. Electron. Packag., December 2016; 138 (4): 040802. DOI: 10. 1115/1. 4034605
J.-F. Fagnard, S. Stoukatch, P. Laurent, F. Dupont, C. Wolfs, S. D. Lambert, and J.-M. Redouté, "Preparation and characterization of a thermal insulating carbon xerogel-epoxy composite adhesive for electronics applications, " in IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 11, no. 4, April 2021, pp. 606-615. DOI: 10. 1109/TCPMT. 2021. 3059478.
N. Rey-Raap, E. G. Calvo, J. A. Menéndez, and A. Arenillas, "Exploring the potential of resorcinol-formaldehyde xerogels as thermal insulators, " Microporous and Mesoporous Materials, 244, 2017, pp. 50-54. DOI: 10. 1016/j. micromeso. 2017. 02. 044.
S. Ebnesajjad, Fluoroplastics, Volume 1: Non-Melt Processible Fluoropolymers-The Definitive User's Guide and Data Book, Elsevier, 2016, p. 698, DOI: 10. 1016/C2012-0-05997-2
D. M. Pricea, M. Jarrattb, "Thermal conductivity of PTFE and PTFE composites, " Thermochim Acta vol. 392-393, pp. 231-236, 2002. DOI: 10. 1016/s0040-6031 (02)00105-3
W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, "Flash Method of Determining Thermal Diffusivity Heat Capacity and Thermal Conductivity, " Journal of Applied Physics, Vol 32, 1961, pp. 1679-1984, DOI: 10. 1063/1. 1728417
Products-solutions: Thermal-diffusivity-conductivity: www. netzsch-thermal-analysis. com
Y. Takahashi, H. Yokokawa, H. Kadokura, Y. Sekine and T. Mukaibo, "Laser-flash calorimetry I. Calibration and test on alumina heat capacity", J. Chem. Thermodynamics, 11, 1979, pp. 379-394. DOI: 10. 1016/0021-9614 (79)90058-2.
Standard Test Method for Thermal Diffusivity by the Flash Method, ASTM E1461-01, www. astm. org/e1461-01. html
K. Shinzato, T. Baba, "A Laser Flash Apparatus for Thermal Diffusivity and Specific Heat Capacity Measurements", Journal of Thermal Analysis and Calorimetry 64, p. 413-422, 2001. DOI: 10. 1023/A: 1011594609521
"Practical Sampling Techniques for Infrared Analysis", Ed. Patricia B. Coleman, 2019 by CRC Press, p. 316., DOI: 10. 1201/9781003068044
P. Aryan, S. Sampath, H. Sohn, "An Overview of Non-Destructive Testing Methods for Integrated Circuit Packaging Inspection". Sensors, 2018,; 18 (7): 1981. doi: 10. 3390/s18071981.
C. H. Oxley, R. H. Hopper and G. A. Evans, "Improved infrared (IR) microscope measurements for the micro-electronics industry, " 2008 2nd Electronics System-Integration Technology Conference, Greenwich, 2008, pp. 215-218. doi: 10. 1109/ESTC. 2008. 4684352
H. M. Pollock, S. G. Kazarian "Microspectroscopy in the Mid-Infrared" in Encyclopedia of Analytical Chemistry, 2014, p. 1-26, John Wiley & Sons, Ltd, 2014, DOI: 10. 1002/9780470027318. a5609. pub2
Hsieh S. J. Survey of thermography in electronics inspection; Proceedings of the SPIE Sensing Technology+Applications; Baltimore, MD, USA. 21 May 2014; pp. 1-12. SPIE 9105, Thermosense: Thermal Infrared Applications XXXVI, 91050P (21 May 2014); doi: 10. 1117/12. 2053134
S. Stoukatch, J.-F. Fagnard, F. Dupont, P. Laurent and J.-M. Redouté, "Non-contact thermal characterization using IR camera for compact metal-oxide gas sensor", 2021 IEEE 23rd Electronics Packaging Technology Conference (EPTC), 2021, pp. 483-487, doi: 10. 1109/EPTC53413. 2021. 9663945.
Ch. Boué and D. Fournier, "Infrared thermography measurement of the thermal parameters (effusivity, diffusivity and conductivity) of materials", Quantitative InfraRed Thermography Journal, 6: 2, p. 175-188, 2009, DOI: 10. 3166/qirt. 6. 175-188